21世纪教育网 –中小学教育资源及组卷应用平台
2.2 一元二次方程的解法(2)同步作业
姓名:__________班级:__________考号:__________
一 、选择题
方程配方后,下列正确的是( )
A. B. C. D.
一元二次方程x2﹣2x﹣1=0的解是( )
A.x1=x2=1 B.x1=1+,x2=﹣1﹣
C.x1=1+,x2=1﹣ D.x1=﹣1+,x2=﹣1﹣
将一元二次方程-6x-5=0化成=b的形式,则b等于( )
A.4 B.-4 C.14 D.-14
二次三项式-4x+7配方的结果是( )
A.+7 B.+3 C.+3 D. -1
对于代数式﹣x2+4x﹣5,通过配方能说明它的值一定是( )
A.非正数 B.非负数 C.正数 D.负数
不论a,b为何实数,a2+b2﹣2a﹣4b+7的值是( )
A.总是正数 B.总是负数 C.可以是零 D.可以是正数也可以是负数
已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是( )
A.4 B.8 C.12 D.16
若一元二次方程式4x2+12x﹣1147=0的两根为a、b,且a>b,则3a+b之值为何?( )
A.22 B.28 C.34 D.40
二、填空题
若将方程x2+6x=7化为(x+m)2=16,则m= .
如果一元二次方程经过配方后,得,那么a= .
将x2+6x+4进行配方变形后,可得该多项式的最小值为 .
若x2﹣4x+5=(x﹣2)2+m,则m= .
如果一个三角形的三边均满足方程,则此三角形的面积是 .
已知实数满足,则代数式的值为________.
已知3x﹣y=3a2﹣6a+9,x+y=a2+6a﹣9,若x≤y,则实数a的值为 .
三、解答题
解方程:
(1)x2+4x﹣1=0.
(2)x2﹣2x=4.
如果x2-4x+y2+6y++13=0,求的值.
嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:
由于a≠0,方程ax2+bx+c=0变形为:
x2+x=﹣,…第一步
x2+x+()2=﹣+()2,…第二步
(x+)2=,…第三步
x+=(b2﹣4ac>0),…第四步
x=,…第五步
嘉淇的解法从第 步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是 .
用配方法解方程:x2﹣2x﹣24=0.
有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.
小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”
(1)小静的解法是从步骤 开始出现错误的.
(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)
根据你的观察,探究下面的问题:
(1)已知x2+4x+4+y2-8y+16=0,求的值;
(2)已知a,b,c是△ABC的三边长,且满足a2+b2-8b-10a+41=0,求△ABC中最大边c的取值范围;
(3)试说明不论x,y取什么有理数时,多项式x2+y2-2x+2y+3的值总是正数.
先阅读理解下面的例题,再按要求解答下列问题:
例题:求代数式y2+4y+8的最小值.
解:y2+4y+8=y2+4y+4+4=(y+2)2+4
∵(y+2)2≥0
∴(y+2)2+4≥4
∴y2+4y+8的最小值是4.
(1)求代数式m2+m+4的最小值;
(2)求代数式4﹣x2+2x的最大值;
(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?
答案解析
一 、选择题
【考点】用配方法法求解一元二次方程
【分析】 先移项,再方程的两边都加上4的平方,即可得出答案
解:,
x2+8x=-9,
x2+8x+42=-9+42,
故选:A.
【考点】解一元二次方程-配方法.
【分析】方程变形后,配方得到结果,开方即可求出值.
解:方程x2﹣2x﹣1=0,变形得:x2﹣2x=1,
配方得:x2﹣2x+1=2,即(x﹣1)2=2,
开方得:x﹣1=±,
解得:x1=1+,x2=1﹣.
故选:C.
【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.
【考点】解一元二次方程-配方法
【分析】方程常数项移项后,两边加上一次项系数一半的平方,变形即可求出b的值.
解:方程-6x-5=0,移项得:-6x=5,配方得:-6x+9=14,即=14,则b=14,故选C
【考点】解一元二次方程-配方法
【分析】此题考查了配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.
解:-4x+7=-4x+4+3=+3故选B.
【考点】解一元二次方程-配方法.
【分析】直接利用配方法将原式变形,进而利用偶次方的性质得出答案.
