本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
动量机械能
1.作用力做功与反作用力做功
例1下列是一些说法中,正确的是( )
A.一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的冲量一定相同;
B.一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内做的功或者都为零,或者大小相等符号相反;
C.在同样的时间内,作用力和反作用力的功大小不一定相等,但正负号一定相反;
D.在同样的时间内,作用力和反作用力的功大小不一定相等,但正负号也不一定相反;
解析:说法A不正确,因为处于平衡状态时,两个力大小相等方向相反,在同一段时间内冲量大小相等,但方向相反。由恒力做功的知识可知,说法B正确。关于作用力和反作用力的功要认识到它们是作用在两个物体上,两个物体的位移可能不同,所以功可能不同,说法C不正确,说法D正确。正确选项是BD。
反思:作用力和反作用是两个分别作用在不同物体上的力,因此作用力的功和反作用力的功没有直接关系。作用力可以对物体做正功、负功或不做功,反作用力也同样可以对物体做正功、负功或不做功。
2.机车的启动问题
例2汽车发动机的功率为60KW,若其总质量为5t,在水平路面上行驶时,所受的阻力恒为5.0×103N,试求:
(1)汽车所能达到的最大速度。
(2)若汽车以0.5m/s2的加速度由静止开始匀加速运动,求这一过程能维持多长时间
解析:(1)汽车在水平路面上行驶,当牵引力等于阻力时,汽车的速度最大,最大速度为:
(2)当汽车匀加速起动时,由牛顿第二定律知:
而
所以汽车做匀加速运动所能达到的最大速度为:
所以能维持匀加速运动的时间为
反思:机车的两种起动方式要分清楚,但不论哪一种方式起动,汽车所能达到的最大速度都是汽车沿运动方向合外力为零时的速度,此题中当牵引力等于阻力时,汽车的速度达到最大;而当汽车以一定的加速度起动时,牵引力大于阻力,随着速度的增大,汽车的实际功率也增大,当功率增大到等于额定功率时,汽车做匀加速运动的速度已经达到最大,但这一速度比汽车可能达到的最大速度要小。
3.动能定理与其他知识的综合
例3: 静置在光滑水平面上坐标原点处的小物块,在水平拉力F作用下,沿x轴方向运动,拉力F随物块所在位置坐标x的变化关系如图5所示,图线为半圆.则小物块运动到x0处时的动能为( )
A.0 B. C. D.
解析 由于水平面光滑,所以拉力F即为合外力,F随位移X的变化图象包围的面积即为F做的功,由图线可知,半圆的半径为:
设x0处的动能为EK,由动能定理得:
即:,有:,
解得:,所以本题正确选项为C、D。
反思:不管是否恒力做功,也不管是否做直线运动,该动能定理都成立;本题是变力做功和力与位移图像相综合,对变力做功应用动能定理更方便、更迅捷,平时应熟练掌握。
4动能定理和牛顿第二定律相结合
例4 如图10所示,某要乘雪橇从雪坡经A点滑到B点,接着沿水平路面滑至C点停止。人与雪橇的总质量为。右表中记录了沿坡滑下过程中的有关数据,开始时人与雪橇距水平路面的高度,请根据右表中的数据解决下列问题:
(1)人与雪橇从A到B的过程中,损失的机械能为多少?
(2)设人与雪橇在BC段所受阻力恒定,求阻力的大小。
(3)人与雪橇从B运动到C的过程中所对应的距离。(取)
位置 A B C
速度(m/s) 2.0 12.0 0
时刻(s) 0 4.0 10.0
图10
解析:(1)从A到B的过程中,人与雪橇损失的机械能为
代入数据解得:
(2)人与雪橇在BC段做减速运动的加速度大小 :
根据牛顿第二定律有
解得 N
(3)人与雪橇从B运动到C的过程中由动能定得得:
代入数据解得:
反思:动能定理是研究状态,牛顿第二定律是研究过程。动能定理不涉及运动过程中的加速度和时间,用它来处理问题要比牛顿定律方便,但要研究加速度就必须用牛顿第二定律。
5.机械能守恒定律和平抛运动相结合
例5 小球在外力作用下,由静止开始从A点出发做匀加速直线运动,到B点时消除外力。然后,小球冲上竖直平面内半径为R的光滑半圆环,恰能维持在圆环上做圆周运动,到达最高点C后抛出,最后落回到原来的出发点A处,如图11所示,试求小球在AB段运动的加速度为多大?
图11
解析:本题的物理过程可分三段:从A到孤匀加速直线运动过程;从B沿圆环运动到C的圆周运动,且注意恰能维持在圆环上做圆周运动,在最高点满足重力全部用来提供向心力;从C回到A的平抛运动。
根据题意,在C点时,满足: ①
从B到C过程,由机械能守恒定律得: ②
由①、②式得:
从C回到A过程,做平抛运动:
水平方向: ③
竖直方向: ④
由③、④式可得s=2R
从A到B过程,由匀变速直线运动规律得: ⑤
即:
反思:机械能守恒的条件:在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。平抛运动的处理方法:把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的匀速直线运动,一个是竖直方向(沿着恒力方向)的匀加速直线运动。
6.机械能的瞬时损失
例6 一质量为m的质点,系于长为R的轻绳的一端,绳的另一端固定在空间的O点,假定绳是不可伸长的、柔软且无弹性的。今把质点从O点的正上方离O点的距离为的O1点以水平的速度抛出,如图12所示。试求;
图12
(1)轻绳即将伸直时,绳与竖直方向的夹角为多少?
(2)当质点到达O点的正下方时,绳对质点的拉力为多大?
解析:其实质点的运动可分为三个过程:
第一过程:质点做平抛运动。设绳即将伸直时,绳与竖直方向的夹角为,如图13所示,则,
图13
,其中
联立解得。
第二过程:绳绷直过程。绳棚直时,绳刚好水平,如图2所示.由于绳不可伸长,故绳绷直时,V0损失,质点仅有速度V⊥,且。
第三过程:小球在竖直平面内做圆周运动。设质点到达O点正下方时,速度为V′,根据机械能守恒守律有:
设此时绳对质点的拉力为T,则,联立解得:。
反思:在绳被拉直瞬时过程中有机械能的瞬时损失,绳棚直时,绳刚好水平,由于绳不可伸长,,其速度的水平分量突变为零。这时候存在机械能的瞬时损失,即物体的速度突然发生改变(物体某个方向的突然减为零)物理的机械能一定不守恒!
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网