课件28张PPT。第三章 磁 场第1讲 磁现象 磁场1.了解人类对磁现象的认识与应用.
2.了解磁场是客观存在的物质,知道磁感线的概念,并能记住几种常见磁场的磁感线分布特点.
3.会用安培定则判断电流周围的磁场方向.目标定位二、磁场和磁感线三、几种常见的磁场对点检测 自查自纠栏目索引一、磁现象1.我们的祖先在春秋战国时期已发现天然磁石具有吸引铁的现象和 的特征.
2. 发现的电流磁效应翻开了研究电与磁相互关系的新篇章,
发现的电磁感应现象打开了 的大门.
3.某些磁性物质能够把 对它的作用记录下来,长久保存并在一定条件下复现.
4.某些动物对 非常敏感,人体器官也存在 .答案一、磁现象知识梳理指示南北方向奥斯特法拉第电气化技术时代磁场地球磁场磁性例1 如图1所示,能自由转动的小磁针水平放置在桌面上.当有一束带电粒子沿与磁针指向平行的方向从小磁针上方水平飞过时,所能观察到的现象是( )典例精析解析答案返回A.小磁针不动
B.若是正电荷飞过,小磁针会发生偏转
C.若是负电荷飞过,小磁针会发生偏转
D.若是一根通电导线,小磁针会发生偏转解析 电流是由运动电荷产生的,当电荷在小磁针上方运动时也会形成电流,从而形成磁场.运动的正、负电荷形成的两种磁场是等效的,均会使小磁针发生转动,故B、C、D均正确.BCD图11.磁场
(1)定义:磁体周围和 周围都有磁场,一切磁相互作用都是通过
来实现的.
(2)基本性质:对放入其中的磁体或 有力的作用.
(3)磁场的方向:人们规定,在磁场中某一点小磁针 极所受磁力的方向,就是该点 的方向.答案知识梳理二、磁场和磁感线电流磁场电流N磁场2.磁感线
(1)定义:用来形象地描述 的方向和强弱的 的有方向的曲线.
(2)特点:
①磁感线上每一点的 为该点的磁场方向.
②磁感线的疏密表示磁场的强弱,曲线疏的地方磁场 ,曲线密的地方磁场 .
③磁感线的方向:磁体外部从 极指向 极,磁体内部从 极指向 极.
(填“N”或“S”)
④磁感线闭合而不相交,不相切,也不中断.答案磁场假想切线方向弱强NSSN(1)用磁感线描述磁场时,总有一些区域没有磁感线通过,这些区域是否一定没有磁场存在?答案【深度思考】答案 不是.用磁感线描述磁场时,只是定性地画出一些磁感线用来描述该区域的磁场分布,不可能让所有的区域都有磁感线通过,没有磁感线通过的区域仍然可以有磁场分布.(2)倘若空间某区域的磁场是由两个或两个以上的磁体或电流产生的,用磁感线描述该区域的磁场时,磁感线能否相交?答案答案 不能.若多个磁体或电流的磁场在空间某区域叠加,磁感线描述的是叠加后的合磁场的磁感线分布情况,不能认为该区域有多条磁感线相交.例2 下列关于磁场的说法中,正确的是( )
A.磁场和电场一样,是客观存在的特殊物质
B.磁场是为了解释磁极间相互作用而人为规定的
C.磁极与磁极间是直接发生作用的
D.磁场只有在磁极与磁极、磁极与电流发生作用时才产生典例精析解析答案解析 磁场和电场一样,是客观存在的物质,磁极与磁极、磁极与电流、电流与电流之间的作用都是通过磁场产生的,选项A正确.A总结提升磁体的周围和电流的周围都存在磁场.磁场和常见的由分子、原子组成的物质不同,不是以微粒形式存在,但却是一种客观存在的物质.例3 关于磁场和磁感线的描述,下列说法中正确的是( )
A.磁感线总是从磁铁的N极出发,到S极终止的
B.磁感线可以形象地描述各磁场的强弱和方向,它每一点的切线方向都
和小磁针放在该点静止时北极所指的方向一致
C.磁感线可以用细铁屑来显示,因而是真实存在的
D.两个磁场的叠加区域,磁感线可能相交解析答案总结提升返回解析 条形磁铁内部磁感线的方向是从S极指向N极,A不正确;
磁感线上每一点切线方向表示磁场方向,磁感线的疏密表示磁场的强弱,小磁针静止时北极受力方向和静止时北极的指向均为磁场方向,选项B正确;
磁感线是为了形象地描述磁场而假想的一组有方向的闭合曲线,实际上并不存在,选项C不正确;
叠加区域合磁场的方向也具有唯一性,故磁感线不可能相交,D选项错误.
答案 B总结提升返回磁感线与电场线的比较:返回返回1.磁体周围的磁场(如图2所示)三、几种常见的磁场知识梳理图2答案2.电流周围的磁场
(1)直线电流的磁场
安培定则: 手握住导线,让伸直的拇指所指的方向与 一致,弯曲的四指所指的方向就是 .这个规律也叫 .右电流方向磁感线环绕的方向右手螺旋定则稀疏弱(2)环形电流的磁场
环形电流的磁场可用另一种形式的安培定则表示:让 手弯曲的四指与 的方向一致,伸直的拇指所指的方向就是环形导线 上磁感线的方向.答案右环形电流轴线强稀疏(3)通电螺线管的磁场
通电螺线管是由许多匝 串联而成的.所以环形电流的安培定则也可以用来判定通电螺线管的磁场,这时拇指所指的方向就是螺线管 磁场的方向.答案环形电流内部条形NS磁体和电流都可以产生磁场,环形电流和通电螺线管的磁场与哪种磁体的磁场相似?答案【深度思考】答案 环形电流相当于小磁针,通电螺线管相当于条形磁铁.例4 如图3所示,分别给出了导线中的电流方向或磁场中某处小磁针静止时N极的指向或磁感线方向.请画出对应的磁感线(标上方向)或电流方向.典例精析解析答案图3返回解析 如果已知电流的方向,可用右手螺旋定则判断磁感线的方向.如果已知小磁针静止时N极指向,那么小磁针N极所指方向就是磁感线方向.答案 用安培定则来判断,分别如下列各图所示.返回1.(对磁场的理解)磁性是物质的一种普遍属性,大到宇宙星体,小到电子、质子等微观粒子,几乎都有磁性,地球就是一个巨大的磁体.在一些生物体内也会含有微量磁性物质,鸽子就是利用这种体内外磁性的相互作用来辨别方向的.若在鸽子身上绑一块永久磁铁,且其产生的磁场比附近的地磁场强的多,则在长距离飞行中( )
A.鸽子仍能如平时一样辨别方向
B.鸽子会比平时更容易辨别方向
C.鸽子会迷失方向
D.不能确定鸽子是否会迷失方向答案 对点检测1234C2.(对磁场的理解)(多选)关于磁场,下列说法正确的是( )
A.其基本性质是对处于其中的磁体或电流有力的作用
B.磁场是看不见、摸不着、实际不存在的,是人们假想出来的一种物质
C.磁场是客观存在的一种特殊物质形态
D.磁场的存在与否决定于人的思想,想其有则有,想其无则无解析答案1234解析 磁场的基本性质是对放入其中的磁体或电流有力的作用,A正确.