解:﹣x2+4x﹣5
=﹣(x2﹣4x)﹣5
=﹣(x﹣2)2﹣1,
∵﹣(x﹣2)2≤0,
∴﹣(x﹣2)2﹣1<0,
故选:D.
【点评】此题主要考查了配方法的应用,正确应用配方法是解题关键.
【考点】配方法的应用.
【分析】原式配方后,利用非负数的性质判断即可得到结果.
解:∵(a﹣1)2≥0,(b﹣2)2≥0,
∴原式=(a2﹣2a+1)+(b2﹣4b+4)+2=(a﹣1)2+(b﹣2)2+2≥2>0,
则不论a,b为何实数,a2+b2﹣2a﹣4b+7的值总是正数,
故选A
【考点】完全平方公式.
【分析】先把(x﹣2015)2+(x﹣2017)2=34变形为(x﹣2016+1)2+(x﹣2016﹣1)2=34,把(x﹣2016)看作一个整体,根据完全平方公式展开,得到关于(x﹣2016)2的方程,解方程即可求解.
解:∵(x﹣2015)2+(x﹣2017)2=34,
∴(x﹣2016+1)2+(x﹣2016﹣1)2=34,
(x﹣2016)2+2(x﹣2016)+1+(x﹣2016)2﹣2(x﹣2016)+1=34,
2(x﹣2016)2+2=34,
2(x﹣2016)2=32,
(x﹣2016)2=16.
故选:D.
【考点】解一元二次方程-配方法.
【分析】配方得出(2x+3)2=1156,推出2x+3=34,2x+3=﹣34,求出x的值,求出a、b的值,代入3a+b求出即可.
解:4x2+12x﹣1147=0,
移项得:4x2+12x=1147,
4x2+12x+9=1147+9,
即(2x+3)2=1156,
2x+3=34,2x+3=﹣34,
解得:x=,x=﹣,
∵一元二次方程式4x2+12x﹣1147=0的两根为a、b,且a>b,
∴a=,b=﹣,
∴3a+b=3×+(﹣)=28,
故选B.
【点评】本题考查了有理数的混合运算和解一元二次方程的应用,能求出a、b的值是解此题的关键,主要培养学生解一元二次方程的能力,题型较好,难度适中.
二 、填空题
【考点】解一元二次方程-配方法.
【分析】此题实际上是利用配方法解方程.配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
解:在方程x2+6x=7的两边同时加上一次项系数的一半的平方,得
x2+6x+32=7+32,
配方,得
(x+3)2=16.
所以,m=3.
故答案为:3.
【点评】本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:
(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.
(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.
【考点】解一元二次方程-配方法
【分析】利用完全平方公式化简后,即可确定出a的值.
解:=3 即 则a= -6
【考点】解一元二次方程-配方法.
【分析】将x2+6x+4利用配方法转化为(x+3)2﹣5,然后根据(x+3)2≥0可得多项式x2+6x+4的最小值.
解:∵x2+6x+4=(x+3)2﹣5,
∴当x=﹣3时,多项式x2+6x+4取得最小值﹣5;
故答案为﹣5.
【点评】本题考查了配方法的应用.解答该题时,利用了配方法求多项式或二次函数的最值是常用方法.
【考点】配方法的应用.
【分析】已知等式左边配方得到结果,即可确定出m的值.
【解答】解:已知等式变形得:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1=(x﹣2)2+m,
则m=1,
故答案为:1
【考点】解一元二次方程-配方法
【分析】根据题意,已知方程的解是三角形的三条边的长度,根据三边关系求得三角形的形状,然后根据形状求其面积即可。
解:由,得 ∴∵一个三角形的三边均满足方程 ∴此三角形是以5为边长的等边三角形,∴三角形的面积=°=故答案是:
2
【解析】∵4x2-4x+l=0,
∴(2x-1)2=0
∴2x-1=0,
∴ ,
∴2x+ =1+1=2.
【考点】配方法的应用
【分析】根据题意列出关于x、y的方程组,然后求得x、y的值,结合已知条件x≤y来求a的取值.
解:依题意得:,
解得
∵x≤y,
∴a2≤6a﹣9,
整理,得(a﹣3)2≤0,
故a﹣3=0,
解得a=3.
故答案是:3.
