第三章 位置与坐标检测题A(含解析)

文档属性

名称 第三章 位置与坐标检测题A(含解析)
格式 doc
文件大小 1.3MB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2018-08-25 16:53:09

图片预览

文档简介

21世纪教育网 –中小学教育资源及组卷应用平台
第三章《位置与坐标》检测题A
一.选择题(共12小题,满分36分,每小题3分)
1.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在(  )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是(  )
A.(3,﹣4) B.(4,﹣3) C.(﹣4,3) D.(﹣3,4)
3.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为(  )
A.2 B.﹣4 C.﹣1 D.3
4.如图,在平面直角坐标系中,设点P到原点O的距离为ρ,OP与x轴正方向的交角为a,则用[ρ,a]表示点P的极坐标,例如:点P的坐标为(1,1),则其极坐标为[,45°].若点Q的极坐标为[4,120°],则点Q的平面坐标为(  )
A.(﹣2,2) B.(2,﹣2) C.(﹣2,﹣2) D.(﹣4,﹣4)
5.在平面直角坐标系中,点P(﹣3,2)到原点的距离为(  )
A.1 B. C. D.
6.若点M(3,﹣2)与点N(x、y)在同一条平行于x轴的直线上,且MN=1,则N点的坐标为(  )
A.(4,﹣2) B.(3,﹣1)
C.(3,﹣1)或(3,﹣3) D.(4,﹣2)或(2,﹣2)
7.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是(  )
A.﹣5 B.﹣3 C.3 D.1
8.如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(﹣1,4).将△ABC沿y轴翻折到第一象限,则点C的对应点C′的坐标是(  )
A.(3,1) B.(﹣3,﹣1) C.(1,﹣3) D.(3,﹣1)
9.如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是(  )
A.(﹣2,3) B.(3,﹣1) C.(﹣3,1) D.(﹣5,2)
10.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为(  )
A.(5,3) B.(﹣1,﹣2) C.(﹣1,﹣1) D.(0,﹣1)
11.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为(  )
A.(2.8,3.6) B.(﹣2.8,﹣3.6) C.(3.8,2.6) D.(﹣3.8,﹣2.6)
12.如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是(  )
A.(﹣1,3) B.(4,0) C.(3,﹣3) D.(5,﹣1)
 
二.填空题(共6小题,满分24分,每小题4分)
13.已知线段MN平行于x轴,且MN的长度为5,若M(2,﹣2),则点N的坐标   .
14.在平面直角坐标系中,将点A(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是   .
15.已知平面直角坐标系内不同的两点A(3a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为   .
16.如图,平面直角坐标系中,A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,则a+b的值为   .
17.在平面直角坐标系中,点A的坐标是(4,﹣6),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是   .
18.如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标,在某平面斜坐标系中,已知θ=60°,点M的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为   .
 
三.解答题(共7小题,满分60分)
19.(8分)在一次夏令营活动中,老师将一份行动计划藏在没有任何标记的点C处,只告诉大家两个标志点A,B的坐标分别为(﹣3,1)、(﹣2,﹣3),以及点C的坐标为(3,2)(单位:km).
(1)请在图中建立直角坐标系并确定点C的位置;
(2)若同学们打算从点B处直接赶往C处,请用方向角和距离描述点C相对于点B的位置.
20.(8分)已知平面直角坐标系中,点P的坐标为(m﹣1,2m+3)
(1)当m为何值时,点P到x轴的距离为1?
(2)当m为何值时,点P到y轴的距离为2?
(3)点P可能在第一象限坐标轴夹角的平分线上吗?若可能,求出m的值;若不可能,请说明理由.
21.(8分)在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”.例如,点P(1,4)的“3级关联点”为Q(3×1+4,1+3×4),即Q(7,13).
(1)已知点A(﹣2,6)的“级关联点”是点A1,点B的“2级关联点”是B1(3,3),求点A1和点B的坐标;
(2)已知点M(m﹣1,2m)的“﹣3级关联点”M′位于y轴上,求M′的坐标;
(3)已知点C(﹣1,3),D(4,3),点N(x,y)和它的“n级关联点”N′都位于线段CD上,请直接写出n的取值范围.
22.(8分)如图,在平面直角坐标系中,一个方格的边长为1个单位长度,三角形MNQ是三角形ABC经过某种变换后得到的图形.
(1)请分别写出点A与点M,点B与点N,点C与点Q的坐标;
(2)已知点P是三角形ABC内一点,其坐标为(﹣3,2),利用上述对应点之间的关系,写出三角形MNQ中的对应点R的坐标.
23.(8分)如图,已知在平面直角坐标系中,点P从原点O以每秒1个单位速度沿x轴正方向运动,运动时间为t秒,作点P关于直线y=tx的对称点Q,过点Q作x轴的垂线,垂足为点A.
(1)当t=2时,求AO的长.
(2)当t=3时,求AQ的长.
(3)在点P的运动过程中,用含t的代数式表示线段AP的长.
24.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3)
(1)若△ABC经过平移后得到的△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;
(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;
(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.
25.(10分)先阅读下列一段文字,再解答问题
已知在平面内有两点P1(x1,y1),P2(x2,y2),其两点间的距离公式为P1P2=,同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|
(1)已知点A(2,4),B(﹣3,﹣8),试求A,B两点间的距离;
(2)已知点A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A,B两点间的距离;
(3)已知点A(0,6)B(﹣3,2),C(3,2),判断线段AB,BC,AC中哪两条是相等的?并说明理由.
 
