第22章 相似形单元检测B卷(含解析)

文档属性

名称 第22章 相似形单元检测B卷(含解析)
格式 doc
文件大小 1.6MB
资源类型 试卷
版本资源 沪科版
科目 数学
更新时间 2018-08-08 16:17:39

图片预览

文档简介

21世纪教育网 –中小学教育资源及组卷应用平台
第22章 相似形单元检测B卷
姓名:__________班级:__________考号:__________
一 、选择题(本大题共12小题 )
下列说法不一定正确的是(  )
A.所有的等边三角形都相似 B.所有的等腰直角三角形都相似
C.所有的菱形都相似 D.所有的正方形都相似
如果两个相似三角形的面积比是1:6,则它们的相似比(  )
A.1:36 B.1:6 C.1:3 D.1:6
如图,在矩形ABCD中,E,F分别为,AD与BC的中点,且矩形ABCD∽矩形AEFB,的值为(  )
A.2 B. C. D.
若P是线段AB的黄金分割点(PA>PB),设AB=1,则PA的长约为(  )
A.0.191 B.0.382 C.0.5 D.0.618
如图,在针孔成像问题中,根据图形尺寸可知像 的长是物AB长的( )
A、3倍 B、不知AB的长度,无法计算 C、 D、
如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是(  )
A. B. C. D.
如图.△ABC中,CD:DB=3:1,AE:EB=3:2,则CF:FE=( )
A.3 B.4 C.3:2 D.5
下列各组条件中,一定能推得△ABC与△DEF相似的是(  )
A.∠A=∠E且∠D=∠F B.∠A=∠B且∠D=∠F
C.∠A=∠E且 D.∠A=∠E且
如图,A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,如果△RPQ∽△ABC,那么点R应是甲、乙、丙、丁四点中的(  )
A.甲 B.乙 C.丙 D.丁
如图所示,在△ABC中∠BAC=90°,D是BC中点,AE⊥AD交CB延长线于E点,则下列结论正确的是( )
A.△AED∽△ACB B.△AEB∽△ACD C.△BAE∽△ACE D.△AEC∽△DAC
如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为(  )
A.4 B.5 C.6 D.7
如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,若AE= ,AD= ,则两个三角形重叠部分的面积为( )
A. B. C. D.
二、填空题(本大题共6小题 )
已知两个相似多边形的周长比为1:2,它们的面积和为25,则这两个多边形的面积分别是________。
如图,△ABC中,点D、E分別在AB、AC上,DE∥BC,AD:DB=1:2,则△ADE与△ABC的面积的比为   .
如图 所示,某斜坡AB上有一点B′,B′C′、BC是边AC上的高,则图中相似的三角形是______________,则B′C′∶AB′=______________,B′C′∶AC′=______________.
如图,路灯点O到地面的垂直距离为线段OP的长.小明站在路灯下点A处,AP=4米,他的身高AB为1.6米,同学们测得他在该路灯下的影长AC为2米,路灯到地面的距离________米.
《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”
用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.
如图,在 ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F.若CD=5,BC=8,AE=2,则AF=   .
三、解答题(本大题共8小题 )
如图,在△ABC中,若DE∥BC,,DE=4cm,求BC的长
已知xyz≠0且,求k的值.
某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.
如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.
如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?
如图,G是正方形ABCD对角线AC上一点,作GE⊥AD,GF⊥AB,垂足分别为点E,F.求证:四边形AFGE与四边形ABCD相似.
如图,在Rt△ABC中,∠C=90°,点D在边AB上,线段DC绕点D逆时针旋转,端点C恰巧落在边AC上的点E处.如果,
求m与n满足的关系式(用含n的代数式表示m).
在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤3),解答下列问题:
(1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;
(2)是否存在x的值,使得QP⊥DP?试说明理由.
在△ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合).
(1)如图1,若EF∥BC,求证:
(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;
(3)如图3,若EF上一点G恰为△ABC的重心,,求的值.
答案解析
一 、选择题
【考点】 相似图形
【分析】 利用“对应角相等,对应边的比也相等的多边形相似”进行判定即可.
解:A、所有的等边三角形都相似,正确;
B、所有的等腰直角三角形都相似,正确;
C、所有的菱形不一定都相似,故错误;
D、所有的正方形都相似,正确.
故选C.
【考点】相似三角形的性质
【分析】根据相似三角形面积的比等于相似比的平方解答.
解:∵两个相似三角形的面积比是1:6,
∴它们的相似比.
故选D.
【考点】相似多边形的性质.
【分析】根据相似多边形对应边的比相等,设出原来矩形的长与宽,就可得到一个方程,解方程即可求得.
解:∵矩形ABCD∽矩形AEFB,
∴=.
设AD=x,AB=y,则AE=x.