【点评】考查了配方法的应用,非负数的性质以及解二元一次方程组.配方法的理论依据是公式a2±2ab+b2=(a±b)2.
三 、解答题
【考点】解一元二次方程-配方法.
【分析】(1)利用配方法即可解决.
(2)利用配方法即可解决.
解:(1)∵x2+4x﹣1=0
∴x2+4x=1
∴x2+4x+4=1+4
∴(x+2)2=5
∴x=﹣2±
∴x1=﹣2+,x2=﹣2﹣.
(2)配方x2﹣2x+1=4+1
∴(x﹣1)2=5
∴x=1±
∴x1=1+,x2=1﹣.
【点评】本题考查一元二次方程的解法,记住配方法的解题步骤是解题的关键,属于中考常考题型.
【解析】试题分析:
观察分析可知,原式可化为:,即:,由此可求得“三个未知数”的值,再代入式子:中计算即可.
试题解析:
∵,
∴,
∴,
∴ ,解得: ,
∴.
点睛:象本题这种一个方程中含有多个“未知数”的情形,通常需先把原方程转化为:几个非负数的和等于0的形式;然后根据“几个非负数的和为0,则这几个数都为0”列出方程组就可求出未知数的值.
【考点】解一元二次方程-配方法.
【分析】第四步,开方时出错;把常数项24移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.
解:在第四步中,开方应该是x+=±.所以求根公式为:x=.
故答案是:四;x=;
用配方法解方程:x2﹣2x﹣24=0
解:移项,得
x2﹣2x=24,
配方,得
x2﹣2x+1=24+1,
即(x﹣1)2=25,
开方得x﹣1=±5,
∴x1=6,x2=﹣4.
【点评】本题考查了解一元二次方程﹣﹣配方法.
用配方法解一元二次方程的步骤:
(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.
(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.
【考点】解一元二次方程-配方法.
【分析】(1)移项要变号;
(2)移项后配方,开方,即可得出两个方程,求出方程的解即可.
解:(1)小静的解法是从步骤⑤开始出现错误的,
故答案为:⑤;
(2)x2+2nx﹣8n2=0,
x2+2nx=8n2,
x2+2nx+n2=8n2+n2,
(x+n)2=9n2,
x+n=±3n,
x1=2n x2=﹣4n.
【点评】本题考查了解一元二次方程的应用,解此题的关键是能正确配方,题目比较好,难度适中.
【分析】(1)按照题目提供的方法将x2+4x+4+y2-8y+16=0配方后即可求得x、y的值即可求解;
(2)求得三角形的两边后即可求得第三边的取值范围;
(3)将其整理成完全平方数加正数的形式即可证得结论.
解:(1)∵x2+4x+4+y2-8y+16=0
∴(x+2)2+(y-4)2=0,
∴(x+2)2=0,(y-4)2=0,
∴x=-2,y=4
∴=-;
(2))∵a2+b2-8b-10a+41=0,
∴(a-5)2+(b-4)2=0,
∴(a-5)2=0,(b-4)2=0,
∴a=5,b=4
△ABC中最大边5<c<9;
(3))∵x2+y2-2x+2y+3=(x-1)2+(y+1)2+1,
且(x-1)2≥0,(y+1)2≥0,
∴x=-2,y=4
∴(x-1)2+(y+1)2+1>0,
∴多项式x2+y2-2x+2y+3的值总是正数.
【考点】配方法的应用;非负数的性质:偶次方.
【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;
(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值;
(3)根据题意列出关系式,配方后根据完全平方式恒大于等于0,即可求出最大值以及x的值即可.
解:(1)m2+m+4=(m+)2+,
∵(m+)2≥0,
∴(m+)2+≥,
则m2+m+4的最小值是;
(2)4﹣x2+2x=﹣(x﹣1)2+5,
∵﹣(x﹣1)2≤0,
∴﹣(x﹣1)2+5≤5,
则4﹣x2+2x的最大值为5;
(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,
∵﹣2x2+20x=﹣2(x﹣5)2+50=﹣2(x﹣5)2≤0,
∴﹣2(x﹣5)2+50≤50,
∴﹣2x2+20x的最大值是50,此时x=5,
则当x=5m时,花园的面积最大,最大面积是50m2.
【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)