磁场虽然看不见、摸不着,但是它是客观存在的,B、D错误,C正确.AC3.(对磁感线的理解)如图4所示的磁场中同一条磁感线(方向未标出)上有a、b两点,这两点处的磁感应强度( )解析答案1234图4A.大小相等,方向不同
B.大小不等,方向相同
C.大小相等,方向相同
D.大小不等,方向不同解析 如题图,a点处磁感线比b点处磁感线密,则a点的磁感应强度大于b点的磁感应强度,而某点的切线方向即为该点的磁感应强度的方向.因此它们的方向相同.故B正确,A、C、D错误.B4.(安培定则的理解和应用)(多选)如图5所示,螺线管中通有电流,如果在图中的a、b、c三个位置上各放一个小磁针,其中a在螺线管内部,则( )解析答案图5A.放在a处的小磁针的N极向左
B.放在b处的小磁针的N极向右
C.放在c处的小磁针的S极向右
D.放在a处的小磁针的N极向右1234返回解析 由安培定则,通电螺线管的磁场如图所示,右端为N极,左端为S极,在a点磁场方向向右,则小磁铁在a点时,N极向右,A项错误,D项正确;
在b点磁场方向向右,则磁针在b点时,N极向右,B项正确;
在c点,磁场方向向右,则磁针在c点时,N极向右,S极向左,C项错误.
答案 BD1234返回本课结束课件32张PPT。第2讲 磁场对通电导线的作
用——安培力第三章 磁 场1.知道安培力的定义,会用F=ILB计算B与I垂直情况下的安培力.
2.熟练运用左手定则判断安培力的方向.
3.了解直流电动机构造和工作原理.
4.体会控制变量法在科学研究中的作用.目标定位二、电动机——安培力的重要应用三、安培力作用下物体运动方向的判断方法对点检测 自查自纠栏目索引一、安培力四、安培力作用下的受力分析问题1.定义:磁场对 的作用力.
2.安培力的大小——实验探究
(1)实验表明:当通电导线与磁场方向平行时,导线 ,即F= .
(2)精确实验表明:通电导线与磁场方向垂直时,磁场对通电导线作用力的大小与导线长度和电流大小都成 ,即F∝IL,比例系数与导线所在位置的磁场强弱有关,用符号B表示,则磁场对通电导线作用力的公式为F= .答案一、安培力知识梳理通电导线不受力0正比ILB3.安培力的方向判定
(1)左手定则:如图1所示,伸出左手,四指并拢,使大拇指和其余四指 ,并且都跟手掌在同一平面内,让磁感线 穿过手心,四指指向 ,则 所指方向就是通电导线所受 的方向.答案图1(2)安培力方向 于电流方向和磁场方向所决定的 .垂直垂直沿电流方向大拇指安培力垂直平面(1)若导线不受磁场力,该处一定无磁场吗?答案【深度思考】答案 当通电导线与磁场平行时不受磁场力,由此可知,当导线不受磁场力作用时无法判定该处有无磁场.(2)当通电导线与磁感线不垂直时,还可用左手定则判断安培力的方向吗?答案 可以.当电流方向跟磁感线方向不垂直时,安培力的方向仍垂直于电流和磁场共同决定的平面,所以仍可用左手定则来判断安培力的方向,只是磁感线斜着穿过手心.例1 画出下列各图中磁场对通电导线的安培力的方向.典例精析解析答案返回解析 无论B、I是否垂直,安培力总是垂直于B与I决定的平面,且满足左手定则.
答案 如图所示返回利用磁场对通电导体的作用
1.电动机是将电能转化为 的装置.
2.电动机分 电动机和 电动机.答案知识梳理二、电动机——安培力的重要应用机械能直流交流如图2所示,直流电动机由磁场(磁体)、转动线圈、滑环、电刷及电源组成,滑环相当于换向器.当线圈通电后,由于受 作用,线圈在磁场中旋转起来.答案图2安培力3.直流电动机的构造原理:(1)电动机工作时,通电线圈的四条边是否都受到安培力作用?答案【深度思考】答案 与磁感线平行的两个边不受安培力作用.(2)把滑环设计成由两个半圆环A、B组成,有什么作用?答案 把滑环分成两个半圆环A 与B,当电流由A 流入时,则从B 流出;当电流由B 流入时,则从A 流出.因此,滑环在其中起了一个换向器的作用.例2 关于直流电动机,下列叙述正确的是( )
A.直流电动机的原理是电流的磁效应
B.直流电动机正常工作时,是将电能转化为机械能
C.直流电动机的换向器是由两个彼此绝缘的铜制半环组成的
D.电源的正负极和磁场的方向同时改变,直流电动机的转动方向也改变典例精析解析答案解析 直流电动机的原理是通电线圈在磁场中受力转动,故A错误;
直流电动机正常工作时,是将电能转化为机械能,B正确;
直流电动机的换向器是由两个彼此绝缘的铜制半环组成的,C正确;
电源的正负极和磁场的方向同时改变,直流电动机的转动方向不变,故D错误.BC返回1.电流元法
即把整段通电导体等效为多段直线电流元,运用 定则判断出每小段电流元所受安培力的方向,从而判断出整段通电导体所受合力的方向.
2.特殊位置法
把通电导体或磁铁放置到一个便于分析的特殊位置后再判断所受安培力方向,从而确定运动方向.答案三、安培力作用下物体运动方向的判断方法知识梳理左手3.等效法
环形导线和通电螺线管都可以等效成 磁铁. 磁铁也可等效成环形导线或通电螺线管.通电螺线管也可以等效成很多匝的环形导线来分析.
4.利用结论法
(1)两电流相互平行时无转动趋势,同向电流相互 ,反向电流相互
;(填“吸引”或“排斥”)
(2)两电流不平行时,有转动到相互平行且电流方向 (填“相同”或“相反”)的趋势.答案条形条形吸引排斥相同5.转换研究对象法
因为电流之间、电流与磁体之间的相互作用满足牛顿第三定律.定性分析磁体在电流磁场作用的受力和运动时,可先分析电流在磁体的磁场中受到的安培力,然后由牛顿第三定律,再确定磁体所受电流的作用力.例3 如图3所示,两条导线相互垂直,但相隔一段距离.其中AB固定,CD能自由活动,当电流按图示方向通入两条导线时,导线CD将(从纸外向纸里看)( )典例精析解析答案图3方法点拨A.顺时针方向转动同时靠近导线AB
B.逆时针方向转动同时离开导线AB
C.顺时针方向转动同时离开导线AB
D.逆时针方向转动同时靠近导线AB方法点拨解析 (1)根据电流元分析法,把导线CD等效成CO、OD两段导线.由安培定则画出CO、OD所在位置由AB导线中电流所产生的磁场方向,由左手定则可判断CO、OD受力如图甲所示,可见导线CD逆时针转动. (2)由特殊位置分析法,让CD逆时针转动90°,如图乙所示,并画出CD此时位置AB导线中电流所产生的磁感线分布,据左手定则可判断CD受力垂直于纸面向里,可见导线CD靠近导线AB,故D选项正确.答案 D不管是通电导体还是磁体,对另一通电导体的作用都是通过磁场来实现的.因此必须先画出导体所在位置的磁感线方向,然后用左手定则判断导体所受安培力的方向进而再判断将要发生的运动.例4 如图4所示,把轻质导线圈用绝缘细线悬挂在磁铁N极附近,磁铁的轴线穿过线圈的圆心且垂直线圈平面.当线圈内通以图示方向的电流(从右向左看沿逆时针方向)后,线圈的运动情况是( )返回图4A.线圈向左运动
B.线圈向右运动
C.从上往下看顺时针转动
D.从上往下看逆时针转动解析答案解析 将环形电流等效成小磁针,如图所示,根据异名磁极相吸引知,线圈将向左运动,选A.