∴=,
故y2=x2,即x2=2y2,
则x=y,
则==.
故选:C.
【点评】此题考查了相似多边形的性质,根据相似形的对应边的比相等,把几何问题转化为方程问题,正确分清对应边,以及正确解方程是解决本题的关键.
【考点】 黄金分割.
【分析】 根据黄金分割点的定义,知PA是较长线段;则PA=0.618AB,代入数据即可.
解: 由于P为线段AB=1的黄金分割点,
且PA>PB,
则PA=0.618×1=0.618.
故选D.
【考点】相似三角形的应用
【分析】由AB∥A′B′可知,△OAB∽△OA′B′,根据相似三角形的相似比等于对应边上高的比,列方程求解.
解:如图,作OM⊥AB , ON⊥ , ∵AB∥ ,
∴△OAB∽△ ,
∴ ,
即 ,
∴ = AB .
故选:C.
【分析】根据位似变换的性质得出△ABC的边长放大到原来的2倍,FO=a,CF=a+1,CE=(a+1),进而得出点B的横坐标.
解:∵点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.
点B的对应点B′的横坐标是a,
∴FO=a,CF=a+1,
∴CE=(a+1),
∴点B的横坐标是:﹣(a+1)﹣1=﹣(a+3).
故选D.
【分析】首先过点D作DK∥AB交CE于K,由平行线分线段成比例定理,即可得CK:KE=CD:DB=3:1,DK:BE=3:4,继而可得KF:EF=DK:AE=1:2,则可求得CF:FE的值.
解:过点D作DK∥AB交CE于K,
∵CD:DB=3:1,AE:EB=3:2,
∴CK:KE=CD:DB=3:1,DK:BE=3:4,
∵AE:EB=3:2,
∴DK:AE=1:2,
∴KF:EF=DK:AE=1:2,
∴CF:EF=5.
故选D.
【考点】相似三角形的判定.
【分析】根据三角形相似的判定方法:①两角法:有两组角对应相等的两个三角形相似可以判断出A、B的正误;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似可以判断出C、D的正误,即可选出答案.
解:A、∠D和∠F不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;
B、∠A=∠B,∠D=∠F不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;
C、由可以根据两组对应边的比相等且夹角对应相等的两个三角形相似可以判断出△ABC与△DEF相似,故此选项正确;
D、∠A=∠E且不能判定两三角形相似,因为相等的两个角不是夹角,故此选项错误;
故选:C.
【点评】此题主要考查了相似三角形的判定,关键是掌握三角形相似的判定方法:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.
【考点】相似三角形的性质
【分析】根据相似三角形的对应高的比等于相似比,代入数值即可求得结果.解:∵△RPQ∽△ABC,
∴,
即,
∴△RPQ的高为6.
故点R应是甲、乙、丙、丁四点中的乙处.
故选B.
解:∵∠BAC=90°,D是BC中点,
∴DA=DC,
∴∠DAC=∠C,
又∵AE⊥AD,
∴∠EAB=∠DAC,
∴∠EAB=∠C,
而∠E是公共角,
∴△BAE∽△ACE
故选C.
【考点】旋转的性质;平行线的判定.
【分析】只要证明△BAC∽△BDA,推出=,求出BD即可解决问题.
解:∵AF∥BC,
∴∠FAD=∠ADB,
∵∠BAC=∠FAD,
∴∠BAC=∠ADB,
∵∠B=∠B,
∴△BAC∽△BDA,
∴=,
∴=,
∴BD=9,
∴CD=BD﹣BC=9﹣4=5,
故选B.
【考点】三角形的面积,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质,等腰直角三角形
【分析】连接BD,作CH⊥DE,根据等腰直角三角形的性质可得∠ACB=∠ECD=90°,∠ADC=∠CAB=45°,再由同角的余角相等可得∠DCB=∠ACE;由SAS得△DCB≌△ECA,根据全等三角形的性质知DB=EA= ,∠CDB=∠E=45°,从而得∠ADB=90°,在Rt△ABD中,根据勾股定理得AB=2 ,同理可得AC=BC=2,CD=CE= +1;由相似三角形的判定得△CAO∽△CDA,根据相似三角形的性质:面积比等于相似比的平方从而得出两个三角形重叠部分的面积.
解:连接BD,作CH⊥DE,
∵△ACB和△ECD都是等腰直角三角形,
∴∠ACB=∠ECD=90°,∠ADC=∠CAB=45°,
即∠ACD+∠DCB=∠ACD+∠ACE=90°,
∴∠DCB=∠ACE,
在△DCB和△ECA中,
,
∴△DCB≌△ECA,
∴DB=EA= ,∠CDB=∠E=45°,
∴∠CDB+∠ADC=∠ADB=90°,
在Rt△ABD中,
∴AB= =2 ,
在Rt△ABC中,
∴2AC2=AB2=8,
∴AC=BC=2,
在Rt△ECD中,
∴2CD2=DE2= ,
∴CD=CE= +1,
∵∠ACO=∠DCA,∠CAO=∠CDA,
∴△CAO∽△CDA,
∴ : = = =4-2 ,
又∵ = CE = DE·CH,
∴CH= = ,
∴ = AD·CH= × × = ,
∴ =(4-2 )× =3- .