答案与解析
 一.选择题(共12小题,满分36分,每小题3分)
1.【分析】直接利用第二象限横纵坐标的关系得出a,b的符号,进而得出答案.
【解答】解:∵点A(a+1,b﹣2)在第二象限,
∴a+1<0,b﹣2>0,
解得:a<﹣1,b>2,
则﹣a>1,1﹣b<﹣1,
故点B(﹣a,1﹣b)在第四象限.
故选:D.
 
2.【分析】根据第二象限内点的坐标特征,可得答案.
【解答】解:由题意,得
x=﹣4,y=3,
即M点的坐标是(﹣4,3),
故选:C.
 
3.【分析】根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.
【解答】解:∵点A(m,﹣2),B(3,m﹣1),直线AB∥x轴,
∴m﹣1=﹣2,
解得m=﹣1.
故选:C.
 
4.【分析】弄清极坐标中第一个数表示点到原点的距离,第二个数表示这一点与原点的连线与x轴的夹角,根据点Q[4,120°]利用特殊角的三角函数值即可求出点Q的坐标.
【解答】解:由题目的叙述可知极坐标中第一个数表示点到原点的距离,
而第二个数表示这一点与原点的连线与x轴的夹角,极坐标Q[4,120°],
这一点在第三象限,则在平面直角坐标系中横坐标是:﹣4cos60°=﹣2,
纵坐标是4sin60°=2,
于是极坐标Q[4,120°]的坐标为(﹣2,2),
故选:A.
 
5.【分析】根据点P的坐标,利用两点间的距离公式即可求出OP的长度.
【解答】解:∵点P的坐标为(﹣3,2),
∴OP==.
故选:C.
 
6.【分析】利用平行于x轴的直线上点的坐标特征得到y=﹣2,再利用MN=1得到|x﹣3|=1,然后去绝对值求出x即可得到N点坐标.
【解答】解:∵点M(3,﹣2)与点N(x、y)在同一条平行于x轴的直线上,MN=1,
∴y=﹣2,|x﹣3|=1,
∴x=2或4,
∴N点的坐标为(2,﹣2)或(4,﹣2).
故选:D.
 
7.【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.
【解答】解:∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,
∴1+m=3、1﹣n=2,
解得:m=2、n=﹣1,
所以m+n=2﹣1=1,
故选:D.
 
8.【分析】根据A点坐标,可得C点坐标,根据关于y轴对称的点的横坐标互为相反数,纵坐标相等,可得答案.
【解答】解:由A点坐标,得C(﹣3,1).
由翻折,得C′与C关于y轴对称,C′(3,1).
故选:A.
 
9.【分析】根据点的平移的规律:向左平移a个单位,坐标P(x,y) P(x﹣a,y),据此求解可得.
【解答】解:∵点B的坐标为(3,1),
∴向左平移6个单位后,点B1的坐标(﹣3,1),
故选:C.
 
10.【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.
【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),
∴平移规律为横坐标减3,纵坐标减2,
∵点B(2,1)的对应点的坐标为(﹣1,﹣1).
故选:C.
 