也可将左侧条形磁铁等效成环形电流,根据结论“同向电流相吸引,异向电流相排斥”也可判断出线圈向左运动,选A.返回答案 A四、安培力作用下的受力分析问题例5 质量为m的金属细杆置于倾角为θ的导轨上,导轨的宽度为d,杆与导轨间的动摩擦因数为μ,有电流通过杆,杆恰好静止于导轨上,在如图所示的A、B、C、D四个选项中,杆与导轨的摩擦力一定不为零的是( )典例精析解析答案方法点拨返回解析 选项A中,通电细杆可能受重力、安培力、导轨的弹力作用处于静止状态,如图所示,所以杆与导轨间的摩擦力可能为零.当安培力变大或变小时,细杆有上滑或下滑的趋势,于是有静摩擦力产生.选项B中,通电细杆可能受重力、安培力作用处于静止状态,如图所示,所以杆与导轨间的摩擦力可能为零.当安培力减小时,细杆受到导轨的弹力和沿导轨向上的静摩擦力,也可能处于静止状态.解析答案方法点拨选项C和D中,通电细杆受重力、安培力、导轨弹力作用具有下滑趋势,故一定受到沿导轨向上的静摩擦力,如图所示,所以杆与导轨间的摩擦力一定不为零.答案 CD方法点拨对通电导线进行受力分析,根据平衡条件判断摩擦力是否存在.弹力与摩擦力是被动力,其是否存在和大小随其他力的变化而变化.返回1.(安培力的方向)如图5所示,其中A、B图已知电流方向及其所受安培力的方向,试判断并在图中标出磁场方向.C、D图已知磁场方向及其对电流作用力的方向,试判断电流方向并在图中标出.答案 对点检测1234图5答案 A图磁场方向垂直纸面向外;B图磁场方向在纸面内垂直F向下;C、D图电流方向均垂直于纸面向里.(图略)1234图62.(磁电式电流表)(多选)如图6甲所示是磁电式电流表的结构图,图乙所示是磁极间的磁场分布图,以下选项中正确的是( )A.指针稳定后,线圈受到的螺旋弹簧的力矩方向与线圈受到的磁力矩方向是相反的
B.通电线圈中的电流越大,电流表指针偏转的角度也越大
C.在线圈转动的范围内,各处的磁场都是匀强磁场
D.在线圈转动的范围内,线圈所受磁力矩与电流有关,而与所处位置无关
解析答案1234解析 当阻碍线圈转动的力矩增大到与安培力产生的使线圈转动的力矩平衡时,线圈停止转动,即两力矩大小相等、方向相反,故A正确;磁电式电流表蹄形磁铁与铁芯间的磁场是均匀辐射分布的,不管线圈转动什么角度,它的平面都跟磁感线平行,均匀辐射分布的磁场特点是大小相等、方向不同,故C错误,D正确;电流越大,电流表指针偏转的角度也越大,故B正确.
答案 ABD12343.(电动机的原理)如图7所示是直流电动机的模型,闭合开关后线圈顺时针转动.现要线圈逆时针转动,下列方法中可行的是( )解析答案1234图7A.只改变电流方向 B.只改变电流大小
C.换用磁性更强的磁铁 D.对换磁极同时改变电流方向解析 直流电动机的转动方向与线圈中的电流方向和磁场方向有关,若使通入直流电动机的电流方向改变或磁场的方向改变,它的转动方向将改变.但是如果同时改变电流的方向和磁场的方向,线圈的转动方向将不变.A4.(安培力作用下的物体运动方向判断)一直导线平行于通电螺线管的轴线放置在螺线管的上方,如图8所示,如果直导线可以自由地运动且通以方向为由a到b的电流,则导线ab受安培力作用后的运动情况为( )解析答案图81234A.从上向下看顺时针转动并靠近螺线管
B.从上向下看顺时针转动并远离螺线管
C.从上向下看逆时针转动并远离螺线管
D.从上向下看逆时针转动并靠近螺线管返回1234返回解析 先由安培定则判断通电螺线管的南北两极,找出导线左、右两端磁感应强度的方向,并用左手定则判断这两端受到的安培力的方向,如图(a)所示.
可以判断导线受安培力后从上向下看按逆时针方向转动,再分析此时导线位置的磁场方向,再次用左手定则判断导线受安培力的方向,如图(b)所示,导线还要靠近螺线管,所以D正确,A、B、C错误.答案 D(a) (b)本课结束课件30张PPT。第3讲 磁感应强度 磁通量第三章 磁 场1.通过实验、类比和分析,寻找描述磁场强弱和方向的物理量——磁感应强度.
2.知道磁感应强度的定义,知道其方向、大小、定义式和单位.
3.掌握安培力的计算方法.
4.知道磁通量和磁通密度概念;会计算磁通量的大小.目标定位二、安培力的大小三、磁通量对点检测 自查自纠栏目索引一、磁感应强度1.实验发现:在磁场中某一点,安培力F与电流I和导线长度L乘积的比值是一个 ,与I、L无关;不同点的比值 ,与所在位置的
有关,因此,我们可以用这个比值来描述磁场的性质,把它称为磁感应强度.
2.定义式:B= .
3.单位:特斯拉,简称 ,符号是 ,1 T=1 .答案一、磁感应强度知识梳理定值不相等磁场强弱T特定值4.磁感应强度的方向:磁感应强度B 是 (填“矢”或“标”)量,磁场中某点磁感应强度的方向就是该点的 ,也就是放在该点的小磁针 受力的方向.
5.匀强磁场
(1)定义:在磁场的某个区域内,如果各点的磁感应强度 和 都相同,这个区域的磁场叫做匀强磁场.
(2)磁感线:在匀强磁场中,磁感线是一组 而且 的直线.答案矢磁场方向N极大小方向平行等距据公式B= 知,磁场中某处的磁感应强度的大小与通电导线在该处所受磁场力F成正比,与导线中的电流I和导线长度L的乘积IL成反比,这种说法正确吗?为什么?答案【深度思考】答案 不正确.公式B= 只是磁感应强度的定义式,磁场中某处的磁感应强度只与磁场本身有关,与该处是否放导线、导线所受磁场力以及导线的长度、通电电流大小均无关.例1 磁场中放一根与磁场方向垂直的通电导线,它的电流是2.5 A,导线长1 cm,它受到的磁场力为5.0×10-2 N.求:
(1)这个位置的磁感应强度;典例精析解析答案答案 2 T (2)如果把通电导线中的电流增大到5 A时,这一位置的磁感应强度;解析答案解析 磁感应强度B是由磁场自身决定的,和导线的长度L、电流I的大小无关,所以该位置的磁感应强度还是2 T.答案 2 T (3)如果通电导线在磁场中某处不受磁场力,是否能肯定在这里没有磁场?解析答案解析 如果通电导线在磁场中某处不受磁场力,则有两种可能:①该处没有磁场;②该处有磁场,但通电导线与磁场方向平行.答案 不能肯定总结提升(1)在定义式B= 中,通电导线必须垂直于磁场方向放置,因为沿不同方向放置导线时,同一导线受到的磁场力不相等.
(2)磁感应强度的定义式也适用于非匀强磁场,这时L应很短很短,IL称为“电流元”,相当于静电场中电场强度公式E= 中的“试探电荷”.
(3)磁感应强度B是用比值法定义的物理量,其大小只取决于磁场本身的性质,与F、I、L无关,与磁场中有没有通电导线无关.例2 如图1所示,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流.a、O、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等.关于以上几点处的磁场,下列说法正确的是( )返回解析答案图1A.O点处的磁感应强度为零
B.a、b两点处的磁感应强度大小相等、方向相反
C.c、d两点处的磁感应强度大小相等、方向相同
D.a、c两点处磁感应强度的方向不同方法点拨解析 由安培定则可知,两导线在O点产生的磁场方向均竖直向下,合磁感应强度一定不为零,故选项A错误;
由安培定则,两导线在a、b两处产生的磁场方向均竖直向下,由于对称性,电流M在a处产生磁场的磁感应强度等于电流N在b处产生磁场的磁感应强度,电流M在b处产生磁场的磁感应强度等于N在a处产生磁场的磁感应强度,所以a、b两处磁感应强度大小相等、方向相同,选项B错误;
根据安培定则判断可知,两导线在c、d处产生的磁场分别垂直c、d两点与导线连线方向向下,且产生的磁场的磁感应强度相等,由平行四边形定则可知,c、d两点处的磁感应强度大小相等,方向均竖直向下,故选项C正确,选项D错误.