即两个三角形重叠部分的面积为3- .
故答案为:D.
二 、填空题
【考点】相似多边形的性质
【分析】根据相似多边形周长的比等于相似比,面积的比等于相似比的平方,可求得面积的比值,根据题意面积和为25,可求得两个多边形的面积.此题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,面积之比等于相似比的平方.
解:多边形的面积的比是: ( http: / / www. / " \o "中国教育出版网\" ),设两个多边形中较小的多边形的面积是x, 则较大的面积是4x .
根据题意得:x+4x=25
解得x=5.
因而这两个多边形的面积分别是5和20.
故答案为:5和20.
【考点】相似三角形的判定与性
【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9,问题得解.
解:∵DE∥BC,
∴△ADE∽△ABC,
∵AD:DB=1:2,
∴AD:AB=1:3,
∴S△ADE:S△ABC是1:9.
故答案为:1:9.
【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.
解析:由相似三角形的判定得△AB′C′∽△ABC,由性质得B′C′∶AB′=BC∶AB,B′C′∶AC′=BC∶AC.
答案:△AB′C′∽△ABC BC∶AB BC∶AC
【考点】相似三角形的应用
【分析】先根据PO∥AB得到ABC∽△POC , 再利用相似三角形的对应边的比相等得到比例式,代入求解.
解:由题意得PO∥AB ,
∴∠POC=∠ABC , ∠OPC=∠BAC
∴△ABC∽△POC

即:
解得:PO=4.8米.
∴路灯到地面的距离为4.8米.
故答案为:4.8米.
【考点】相似三角形的应用
【分析】由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.
解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.
∵∠C+∠KDC=90°,∴∠C=∠HDA.
∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,
∴CK:KD=HD:HA,∴CK:100=100:15,
解得:CK=.
故答案为:.
点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.
【考点】相似三角形的判定与性质;平行四边形的性质.
【分析】过O点作OM∥AD,求出AM和MO的长,利用△AEF∽△MEO,得到关于AF的比例式,求出AF的长即可.
解:过O点作OM∥AD,
∵四边形ABCD是平行四边形,
∴OB=OD,
∴OM是△ABD的中位线,
∴AM=BM=AB=,OM=BC=4,
∵AF∥OM,
∴△AEF∽△MEO,
∴=,
∴=,
∴AF=,
故答案为.
三、解答题
【考点】 平行线分线段成比例
【分析】本题考查了平行线分线段成比例定理,找出图中的比例关系是解题的关键.
解:∵DE∥BC,
∴,又∵ ∴,
∴∴BC=12cm.
故答案为:12cm.
【分析】分①当x+y+z≠0时,利用等比性质解答,②当x+y+z=0时,用一个字母表示出另两个字母的和,然后求解即可.
解:∵xyz≠0,
∴x、y、z均不为0,
①当x+y+z≠0时,∵===k,
∴k==2,
②当x+y+z=0时,x+y=-z,z+x=-y,y+z=-x,
所以,k=-1,
综上所述,k=2或-1.
【考点】相似三角形的应用.
【分析】根据镜面反射原理结合相似三角形的判定方法得出△ABC∽△EDC,△ABF∽△GFH,进而利用相似三角形的性质得出AB的长.
解:由题意可得:∠ABC=∠EDC=∠GFH=90°,
∠ACB=∠ECD,∠AFB=∠GHF,
故△ABC∽△EDC,△ABF∽△GFH,
则=, =,
即=, =,
解得:AB=99,
答:“望月阁”的高AB的长度为99m.
【考点】相似三角形的性质
【分析】首先设运动了ts,根据题意得:AP=2tcm,CQ=3tcm,然后分别从当△APQ∽△ABC与当△APQ∽△ACB时去分析求解即可求得答案.
解:设运动了ts,
根据题意得:AP=2tcm,CQ=3tcm,
则(cm),
当△APQ∽△ABC时,,
即,
解得:t=167;
当△APQ∽△ACB时,,
即,
解得:t=4;
故当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是:167s或4s.
【考点】相似多边形的性质.
【分析】由正方形的性质可知;AC平分∠DAB,然后由角平分线的性质可知GE=GF,从而可证明四边形EGFA为正方形,故此四边形AFGE与四边形ABCD相似.
