21世纪教育网 –中小学教育资源及组卷应用平台
21.2.2解一元二次方程——公式法
【知识回顾】
1、式子________叫做一元二次方程ax2+bx+c = 0(a≠0)根据的判别式,通常用希腊字母____表示,即________.
2、(1)当△>0时,方程ax2+bx+c=0(a≠0)有______根;
(2)当△=0时,方程ax2+bx+c=0(a≠0)有______根;
(3)当______时,方程ax2+bx+c=0(a≠0)没有实数根.
3、对于一元二次方程 ax2+bx+c=0(a≠0),如果b2 -4ac≥0,那么方程的两个根为________________,这个公式叫做一元二次方程的_________,我们可以由一元二次方程的系数a,b,c的值,直接求得方程的解,这种解一元二次方程的方法叫做______________.
4、公式法解一元二次方程的一般步骤:
(1)将方程化为__________________形式,并写出a,b,c的值;
(2)求出_________的值;
(3)若________________,将a,b,c的值代入求根公式;
(4)写出方程的根
【夯实基础】
1、用公式法解方程4x2-12x=3,得到( ).
A.x= B.x=
C.x= D.x=
2、方程x2+4x+6=0的根是( ).
A.x1=,x2= B.x1=6,x2=
C.x1=2,x2= D.x1=x2=-
3、若关于x的方程+2x+a=0不存在实数根,则a的取值范围是( )
A.a<1 B.a>1 C.a≤1 D.a≥1
4、用公式法解下列方程:
(1)x2+2x﹣2=0 (2)y2﹣3y+1=0 (3)x2+3=2x
5、已知m是方程x2+x-1=0的根,求m-的值
【提优特训】
1、(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是( ).
A.4 B.-2 C.4或-2 D.-4或2
2、已知一元二次方程x2﹣x﹣3=0的较小根为x1,则下面对x1的估计正确的是( )
A.﹣2<x1<﹣1 B.﹣3<x1<﹣2 C.2<x1<3 D.﹣1<x1<0
3、若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为( )
A.﹣1 B.0 C.1 D.2
4、若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.
5、已知关于x的一元二次方程kx2﹣2(k﹣1)x+k﹣2=0(k≠0)
(1)小明考查后说,它总有两个不相等的实数根.
(2)小华补充说,其中一个根与k无关.请你说说其中的道理.
6、已知关于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求证:无论m取何值,原方程总有两个不相等的实数根;
(2)若x1、x2是原方程的两根,且|x1﹣x2|=2,求m的值.
7、某数学兴趣小组对关于x的方程(m+1)+(m-2)x-1=0提出了下列问题.
(1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.
(2)若使方程为一元二次方程m是否存在?若存在,请求出.
你能解决这个问题吗?
8、某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时元收费.
(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示)
(2)下表是这户居民3月、4月的用电情况和交费情况
月份 用电量(千瓦时) 交电费总金额(元)
3 80 25
4 45 10
根据上表数据,求电厂规定的A值为多少?
【中考链接】
1、(重庆中考)已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.两个根都是自然数 D.无实数根
2、(温州中考)若关于x的一元二次方程4x2﹣4x+c=0有两个相等实数根,则c的值是( )
A.﹣1 B.1 C.﹣4 D.4
3、(凉山州中考)关于x的一元二次方程(m-2)x2+2x+1=0有实数根,则m的取值范围是( )
A.m≤3 B.m<3 C.m<3且m≠2 D.m≤3且m≠2
4、(株洲中考)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a c≠0,a≠c.下列四个结论中,错误的是( )
A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根
B.如果方程M的两根符号相同,那么方程N的两根符号也相同
C.如果5是方程M的一个根,那么是方程N的一个根
D.如果方程M和方程N有一个相同的根,那么这个根必是x=1
5、(泰州中考)已知:关于x的方程x2+2mx+m2﹣1=0
(1)不解方程,判别方程根的情况;
(2)若方程有一个根为3,求m的值.