答案 C方法点拨磁感应强度是矢量,当空间存在几个磁体(或电流)时,每一点的磁场为各个磁体(或电流)在该点产生磁场的矢量和.磁感应强度叠加时遵循平行四边形定则.返回1.公式:F=ILB⊥= .
θ指通电导线与磁场方向的夹角.
2.对公式的理解
同一通电导线,按不同方式放在同一磁场中,受力情况不同,如图2所示.答案知识梳理二、安培力的大小图2ILBsinθ(1)如图甲,I⊥B,即θ=90°时,安培力最大,F= .
(2)如图乙,I∥B,即θ=0°或180°时,安培力最小,F= .
(3)如图丙,当I与B成θ角时,可以把磁感应强度B分解,如图丁所示.此时F= ,这是一般情况下安培力的表达式.答案图2BIL0BILsin θ例3 长度为L、通有电流为I的直导线放入一匀强磁场中,电流方向与磁场方向分别如图所示,已知磁感应强度为B,对于下列各图中,导线所受安培力的大小计算正确的是( )典例精析解析答案解析 A图中,导线不和磁场垂直,将导线投影到垂直磁场方向上,故F=BILcos θ,A正确;
B图中,导线和磁场方向垂直,故F=BIL,B错误;
C图中,导线和磁场方向垂直,故F=BIL,C错误;
D图中,导线和磁场方向垂直,故F=BIL,D错误.
答案 A例4 如图3所示,一段导线abcd位于磁感应强度大小为B的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直.线段ab、bc和cd的长度均为L,且∠abc=∠bcd=135°.流经导线的电流为I,方向如图中箭头所示.导线abcd所受到的磁场的作用力的合力( )返回解析答案总结提升图3A.方向竖直向上,大小为( +1)BIL
B.方向竖直向上,大小为( -1)BIL
C.方向竖直向下,大小为( +1)BIL
D.方向竖直向下,大小为( -1)BIL解析 导线abcd的有效长度为线段ad,由几何知识知Lad=( +1)L,故线段abcd所受磁场力的合力大小F=BILad=( +1)BIL,导线有效长度的电流方向为a→d,据左手定则可以确定导线所受合力方向竖直向上,故A项正确.
答案 A总结提升返回当导线垂直放入磁场时,安培力大小F=ILB,其中L为导线的有效长度,即连接两端点直线的长度,如图4所示.注意在丁中L=2R而不等于2πR.图41.在磁感应强度为B 的 中,有一块 磁感线方向的面积为S的平面,我们定义 为通过这个面的磁通量,简称 ,用Φ表示.它在数值上等于穿过这个面的 .
2.公式:Φ= .国际制单位为 ,简称 ,符号是 . 1 Wb=1 T·m2.
说明:当平面与磁场夹角为θ时,穿过平面的磁通量可用平面在垂直于磁场B的方向的投影面积进行计算,Φ=BS⊥= .
3.适用条件:(1) 磁场;(2)磁感线与平面 .
4.引申:由于B= ,因此,磁感应强度B又叫做 .答案三、磁通量知识梳理匀强磁场垂直BS磁通磁感线条数BS韦伯韦WbBScosθ匀强垂直磁通密度例5 如图5所示,线圈abcd平面与水平方向夹角θ=60°,磁感线竖直向下,线圈平面面积S=0.4 m2,匀强磁场磁感应强度B=0.6 T,则穿过线圈的磁通量Φ为多少?典例精析解析答案总结提升图5解析 解法一:把S投影到与B垂直的方向,则Φ=B·Scos θ=0.6×0.4×cos 60° Wb=0.12 Wb.
解法二:把B分解为平行于线圈平面的分量B∥和垂直于线圈平面的分量B⊥,B∥不穿过线圈,且B⊥=Bcos θ,则Φ=B⊥S=Bcos θ·S=0.6×0.4×cos 60° Wb=0.12 Wb.
答案 0.12 Wb返回(1)磁通量的计算
①公式:Φ=BS
适用条件:a.匀强磁场;b.磁感线与平面垂直.
②当平面与磁场方向不垂直时,穿过平面的磁通量可用平面在垂直于磁场B的方向的投影面积进行计算,即Φ=BS⊥.
(2)磁通量的正、负既不表示大小,也不表示方向,它表示磁通量从某个面穿入还是穿出,若规定穿入为正,则穿出为负,反之亦然.返回1.(磁感应强度的理解)关于磁感应强度B、电流I、导线长度L和电流所受磁场力F的关系,下面的说法中正确的是( )
A.在B=0的地方,F一定等于零
B.在F=0的地方,B一定等于零
C.若B=1 T,I=1 A,L=1 m,则F一定等于1 N
D.若L=1 m,I=1 A,F=1 N,则B一定等于1 T解析答案 对点检测1234解析 在B为零的地方,则F一定为零,而F为零时,则B不一定为零,可能B与I平行.故A正确,B错误;
若B=1 T,I=1 A,L=1 m,根据F=BILsin θ,知只有B垂直于I时,F=BIL=1 N,故C错误;
若F=1 N,I=1 A,L=1 m,根据F=BILsin θ,知只有B垂直于I时,F=BIL=1 N,B=1 T,故D错误.
答案 A12342.(磁感应强度的叠加)在磁感应强度为B0、方向竖直向上的匀强磁场中,水平放置一根长通电直导线,电流的方向垂直于纸面向里.如图6所示,a、b、c、d是以直导线为圆心的同一圆周上的四点,在这四点中( )解析答案1234图6A.b、d两点的磁感应强度相等
B.a、b两点的磁感应强度相等
C.c点的磁感应强度的值最小
D.b点的磁感应强度的值最大解析 如图所示,由矢量叠加原理可求出各点的合磁场的磁感应强度,可见b、d两点的磁感应强度大小相等,但方向不同,A项错误.
a点的磁感应强度最大,c点的磁感应强度最小,B、D项错误,C项正确.
答案 C12343.(安培力的大小)如图7所示,在匀强磁场中有下列各种形状的通电导线,电流为I,磁感应强度为B,求各导线所受的安培力的大小.解析答案1234图7答案 A.ILBcos α B.ILB C. ILB D.2BIR E.04.(对磁通量的理解)如图8所示,一个单匝线圈abcd水平放置,面积为S,有一半面积处在竖直向下的匀强磁场中,磁感应强度为B,当线圈以ab边为轴转过30°和60°时,穿过线圈的磁通量分别是多少?解析答案图81234返回本课结束课件22张PPT。第4讲 习题课:安培力的综
合应用第三章 磁 场1.知道安培力的概念,会用左手定则判定安培力的方向
2.理解并熟练应用安培力的计算公式F=ILBsin θ.
3.会用左手定则分析解决通电导体在磁场中的受力及平衡类问题.目标定位二、安培力和牛顿第二定律的结合对点检测 自查自纠栏目索引一、安培力作用下导线的平衡1.一般解题步骤:
(1)明确研究对象;
(2)先把立体图改画成平面图,并将题中的角度、电流的方向、磁场的方向标注在图上;
(3)根据平衡条件:F合=0列方程求解.一、安培力作用下导线的平衡知识梳理2.求解安培力时注意:
(1)首先确定出通电导线所在处的磁感线的方向,再根据左手定则判断安培力方向;
(2)安培力大小与导线放置的角度有关,但一般情况下只要求导线与磁场垂直的情况,其中L为导线垂直于磁场方向的长度,即有效长度.例1 如图1所示,质量m=0.1 kg的导体棒静止于倾角为θ=30°的斜面上,导体棒长度L=0.5 m.通入垂直纸面向里的电流,电流大小I=2 A,整个装置处于磁感应强度B=0.5 T、方向竖直向上的匀强磁场中.求:(取g=10 m/s2)典例精析解析答案图1(1)导体棒所受安培力的大小和方向;
(2)导体棒所受静摩擦力的大小和方向.解析 解决此题的关键是分析导体棒的受力情况,明确各力的方向和大小.