证明;∵∠GEA=∠EAF=∠GFA=90°,
∴四边形EAFG为矩形.
∵四边形ABCD为正方形,
∴AC平分∠DAB.
又∵GE⊥AD,GF⊥AB,
∴GE=GF.
∴四边形EAFG为正方形.
∴四边形AFGE与四边形ABCD相似.
【点评】本题主要考查的是相似多边形的判定、正方形的判定、角平分线的性质,证得四边形EAFG为正方形是解题的关键.
【考点】 平行线分线段成比例;旋转的性质.
【分析】 本题考查了平行线分线段成比例定理的应用,解此题的关键是能根据定理得出比例式,注意:一组平行线截两条直线,所截得的线段对应成比例.也考查了旋转的性质和等腰三角形的性质.
解:作DH⊥AC于H,
∵线段DC绕点D逆时针旋转,端点C恰巧落在边AC上的点E处,
∴DE=DC,
∴EH=CH,
∵ ,即AE=nEC,
∴AE=2nEH=2nCH,
∵∠C=90°,
∴DH∥BC,
∴ ,即m=
故答案为:2n+1.
【考点】四边形综合题.
【分析】(1)可用x表示出AQ、BQ、BP、CP,从而可表示出S△ADQ、S△BPQ、S△PCD的面积,则可表示出S,再利用二次函数的增减性可求得是否有最大值,并能求得其最小值;
(2)用x表示出BQ、BP、PC,当QP⊥DP时,可证明△BPQ∽△CDP,利用相似三角形的性质可得到关于x的方程,可求得x的值.
解:
(1)∵四边形ABCD为矩形,
∴BC=AD=4,CD=AB=3,
当运动x秒时,则AQ=x,BP=x,
∴BQ=AB﹣AQ=3﹣x,CP=BC﹣BP=4﹣x,
∴S△ADQ=AD AQ=×4x=2x,S△BPQ=BQ BP=(3﹣x)x=x﹣x2,S△PCD=PC CD= (4﹣x) 3=6﹣x,
又S矩形ABCD=AB BC=3×4=12,
∴S=S矩形ABCD﹣S△ADQ﹣S△BPQ﹣S△PCD=12﹣2x﹣(x﹣x2)﹣(6﹣x)=x2﹣2x+6=(x﹣2)2+4,
即S=(x﹣2)2+4,
∴S为开口向上的二次函数,且对称轴为x=2,
∴当0<x<2时,S随x的增大而减小,当2<x≤3时,S随x的增大而增大,
又当x=0时,S=5,当S=3时,S=,但x的范围内取不到x=0,
∴S不存在最大值,当x=2时,S有最小值,最小值为4;
(2)存在,理由如下:
由(1)可知BQ=3﹣x,BP=x,CP=4﹣x,
当QP⊥DP时,则∠BPQ+∠DPC=∠DPC+∠PDC,
∴∠BPQ=∠PDC,且∠B=∠C,
∴△BPQ∽△PCD,
∴=,即=,解得x=(舍去)或x=,
∴当x=时QP⊥DP.
【点评】本题为四边形的综合应用,涉及知识点有矩形的性质、二次函数的最值、相似三角形的判定和性质及方程思想等.在(1)中求得S关于x的关系式后,求S的最值时需要注意x的范围,在(2)中证明三角形相似是解题的关键.本题考查知识点较多,综合性较强,难度适中.
【考点】相似形的综合题
【分析】(1)由EF∥BC知△AEF∽△ABC,据此得=,根据=()2即可得证;
(2)分别过点F、C作AB的垂线,垂足分别为N、H,据此知△AFN∽△ACH,得=,根据=即可得证;
(3)连接AG并延长交BC于点M,连接BG并延长交AC于点N,连接MN,由重心性质知S△ABM=S△ACM、=,设=a,利用(2)中结论知==、==a,从而得==+a,结合==a可关于a的方程,解之求得a的值即可得出答案.
解:(1)∵EF∥BC,
∴△AEF∽△ABC,
∴=,
∴=()2= =;
(2)若EF不与BC平行,(1)中的结论仍然成立,
分别过点F、C作AB的垂线,垂足分别为N、H,
∵FN⊥AB、CH⊥AB,
∴FN∥CH,
∴△AFN∽△ACH,
∴=,
∴==;
(3)连接AG并延长交BC于点M,连接BG并延长交AC于点N,连接MN,
则MN分别是BC、AC的中点,
∴MN∥AB,且MN=AB,
∴==,且S△ABM=S△ACM,
∴=,
设=a,
由(2)知:==×=,==a,
则==+=+a,
而==a,
∴+a=a,
解得:a=,
∴=×=.
【点评】本题主要考查相似形的综合问题,解题的关键是熟练掌握相似三角形的判定与性质和三角形重心的定义及其性质等知识点.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)