第三章复习课

文档属性

名称 第三章复习课
格式 zip
文件大小 1.2MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2018-08-20 12:32:07

图片预览

文档简介

课件30张PPT。章末复习课第三章 不等式1.整合知识结构,进一步巩固、深化所学知识.
2.能熟练利用不等式的性质比较大小、变形不等式、证明不等式.
3.体会“三个二次”之间的内在联系在解决问题中的作用.
4.能熟练地运用图解法解决线性规划问题.
5.会用基本不等式求解函数最值.学习目标知识点一 “三个二次”之间的关系所谓三个二次,指的是①二次 图象及与x轴的交点;②相应的一元二次 的实根;③一元二次 的解集端点.
解决其中任何一个“二次”问题,要善于联想其余两个,并灵活转化.函数不等式方程类型一 “三个二次”之间的关系例1 设不等式x2-2ax+a+2≤0的解集为M,如果M?[1,4],求实数a的取值范围.解答M?[1,4]有两种情况:
其一是M=?,此时Δ<0;其二是M≠?,此时Δ=0或Δ>0,下面分三种情况计算a的取值范围.
设f(x)=x2-2ax+a+2,
对方程x2-2ax+a+2=0,
有Δ=(-2a)2-4(a+2)=4(a2-a-2),
①当Δ<0时,-1②当Δ=0时,a=-1或a=2.
当a=-1时,M={-1}?[1,4],不满足题意;
当a=2时,M={2}?[1,4],满足题意.③当Δ>0时,a<-1或a>2.
设方程f(x)=0的两根为x1,x2,且x1那么M=[x1,x2],M?[1,4]?1≤x1综上可知,当M?[1,4]时,a的取值范围是(-1, ].解得2要是用求根公式来解就相当麻烦,用 则可化归为简单的一元一次不等式组.
(2)用不等式组来刻画两根的位置体现了数形结合的思想.跟踪训练1 若关于 的方程 的两根一个小于1,一个大于1,求实数 的取值范围.知识点二 规划问题1.规划问题的求解步骤.
(1)把问题要求转化为约束条件;
(2)根据约束条件作出可行域;
(3)对目标函数变形并解释其几何意义;
(4)移动目标函数寻找最优解;
(5)解相关方程组求出最优解.类型二 线性规划问题例2 已知变量x,y满足约束条件 求z=2x+y的最大值和最小值.如图,阴影部分(含边界)为不等式组所表示的可行域.
设l0:2x+y=0,l:2x+y=z,则z的几何意义是直
线y=-2x+z在y轴上的截距,显然,当直线越往
上移动,对应在y轴上的截距越大,即z越大;当直
线越往下移动,对应在y轴上的截距越小,即z越小.
上下平移直线l0,可得当l0过点A(5,2)时,zmax=2×5+2=12;当l0过点B(1,1)时,zmin=2×1+1=3.(1)因为寻找最优解与可行域的边界斜率有关,所以画可行域要尽可能精确;(2)线性目标函数的最值与截距不一定是增函数关系,所以要关注截距越大,z越大还是越小.跟踪训练2 某人承揽一项业务,需做文字标牌4个,绘画标牌5个.现有两种规格的原料,甲种规格每张3 m2,可做文字标牌1个,绘画标牌2个;乙种规格每张2 m2,可做文字标牌2个,绘画标牌1个,求两种规格的原料各用多少张才能使得总用料面积最小.解答设需要甲种原料x张,乙种原料y张,则可做文字标牌(x+2y)个,绘画标牌(2x+y)个,
所用原料的总面积为z=3x+2y,作出可行域如图阴影部分(含边界)所示.
在一组平行直线3x+2y=z中,
经过可行域内的点A时,z取得最小值,
直线2x+y=5和直线x+2y=4的交点为A(2,1),
即最优解为(2,1).
所以使用甲种规格原料2张,乙种规格原料1张,可使总的用料面积最小.知识点三 基本不等式利用基本不等式证明不等式和求最值的区别.
利用基本不等式证明不等式,只需关注不等式成立的条件.
利用基本不等式求最值,需要同时关注三个限制条件:一正;二定;三相等.类型三 利用基本不等式求最值命题角度1 无附加条件型
例3 设f(x)= .
(1)求f(x)在[0,+∞)上的最大值;解答∴f(x)在[0,+∞)上的最大值是25.(2)求f(x)在[2,+∞)上的最大值.解答∴f(x)在[2,+∞)上的最大值为20.利用基本不等式求最值要满足“一正、二定、三相等”,缺一不可,可以通过拼凑、换元等手段进行变形.如不能取到最值,可以考虑用函数的单调性求解.跟踪训练3 求函数y= +x(x>3)的最小值.解答即x=4时,y有最小值5.命题角度2 有附加条件的最值问题
例4 函数y=a1-x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny-1=0(mn>0)上,则 的最小值为__.4答案解析方法一 y=a1-x(a>0,a≠1)的图象恒过定点A(1,1),
∵点A在直线mx+ny-1=0上,
∴m+n=1,
当所给附加条件是一个等式时,常见的用法有两个:一个是用这个等式消元,化为角度1的类型;一个是直接利用该等式代入,或构造定值.跟踪训练4 设x,y都是正数,且 =3,求2x+y的最小值.解答1.不等式的基本性质
不等式的性质是不等式这一章内容的理论基础,是不等式的证明和解不等式的主要依据.因此,要熟练掌握和运用不等式的八条性质.
2.一元二次不等式的求解方法
对于一元二次不等式ax2+bx+c>0(或≥0,<0,≤0)(其中a≠0)的求解,要联想两个方面的问题:二次函数y=ax2+bx+c与x轴的交点;方程ax2+bx+c=0的根.按照Δ>0,Δ=0,Δ<0分三种情况讨论对应的一元二次不等式ax2+bx+c>0(或≥0,<0,≤0)(a>0)的解集.3.二元一次不等式表示的平面区域的判定
对于在直线Ax+By+C=0同一侧的所有点(x,y),实数Ax+By+C的符号相同,取一个特殊点(x0,y0),根据实数Ax0+By0+C的正负即可判断不等式表示直线哪一侧的平面区域,可简记为“直线定界,特殊点定域”.特别地,当C≠0时,常取原点作为特殊点.4.求目标函数最优解的方法
通过平移目标函数所对应的直线,可以发现取得最优解对应的点往往是可行域的顶点,于是在选择题中关于线性规划的最值问题,可采用求解方程组代入检验的方法求解.
5.运用基本不等式求最值时把握三个条件:①“一正”——各项为正数;②“二定”——“和”或“积”为定值;③“三相等”——等号一定能取到.这三个条件缺一不可.