(1)安培力F安=ILB=2×0.5×0.5 N=0.5 N,
由左手定则可知安培力的方向水平向右.
(2)建立如图坐标系,分解重力和安培力.在x轴方向上,设导体棒受到的静摩擦力大小为f,方向沿斜面向下.
在x轴方向上有:
mgsin θ+f=F安·cos θ, 解得f=-0.067 N.
负号说明静摩擦力的方向与假设的方向相反,即沿斜面向上.答案 (1)0.5 N 水平向右 (2)0.067 N 沿斜面向上针对训练1 如图2所示,两平行光滑导轨相距为L=20 cm,金属棒MN的质量为m=10 g,电阻R=8 Ω,匀强磁场磁感应强度B方向竖直向下,大小为B=0.8 T,电源电动势E=10 V,内阻r=1 Ω.当开关S闭合时,MN处于平衡,求此时变阻器R1的阻值为多少?(设θ=45°,g=10 m/s2)图2解析 根据左手定则判断安培力方向,再作出金属棒平衡时的受力平面图如图所示.
当MN处于平衡时,根据平衡条件有:
mgsin θ-BILcos θ=0,答案 7 Ω返回解析答案方法点拨在处理安培力的平衡问题时,安培力、电流方向以及磁场方向构成一个空间直角坐标系,在空间判断安培力的方向有很大的难度,所以在判断一些复杂的安培力方向时都会选择画侧视图(平面图)的方法,这样就可以把难以理解的空间作图转化成易于理解的平面作图.返回解决安培力作用下的力学综合问题,同样遵循力学的规律.做好全面受力分析是前提,无非就是多了一个安培力,其次要根据题设条件明确运动状态,再恰当选取物理规律列方程求解.知识梳理二、安培力和牛顿第二定律的结合例2 如图3所示,光滑的平行导轨倾角为θ,处在磁感应强度为B的匀强磁场中,导轨中接入电动势为E、内阻为r的直流电源.电路中有一阻值为R的电阻,其余电阻不计,将质量为m、长度为L的导体棒由静止释放,求导体棒在释放瞬间的加速度的大小.典例精析解析答案图3解析 受力分析如图所示,导体棒受重力mg、支持力N和安培力F,
由牛顿第二定律:
mgsin θ-Fcos θ=ma ①
F=BIL ②针对训练2 澳大利亚国立大学制成了能把2.2 g的弹体(包括金属杆EF的质量)从静止加速到10 km/s的电磁炮(常规炮弹的速度约为2 km/s).如图4所示,若轨道宽为
2 m,长为100 m,通过的电流为10 A,试求:
(1)轨道间所加匀强磁场的磁感应强度;解析答案图4解析 由运动学公式求出加速度a,由牛顿第二定律和安培力公式联立求出B.根据牛顿第二定律F=ma得炮弹所受的安培力F=ma=2.2×10-3×5×
105 N=1.1×103 N,答案 55 T (2)安培力的最大功率.(轨道摩擦不计)返回解析答案图4解析 安培力的最大功率P=Fvt=1.1×107 W.答案 1.1×107 W1.(安培力作用下物体的平衡)如图5所示,在与水平方向夹角为60°的光滑金属导轨间有一电源,在相距1 m的平行导轨上放一质量为m=0.3 kg的金属棒ab,通以从b→a,I=3 A的电流,磁场方向竖直向上,这时金属棒恰好静止.求:
(1)匀强磁场磁感应强度的大小;解析答案 对点检测123图5123答案 1.73 T (2)ab棒对导轨压力的大小.(g=10 m/s2)解析答案123图5答案 6 N2.(安培力作用下导线的平衡) 如图6所示,在倾角为θ的斜面上,有一质量为m的通电长直导线,电流方向如图,当导线处于垂直于斜面向上的匀强磁场中,磁感应强度大小分别为B1和B2时,斜面对长直导线的静摩擦力均达到最大值,已知B1∶B2=3∶1,求斜面对长直导线的最大静摩擦力的大小.解析答案123图6解析 假设最大静摩擦力为fm,
B1IL=mgsin θ+fm
mgsin θ=B2IL+fm3.(安培力和牛顿第二定律的结合)据报道,最近已研制
出一种可投入使用的电磁轨道炮,其原理如图7所示.
炮弹(可视为长方形导体)置于两固定的平行导轨之
间,并与轨道壁密接.开始时炮弹静止在导轨的一端,通以电流后炮弹会被磁力加速,最后从位于导轨另一端的出口高速射出.设两导轨之间的距离W=0.10 m,导轨长L=5.0 m,炮弹质量m=0.30 kg.导轨上的电流I的方向如图中箭头所示.可以认为,炮弹在轨道内运动时,它所在处磁场的磁感应强度始终为B=2.0 T,方向垂直于纸面向里.若炮弹出口速度为v=2.0×103 m/s,求通过导轨的电流I.忽略摩擦力与重力的影响.解析答案123图7返回123解析 在导轨通有电流I时,炮弹作为导体受到磁场施加的安培力为
F=IBW ①
设炮弹的加速度的大小为a,则有
F=ma ②
炮弹在两导轨间做匀加速运动,因而
v2=2aL ③
联立①②③代入题给数据得:
I=6×105 A
故通过导轨的电流I=6×105A.
答案 6×105 A返回本课结束课件30张PPT。第5讲 磁场对运动电荷的作
用——洛伦兹力第三章 磁 场1.知道洛伦兹力,会用左手定则判断方向.
2.掌握洛伦兹力公式的推导过程,会计算大小,知道洛伦兹力做功的特点.
3.掌握带电粒子在匀强磁场中做匀速圆周运动的规律和分析方法.
4.掌握洛伦兹力作用下的带电体的运动特点和处理方法.目标定位二、洛伦兹力的大小三、带电粒子在磁场中的运动对点检测 自查自纠栏目索引一、洛伦兹力四、洛伦兹力作用下带电体的运动1.洛伦兹力
(1)定义: 在磁场中受到的磁场力.
(2)与安培力的关系:静止的通电导线在磁场中受到的安培力,在数值上等于大量定向运动电荷受到的洛伦兹力的 .答案一、洛伦兹力知识梳理运动电荷总和2.洛伦兹力的方向
(1)左手定则:
伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让 从掌心进入,并使四指指向 ,这时拇指所指的方向就是运动的正电荷在磁场中所受 的方向.负电荷受力的方向与正电荷受力的方向 .