11.【分析】由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题;
【解答】解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,
∵P(1.2,1.4),
∴P1(﹣2.8,﹣3.6),
∵P1与P2关于原点对称,
∴P2(2.8,3.6),
故选:A.
 
12.【分析】画图可得结论.
【解答】解:画图如下:
则A'(5,﹣1),
故选:D.
 
二.填空题(共6小题,满分24分,每小题4分)
13.【分析】根据平行于x轴的直线上点的纵坐标相同,再分点N在点M的坐左边和右边两种情况讨论求解.
【解答】解:MN平行于x轴,故N的纵坐标不变,是﹣2,
点N在点M的左边时,横坐标为2﹣5=﹣3,
点N在点M的右边时,横坐标为2+5=7,
所以,点N的坐标为(7,﹣2)或(﹣3,﹣2).
故答案为:(7,﹣2)或(﹣3,﹣2).
 
14.【分析】直接利用平移的性质分别得出平移后点的坐标得出答案.
【解答】解:∵将点A′(﹣2,3)向右平移3个单位长度,
∴得到(1,3),
∵再向下平移2个单位长度,
∴平移后对应的点A′的坐标是:(1,1).
故答案为:(1,1).
 
15.【分析】由A、B两点到x轴的距离相等,即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.
【解答】解:∵平面直角坐标系内不同的两点A(3a+2,4)和B(3,2a+2)到x轴的距离相等,
∴|2a+2|=4,
解得:a1=1,a2=﹣3.
故答案为:1或﹣3.
 
16.【分析】根据点的坐标的变化分析出AB的平移方法,再利用平移中点的变化规律算出a、b的值.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
【解答】解:根据题意:A、B两点的坐标分别为A(2,0),B(0,1),若A1的坐标为(3,b),B1(a,2)即线段AB向上平移1个单位,向右平移1个单位得到线段A1B1;
则:a=0+1=1,b=0+1=1,
a+b=2.
故答案为:2.
 
17.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.
【解答】解:∵点A的坐标是(4,﹣6),
∴点A关于x轴的对称点A′(4,6),
∴点A′关于y轴的对称点A″(﹣4,6),
故答案为:(﹣4,6).
 
18.【分析】如图作ND∥x轴交y轴于D,作NC∥y轴交x轴于C.MN交y轴于K.利用全等三角形的性质,平行四边形的性质求出OC、OD即可;
【解答】解:如图作ND∥x轴交y轴于D,作NC∥y轴交x轴于C.MN交y轴于K.
∵NK=MK,∠DNK=∠BMK,∠NKD=∠MKB,
∴△NDK≌△MBK,
∴DN=BM=OC=3,DK=BK,
在Rt△KBM中,BM=3,∠MBK=60°,
∴∠BMK=30°,
∴DK=BK=BM=,
∴OD=5,
∴N(﹣3,5),
故答案为(﹣3,5)
 
三.解答题(共7小题,满分60分)
19.【分析】(1)利用A,B点坐标得出原点位置,建立坐标系,进而得出C点位置;
(2)利用所画图形,进而结合勾股定理得出答案.
【解答】解:(1)根据A(﹣3,1),B(﹣2,﹣3)画出直角坐标系,
描出点C(3,2),如图所示;
(2)BC=5,所以点C在点B北偏东45°方向上,距离点B的5 km处.
 
20.【分析】(1)根据点(x,y)到x轴的距离为|y|,可求m的值.
(2)根据点(x,y)到y轴的距离为|x|,可求m的值.
(3)根据角平分线上的点到角两边距离相等,可求m的值,且点P在第一象限,可求m的范围,即可判断可能性.
【解答】解:(1)∵点P到x轴的距离为1
∴|2m+3|=1
∴m1=﹣1,m2=﹣2
(2)∵点P到y轴的距离为2
∴|m﹣1|=2
∴m1=3,m2=﹣1
(3)∵点P可能在第一象限坐标轴夹角的平分线上
∴m﹣1=2m+3
∴m=﹣4
∵点P在第一象限
∴m﹣1>0,2m+3>0
∴m>1
∴m=﹣4不合题意
∴点P不可能在第一象限坐标轴夹角的平分线上.
 