【参考答案】
【夯实基础答案】
1、D
2、D
3、B
【提优特训答案】
1、C
2、A
解:x2﹣x﹣3=0,
b2﹣4ac=(﹣1)2﹣4×1×(﹣3)=13,
x=,
方程的最小值是,
∵3<<4,
∴﹣3>﹣>﹣4,
∴﹣>﹣>﹣2,
∴﹣>﹣>﹣2,
∴﹣1>>﹣
3、B
解:∵关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,
∴△=(﹣2)2﹣8(a﹣1)=12﹣8a≥0且a﹣1≠0,
∴a≤且a≠1,
∴整数a的最大值为0.
4、-3
5、解:(1)∵△=4(k﹣1)2﹣4k(k﹣2)=4>0,
∴一元二次方程kx2﹣2(k﹣1)x+k﹣2=0(k≠0)总有两个不相等的实数根;
(2)当x=1时,k﹣2(k﹣1)+k﹣2=0,
即一元二次方程kx2﹣2(k﹣1)x+k﹣2=0(k≠0)有一根为1,
x=1是一元二次方程kx2﹣2(k﹣1)x+k﹣2=0(k≠0)的根,与k无关.
6、解:(1)∵△=(m+3)2﹣4(m+1)=m2+2m+5=(m+1)2+4>0,
∴无论m取何值,原方程总有两个不相等的实数根;
(2)∵x1、x2是原方程的两根,
∴x1+x2=﹣m﹣3,x1x2=m+1,
∵|x1﹣x2|=2,
∴(x1﹣x2)2=8,
∴(x1+x2)2﹣4x1x2=8,
∴(﹣m﹣3)2﹣4(m+1)=8,
∴m1=1,m2=﹣3.
7、分析:能.(1)要使它为一元二次方程,必须满足+1=2,同时还要满足(m+1)≠0.
(2)要使它为一元一次方程,必须满足:
①或②或③
解:(1)存在.根据题意,得:+1=2
=1∴m=±1
当m=1时,m+1=1+1=2≠0
当m=-1时,m+1=-1+1=0(不合题意,舍去)
∴当m=1时,方程为-x-1=0
∴a=2,b=-1,c=-1
∴-4ac=-4×2×(-1)=1+8=9
∴x=
=1,
因此,该方程是一元二次方程时,m=1,两根=1,
(2)存在.根据题意,得:①+1=1,=0,m=0
∵当m=0时,(m+1)+(m-2)=2m-1=-1≠0
∴m=0满足题意.
②当+1=0,m不存在.
③当m+1=0,即m=-1时,m-2=-3≠0
∴m=-1也满足题意.
当m=0时,一元一次方程是x-2x-1=0,
解得:x=-1
当m=-1时,一元一次方程是-3x-1=0
解得x=-
因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=-.
8、(1)超过部分电费=(90-A)· HYPERLINK "http://www.1230.org/" EMBED Equation.DSMT4 =-A2+A
(2)依题意,得:(80-A)· HYPERLINK "http://www.1230.org/" EMBED Equation.DSMT4 =15,A1=30(舍去),A2=50
【中考链接答案】
1、A
2、B
3、D
解:∵关于x的一元二次方程(m-2)x2+2x+1=0有实数根,
∴m-2≠0且△≥0,即22-4×(m-2)×1≥0,解得m≤3,
∴m的取值范围是 m≤3且m≠2.
4、D
解:A、如果方程M有两个相等的实数根,那么△=b2﹣4ac=0,所以方程N也有两个相等的实数根,结论正确,不符合题意;
B、如果方程M的两根符号相同,那么方程N的两根符号也相同,那么△=b2﹣4ac≥0,>0,所以a与c符号相同,>0,所以方程N的两根符号也相同,结论正确,不符合题意;
C、如果5是方程M的一个根,那么25a+5b+c=0,两边同时除以25,得c+b+a=0,所以是方程N的一个根,结论正确,不符合题意;
D、如果方程M和方程N有一个相同的根,那么ax2+bx+c=cx2+bx+a,(a﹣c)x2=a﹣c,由a≠c,得x2=1,x=±1,结论错误,符合题意;
5、解:(1)∵a=1,b=2m,c=m2﹣1,
∵△=b2﹣4ac=(2m)2﹣4×1×(m2﹣1)=4>0,
∴方程x2+2mx+m2﹣1=0有两个不相等的实数根;
(2)∵x2+2mx+m2﹣1=0有一个根是3,
∴32+2m×3+m2﹣1=0,
解得,m=﹣4或m=﹣2.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)