(2)特点:F⊥B,F⊥v,即F垂直于 决定的平面.答案磁感线正电荷运动的方向洛伦兹力相反B和v(1)电荷在电场中一定受电场力作用,电荷在磁场中也一定受洛伦兹力作用吗?答案【深度思考】答案 不一定,只有电荷在磁场中运动且速度方向与磁场方向不平行时才受洛伦兹力作用.(2)负电荷所受洛伦兹力的方向应怎样判断?答案 根据左手定则判断,但四指指向负电荷速度的反方向.例1 如图所示的磁感应强度B、电荷的运动速度v和磁场对电荷的作用力F的相互关系图中,画得正确的是(其中B、F、v两两垂直)( )典例精析解析答案返回方法点拨解析 由于B、F、v两两垂直,根据左手定则得:A、B、D选项中电荷所受的洛伦兹力都与图示F的方向相反,故A、B、D错误,C正确.C返回确定洛伦兹力的方向需明确运动电荷的电性,特别注意负电荷的运动方向与左手四指的指向应相反.1.公式推导:
长为L的一段直导线,电流为I,处在磁场强度为B的磁场中,导线与磁场垂直,则安培力的大小为:F安=BIL
如图1所示,设此导线的截面积为S,其中每单位体积中有n个自由电荷,每个自由电荷的电荷量为q,定向运动的速率为v.则电流I的微观表达式
I=nqSv知识梳理二、洛伦兹力的大小图1这段导体中含有的电荷数为nLS
安培力可以看作是作用在每个运动电荷上的洛伦兹力F的合力,这段导体中含有的自由电荷数为nLS,所以答案2.洛伦兹力公式:
(1)当v⊥B时,F= .
(2)当v∥B时,F= .
(3)当v与B成θ角时,F= .qvB0qvBsinθ例2 在图2所示的各图中,匀强磁场的磁感应强度均为B,带电粒子的速率均为v,带电荷量均为q.试求出图中带电粒子所受洛伦兹力的大小,并指出洛伦兹力的方向.典例精析解析答案方法点拨图2返回方法点拨解析 (1)因v⊥B,所以F= qvB,方向与v垂直指向左上方.
(2)v与B的夹角为30°,将v分解成垂直磁场的分量和平行磁场的分量,v⊥=vsin 30°,F=qvBsin 30°= qvB.方向垂直纸面向里.
(3)由于v与B平行,所以不受洛伦兹力.
(4)v与B垂直,F=qvB,方向与v垂直指向左上方.答案 (1)qvB 垂直v指向左上方
(2) qvB 垂直纸面向里
(3)不受洛伦兹力
(4)qvB 垂直v指向左上方确定洛伦兹力的大小时需明确“v”与“B”的方向夹角θ.返回1.洛伦兹力做功特点:洛伦兹力的方向总跟粒子运动的速度方向 .所以洛伦兹力对运动电荷 (填“做功”或“不做功”),它不会改变带电粒子速度的 ,只改变粒子运动的 .
2.带电粒子(不计重力)以一定的速度v进入磁感应强度为B的匀强磁场中:
(1)当v∥B时,带电粒子将做 .
(2)当v⊥B时,带电粒子将做 .答案三、带电粒子在磁场中的运动知识梳理垂直不做功大小方向匀速直线运动匀速圆周运动①洛伦兹力提供向心力,即qvB= .
②得轨道半径r= .
③运动周期T= = .答案增加带电粒子的速度,其在匀强磁场中运动的周期如何变化?为什么?答案【深度思考】例3 质子和α粒子由静止出发经过同一加速电场加速后,沿垂直磁感线方向进入同一匀强磁场,则它们在磁场中的各运动量间的关系正确的是( )典例精析解析答案返回A.速度之比为2∶1 B.周期之比为1∶2
C.半径之比为1∶2 D.角速度之比为1∶1B四、洛伦兹力作用下带电体的运动例4 一个质量m=0.1 g的小滑块,带有q=5×10-4 C的电荷量,放置在倾角α=30°的光滑斜面上(绝缘),斜面固定且置于B=0.5 T的匀强磁场中,磁场方向垂直纸面向里,如图3所示,小滑块由静止开始沿斜面滑下,斜面足够长,小滑块滑至某一位置时,要离开斜面(g取10 m/s2).求:(计算结果保留两位有效数字)
(1)小滑块带何种电荷?典例精析解析答案图3解析 小滑块在沿斜面下滑的过程中,受重力mg、斜面支持力N和洛伦兹力F作用,如图所示,若要使小滑块离开斜面,则洛伦兹力F应垂直斜面向上,根据左手定则可知,小滑块应带负电荷.答案 负电荷 (2)小滑块离开斜面时的瞬时速度为多大?解析答案图3解析 小滑块沿斜面下滑的过程中,垂直于斜面的加速度为零时,由平衡条件得F+N=mgcos α,当支持力N=0时,小滑块脱离斜面.设此时小滑块速度为vmax,则此时小滑块所受洛伦兹力F=qvmaxB,答案 3.5 m/s (3)该斜面长度至少为多长?解析答案总结提升返回图3答案 1.2 m分析带电物体在磁场中的运动,分析方法与力学中完全一样:对物体进行受力分析,求合外力,用牛顿第二定律、运动学方程或动能定理列方程.返回1.(洛伦兹力)在阴极射线管中电子流方向由左向右,其上方放置一根通有如图4所示电流的直导线,导线与阴极射线管平行,则电子将( )解析答案 对点检测1234图4A.向上偏转 B.向下偏转
C.向纸里偏转 D.向纸外偏转解析 由题图可知,直导线电流的方向由左向右,根据安培定则,可判定直导线下方的磁场方向为垂直于纸面向里,而电子运动方向由左向右,由左手定则知(电子带负电荷,四指要指向电子运动方向的反方向),电子将向下偏转,故B选项正确.B解析答案12342.(洛伦兹力及带电体在磁场中的运动)有一质量为m、电荷量为q的带正电的小球停在绝缘平面上,并处在磁感应强度为B、方向垂直纸面向里的匀强磁场中,如图5所示,为了使小球飘离平面,应该( )
A.使磁感应强度B的数值增大图51234答案 D3.(带电粒子在磁场中的圆周运动)(多选)如图6所示,两个匀强磁场的方向相同,磁感应强度分别为B1、B2,虚线MN为理想边界.现有一个质量为m、电荷量为e的电子以垂直于边界MN的速度v由P点沿垂直于磁场的方向射入磁感应强度为B1的匀强磁场中,其运动轨迹为图中虚线所示的心形图线,以下说法正确的是( )解析答案1234图6A.电子的运动轨迹为P→D→M→C→N→E→P
B.电子运动一周回到P点所用的时间T=
C.B1=4B2
D.B1=2B2解析 由左手定则可知,电子在P点所受的洛伦兹力的方向向上,轨迹为P→D→M→C→N→E→P,选项A正确;1234答案 AD4. (洛伦兹力作用下带电体的运动)带电油滴以水平速度v0垂直进入磁场,恰做匀速直线运动,如图7所示,若油滴质量为m,磁感应强度为B,则下述说法正确的是( )解析答案图71234返回1234返回答案 A本课结束课件32张PPT。第6讲 洛伦兹力的应用第三章 磁 场1.知道利用磁场控制带电粒子的偏转.
2.掌握带电粒子在匀强磁场中做匀速圆周运动的规律和分析方法.
3.了解质谱仪、回旋加速器的构造和原理.目标定位二、质谱议三、回旋加速器对点检测 自查自纠栏目索引一、利用磁场控制带电粒子运动答案一、利用磁场控制带电粒子运动知识梳理图1(二)控制特点:只改变带电粒子的 ,不改变带电粒子的
.运动方向速度大小(三)带电粒子在有界磁场中运动的处理方法
1.“一找圆心,二求半径,三定时间”的方法.
(1)圆心的确定方法:两线定一“心”
①圆心一定在垂直于速度的直线上.
如图2甲所示,已知入射点P(或出射点M)的速度方向,
可通过入射点和出射点作速度的垂线,两条直线的交
点就是圆心.
②圆心一定在弦的中垂线上.
如图乙所示,作P、M连线的中垂线,与其一速度的垂线的交点为圆心.图2(2)求半径
方法① 由公式qvB=m ,得半径r= ;
方法② 由轨迹和约束边界间的几何关系求解半径r.