21.【分析】(1)根据关联点的定义,结合点的坐标即可得出结论.
(2)根据关联点的定义和点M(m﹣1,2m)的“﹣3级关联点”M′位于y轴上,即可求出M′的坐标.
(3)因为点C(﹣1,3),D(4,3),得到y=3,由点N(x,y)和它的“n级关联点”N′都位于线段CD上,可得到方程组,解答即可.
【解答】解:(1)∵点A(﹣2,6)的“级关联点”是点A1,
∴A1(﹣2×+6,﹣2+×6),
即A1(5,1).
设点B(x,y),
∵点B的“2级关联点”是B1(3,3),

解得
∴B(1,1).
(2)∵点M(m﹣1,2m)的“﹣3级关联点”为M′(﹣3(m﹣1)+2m,m﹣1+(﹣3)×2m),
M′位于y轴上,
∴﹣3(m﹣1)+2m=0,
解得:m=3
∴m﹣1+(﹣3)×2m=﹣16,
∴M′(0,﹣16).
(3)∵点N(x,y)和它的“n级关联点”N′都位于线段CD上,
∴N′(nx+y,x+ny),
∴,
∴x=3n﹣3

解得:.
 
22.【分析】(1)利用平面坐标系分别得出各点坐标进而得出答案;
(2)利用(1)中各点横纵坐标关系得出都关于原点对称,进而得出答案.
【解答】解:(1)如图所示:A(﹣4,1),M(4,﹣1);
B(﹣1,2),N(1,﹣2);
C(﹣3,4),Q(3,﹣4);
(2)由(1)得,三角形MNQ中的对应点R的坐标为:(3,﹣2).
 
23.【分析】(1)作辅助线,构建点D,根据正比例函数y=2x,可得D的坐标(2,4),证明△OPD∽△QAP,得AQ与AP的关系,设AO=a,最后利用勾股定理列方程可得结论;
(2)(3)同理可得AQ和AP的长.
【解答】解:过P作PD⊥x轴,交直线y=tx于D,连接OQ,
(1)当t=2时,y=PD=2x=4,
∵∠BDP+∠DPB=∠DPB+∠APQ=90°,
∴∠BDP=∠APQ,
∴△OPD∽△QAP,
∴,
∴AP=2AQ,
设AQ=a,
Rt△AQO中,OQ=OP=2,
由勾股定理得:OQ2=AQ2+AO2,
∴,
5a2+4a﹣12=0,
a1=﹣2(舍),a2=,
∴AO=;
②当t=3时,OP=3,PD=9,
设AQ=a,
Rt△AQO中,OQ=OP=3,
由勾股定理得:OQ2=AQ2+AO2,

5a2+3a﹣36=0,
(a+3)(5a﹣12)=0,
a1=﹣3(舍),a2=,
∴AQ=AP=(+3)=;
(3)同理OP=t,PD=t2,
∴△OPD∽△QAP,
∴==,
∴AP=tAQ,
Rt△AQO中,OQ=OP=t,
由勾股定理得:OQ2=AQ2+AO2,
∴,
AP=.(2分)
 
24.【分析】(1)依据△ABC经过平移后得到的△A1B1C1,点C1的坐标为(4,0),即可得到顶点A1,B1的坐标;
(2)依据△ABC和△A2B2C2关于原点O成中心对称图形,即可得出△A2B2C2的各顶点的坐标;
(3)依据△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,即可得到△A3B3C3的各顶点的坐标.
【解答】解:(1)如图所示,△A1B1C1即为所求,顶点A1,B1的坐标分别为(2,2)和(3,﹣2);
(2)如图所示,A2的坐标为(﹣3,﹣5);B2的坐标为(2,﹣1);C2的坐标为(1,﹣3);
(3)如图所示,△A3B3C3即为所求;A3的坐标为(5,3),B3的坐标为(1,2),C3的坐标为(3,1).
 
25.【分析】(1)依据两点间的距离公式为P1P2=,进行计算即可;
(2)依据当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|,据此进行计算即可;
(3)先运用两点间的距离公式求得线段AB,BC,AC,进而得出结论.
【解答】解:(1)依据两点间的距离公式,可得AB==13;
(2)当点A,B在平行于y轴的直线上时,AB=|﹣1﹣5|=6;
(3)AB与AC相等.理由:
∵AB==5;
AC==5;
BC=|3﹣(﹣3)|=6.
∴AB=AC.
 
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)