(3)定时间
粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为α时,其运动时间为t= T(或t= T).答案2.圆心角与偏向角、圆周角的关系
两个重要结论:
(1)带电粒子射出磁场的速度方向与射入磁场的速度方向之间的夹角φ叫做偏向角,偏向角等于圆弧 对应的圆心角α,即α=φ,如图3所示.
(2)圆弧 所对应圆心角α等于弦 与切线的夹角(弦切角)θ的2倍,即α=2θ,如图所示.图3例1 如图4所示,一束电荷量为e的电子以垂直于磁场方向(磁感应强度为B)并垂直于磁场边界的速度v射入宽度为d的磁场中,穿出磁场时速度方向和原来射入方向的夹角为θ=60°.求电子的质量和穿越磁场的时间.典例精析解析答案图4解析 过M、N作入射方向和出射方向的垂线,两垂线交于O点,O点即电子在磁场中做匀速圆周运动的圆心,连结ON,过N作OM的垂线,垂足为P,如图所示.解析答案例2 一圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图5所示.图中直径MN的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M射入筒内,射入时的运动方向与MN成30°角.当筒转过90°时,该粒子恰好从小孔N飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为( )返回解析答案总结提升图5答案 A分析粒子在磁场中运动的基本思路:(1)定圆心;(2)画出粒子运动的轨迹;(3)由几何方法确定半径;(4)用规律列方程.返回1.定义:测定带电粒子 的仪器.
2.结构:如图6所示答案知识梳理二、质谱议图6荷质比3.原理:
(1)加速:S1和S2之间存在着加速电场.
由动能定理:qU= mv2.
(2)匀速直线运动
P1和P2之间的区域存在着相互正交的 和 .只有满足qE=qvB1,即v= 的带电粒子才能沿直线匀速通过S3上的狭缝.
(3)偏转:S3下方空间只存在 .带电粒子在该区域做 运动.经半个圆周运动后打到底片上形成一个细条纹,测出条纹到狭缝S3的距离L,就得出了粒子做圆周运动的半径R= ,根据R= ,可以得出粒子的荷质比.
4.应用:质谱仪在 、原子核技术中有重要应用.答案匀强磁场匀强电场磁场化学分析匀速圆周质谱仪是如何区分同位素的?答案【深度思考】例3 如图7是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有磁感应强度为B0的匀强磁场.下列表述正确的是( )典例精析解析答案图7A.质谱仪是分析同位素的重要工具
B.速度选择器中的磁场方向垂直纸面向外
C.能通过狭缝P的带电粒子的速率等于
D.粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越小返回解析 质谱仪是测量带电粒子的质量和分析同位素的重 要工具,故A选项正确;答案 ABC返回1.原理
(1)如图8所示,回旋加速器的核心部件是两个 ,D形盒分别与高频电源的两极相连,使缝隙中产生 ,加速带电粒子.磁场方向
于D形盒的底面.当带电粒子垂直于磁场方向进入D形盒中,粒子受到洛伦兹力的作用而做 运动,经过 回到D形盒的边缘,缝隙中的电场使它获得一次加速.答案三、回旋加速器知识梳理图8D形盒交变电场匀速圆周半个周期垂直(2)粒子每经过一次加速,其轨道半径都会变大,但只要缝隙中的交变电场以T= 的不变周期往复变化就可以保证离子每次经过缝隙时都被电场加速.
2.周期:由T= 得,带电粒子的周期与速率、半径均无关(填“有关”或“无关”),运动相等的时间(半个周期)后进入电场.答案3.带电粒子的最终能量:由r= 得,当带电粒子的速度最大时,其运动半径也最大,若D形盒半径为R,则带电粒子的最终动能Em= .可见,要提高加速粒子的最终能量,应尽可能增大磁感应强度B和D形盒的半径R.(1)回旋加速器中,随着粒子速度的增加,缝隙处的电场的频率如何变化才能使粒子在缝隙处刚好被加速?答案【深度思考】答案 不变.虽然粒子每经过一次加速,其速度和轨道半径就增大,但是粒子做圆周运动的周期不变,所以电场的频率保持不变就行.(2)粒子在回旋加速器中加速获得的最大动能与交变电压的大小有何关系?答案 没有关系.回旋加速器所加的交变电压的大小只影响加速次数,与粒子获得的最大动能无关.例4 回旋加速器是用来加速一群带电粒子使它们获得很大动能的仪器,其核心部分是两个D形金属扁盒,两盒分别和一高频交流电源两极相接,以便在盒内的窄缝中形成匀强电场,使粒子每次穿过狭缝时都得到加速,两盒放在磁感应强度为B的匀强磁场中,磁场方向垂直于盒底面,粒子源置于盒的圆心附近,若粒子源射出的粒子电荷量为q,质量为m,粒子最大回旋半径为Rmax.求:
(1)粒子在盒内做何种运动;典例精析解析答案解析 带电粒子在盒内做匀速圆周运动,每次加速之后半径变大.答案 匀速圆周运动,每次加速之后半径变大(2)所加交变电流频率及粒子角速度;解析答案(3)粒子离开加速器时的最大速度及最大动能.解析答案借题发挥返回(1)洛伦兹力永远不做功,磁场的作用是让带电粒子“转圈圈”,电场的作用是加速带电粒子.
(2)两D形盒窄缝所加的是与带电粒子做匀速圆周运动周期相同的交流电,且粒子每次过窄缝时均为加速电压,每旋转一周被加速两次.
(3)粒子射出时的最大速度(动能)由磁感应强度和D形盒的半径决定,与加速电压无关.返回1.(带电粒子在有界磁场中的运动)如图9所示,在第Ⅰ象限内有垂直纸面向里的匀强磁场,一对正、负粒子分别以相同速率沿与x轴成30°角的方向从原点射入磁场,则正、负粒子在磁场中运动的时间之比为( )解析答案 对点检测1234图9解析 正、负粒子在磁场中运动轨迹如图所示,正粒子做匀速圆周运动在磁场中的部分对应圆心角为120°,负粒子做匀速圆周运动在磁场中的部分所对应圆心角为60°,故时间之比为2∶1.B2.(带电粒子在有界磁场中的运动)如图10所示,有界匀强磁场边界线SP∥MN,速率不同的同种带电粒子从S点沿SP方向同时射入磁场.其中穿过a点的粒子速度v1与MN垂直;穿过b点的粒子速度v2与MN成60°角,设粒子从S到a、b所需时间分别为t1和t2,则t1∶t2为(重力不计)( )解析答案1234图10A.1∶3 B.4∶3 C.1∶1 D.3∶2解析 如图所示,可求出从a点射出的粒子对应的圆心角为90°.从b点射出的粒子对应的圆心角为60°.由t=
T,可得:t1∶t2=3∶2,故选D.D3.(质谱议)质谱议是测带电粒子质量和分析同位素的一种仪器,它的工作原理是带电粒子(不计重力)经同一电场加速后垂直进入同一匀强磁场做圆周运动,然后利用相关规律计算出带电粒子的质量.其工作原理如图11所示,虚线为某粒子的运动轨迹,由图可知( )解析答案1234图11A.此粒子带负电
B.下极板S2比上极板S1电势高
C.若只增大加速电压U,则半径r变大
D.若只增大入射粒子的质量,则半径r变小1234粒子经过电场要加速,因粒子带正电,所以下极板S2比上极板S1电势低.故B错误;
若只增大加速电压U,由上式可知,则半径r变大,故C正确;
若只增大入射粒子的质量,由上式可知,则半径也变大.故D错误.答案 C4.(回旋加速器的原理)(多选)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底面的匀强磁场中,如图12所示,要增大带电粒子射出时的动能,下列说法中正确的是( )解析答案图121234返回A.增加交流电的电压 B.增大磁感应强度
C.改变磁场方向 D.增大加速器半径1234返回答案 BD本课结束课件40张PPT。第7讲 习题课:带电粒子在叠
加场和组合场中的运动第三章 磁 场1.会计算洛伦兹力的大小,并能判断其方向.
2.能分析计算带电粒子在叠加场中的运动.
3.能分析计算带电粒子在组合场中的运动.目标定位二、带电粒子在叠加场中的运动三、带电粒子在组合场中的运动对点检测 自查自纠栏目索引一、带电粒子在磁场中的匀速圆周运动1.解题步骤
(1)画轨迹:先确定 ,再画出运动轨迹,然后用几何方法求半径.
(2)找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角、运动 相联系,在磁场中运动的时间与周期相联系.
(3)用规律:用牛顿第二定律列方程qvB=m ,及圆周运动规律的一些基本公式.答案一、带电粒子在磁场中的匀速圆周运动知识梳理圆心时间2.带电粒子在有界磁场中的圆周运动的几种常见情形
(1)直线边界(进出磁场具有对称性,如图1所示)图1(2)平行边界(存在临界条件,如图2所示)图2(3)圆形边界(沿径向射入必沿径向射出,如图3所示)图33.带电粒子在有界磁场中运动的临界问题
带电粒子在有界磁场中运动,往往出现临界条件,可以通过对轨迹圆放大的方法找到相切点如图2(c)所示.注意找临界条件,注意挖掘隐含条件.例1 如图4所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xOy平面并指向纸里,磁感应强度为B.一带负电的粒子(质量为m、电荷量为q)以速度v0从O点射入磁场,入射方向在xOy平面内,与x轴正向的夹角为θ.求:
(1)该粒子射出磁场的位置;典例精析解析答案图4(2)该粒子在磁场中运动的时间.(粒子所受重力不计)解析答案图4例2 如图5所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF.一电子从CD边界外侧以速率v0垂直射入匀强磁场,入射方向与CD边界间夹角为θ.已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少为多大?解析答案图5解析 当入射速率v0很小时,电子会在磁场中转
动一段圆弧后又从CD一侧射出,速率越大,轨道半径越大,当轨道的边界与EF相切时,电子恰好不能从EF射出,如图所示,电子恰好射出时,由几何知识可得:
r+rcos θ=d ①例3 在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图6所示.一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,它恰好从磁场边界与y轴的交点C处沿+y方向飞出.
(1)请判断该粒子带何种电荷,并求出其比荷 ;解析答案图6解析 由粒子的运动轨迹(如图),利用左手定则可知,该粒子带负电荷.
粒子由A点射入,由C点飞出,其速度方向改变了90°,则粒子轨迹半径R=r,(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B′,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B′多大?此次粒子在磁场中运动所用时间t是多少?解析答案返回图6返回1.叠加场:电场、 、重力场共存,或其中某两场共存.
2.基本思路:
(1)弄清叠加场的组成.
(2)进行受力分析.
(3)确定带电粒子的运动状态,注意运动情况和受力情况的结合.答案知识梳理二、带电粒子在叠加场中的运动磁场(4)画出粒子运动轨迹,灵活选择不同的运动规律.
①当做匀速直线运动时,根据受力平衡列方程求解.
②当做匀速圆周运动时,一定是电场力和重力平衡,洛伦兹力提供向心力,应用平衡条件和牛顿运动定律分别列方程求解.
③当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解.(1)小球做匀速直线运动的速度v的大小和方向;典例精析解析答案图7答案 20 m/s 与电场方向成60°角斜向上
(2)从撤掉磁场到小球再次穿过P点所在的这条电场线经历的时间t.
解析答案答案 3.5 s返回1.组合场:电场与磁场各位于一定的区域内,并不重叠,一般为两场相邻或在同一区域电场、磁场交替出现.
2.解题时要弄清楚场的性质、场的方向、强弱、范围等.
3.要进行正确的受力分析,确定带电粒子的运动状态.
4.分析带电粒子的运动过程,画出运动轨迹是解题的关键.
5.解题技巧:组合场中电场和磁场是各自独立的,计算时可以单独使用带电粒子在电场或磁场中的运动公式来列式处理.电场中常有两种运动方式:加速或偏转;而匀强磁场中,带电粒子常做匀速圆周运动.三、带电粒子在组合场中的运动知识梳理例5 如图8所示,在直角坐标系xOy的第一象限中分布着沿y轴负方向的匀强电场,在第四象限中分布着方向向里垂直纸面的匀强磁场.一个质量为m、电荷量为+q的微粒,在A点(0,3)以初速度v0=120 m/s平行x轴正方向射入电场区域,然后从电场区域进入磁场,又从磁场进入电场,并且先后只通过x轴上的P点(6,0)和Q点(8,0)各一次.已知该微粒的比荷为
=102 C/kg,微粒重力不计,求:
(1)微粒从A到P所经历的时间和加速度的大小;典例精析解析答案图8答案 0.05 s 2.4×103 m/s2 (2)求出微粒到达P点时速度方向与x轴正方向的夹角,并画出带电微粒在电场和磁场中由A至Q的运动轨迹;解析答案图8答案 45° 见解析图 (3)电场强度E和磁感应强度B的大小.解析答案图8解析 由qE=ma,得E=24 N/C
设微粒从P点进入磁场以速度v做匀速圆周运动,答案 24 N/C 1.2 T返回1.(带电粒子在叠加场中的运动)一正电荷q在匀强磁场中,以速度v沿x轴正方向进入垂直纸面向里的匀强磁场中,磁感应强度为B,如图9所示,为了使电荷能做直线运动,则必须加一个电场进去,不计重力,此电场的场强应该是( )解析答案 对点检测1234图9解析 要使电荷能做直线运动,必须用电场力抵消洛伦兹力,本题正电荷所受洛伦兹力的方向沿y轴正方向,故电场力必须沿y轴负方向且qE=qvB,即E=Bv.
答案 B12342.(带电粒子在有界磁场中的运动)(多选)长为L的水平极板间,有垂直纸面向内的匀强磁场,如图10所示,磁感应强度为B,板间距离也为L,极板不带电,现有质量为m,电量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )解析答案1234图101234解析答案1234?答案 AB3. (带电粒子在有界磁场中的运动)如图11所示,在半径为R= 的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度为B,圆顶点P有一速度为v0的带正电的粒子平行于纸面进入磁场,已知粒子的质量为m,电荷量为q,粒子的重力不计.
(1)若粒子对准圆心射入,求它在磁场中运动的时间;解析答案1234图111234解析 设带电粒子进入磁场中做匀速圆周运动的轨迹半径为r,由牛顿第二定律得(2)若粒子对准圆心射入,且速率为 v0,求它在磁场中运动的时间.解析答案1234图114.(带电粒子在组合场中的运动)如图12所示xOy坐标系,在第二象限内有水平向右的匀强电场,在第一、第四象限内分别存在匀强磁场,磁感应强度大小相等,方向如图所示.现有一个质量为m,电荷量为+q的带电粒子在该平面内从x轴上的P点,以垂直于x轴的初速度v0进入匀强电场,恰好经过y轴上的Q点且与y轴成45°角射出电场,再经过一段时间又恰好垂直于x轴进入第四象限的磁场.已知OP之间的距离为d(不计粒子的重力).求:
(1)O点到Q点的距离;解析答案1234图12解析 设Q点的纵坐标为h,到达Q点的水平分速度为vx,P到Q受到恒定的电场力与初速度垂直,为类平抛运动,则由类平抛运动的规律可知
竖直方向匀速直线h=v0t1234答案 2d (2)磁感应强度B的大小;解析答案1234图12(3)带电粒子自进入电场至在磁场中第二次经过x轴所
用的时间.解析答案1234返回图121234返回本课结束