中小学教育资源及组卷应用平台
第三章《位置与坐标》检测题B
一.选择题(共12小题,满分36分,每小题3分)
1.如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为( )
A.(0,0) B.(0,1) C.(1,0) D.(1,2)
2.点M(x,y)的坐标满足x2+|y|=0,那么点M在( )
A.纵轴上 B.横轴上 C.原点 D.纵轴或横轴上
3.已知a,b为实数,则点P(﹣1,﹣|b﹣1|﹣1)落在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.已知A,B两点的坐标是A(5,a),B(b,4),若AB平行于x轴,且AB=3,则a+b的值为( )
A.﹣1 B.9 C.12 D.6或12
5.如图,点A坐标为(3,0),B是y轴正半轴上一点,AB=5,则点B的坐标为( )
A.(4,0) B.(0,4) C.(0,5) D.(0,)
6.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是( )
A.(11,3) B.(3,11) C.(11,9) D.(9,11)
7.线段AB经过平移得到线段CD,其中点A、B的对应点分别为点C、D,这四个点都在如图所示的格点上,那么线段AB上的一点P(a,b)经过平移后,在线段CD上的对应点Q的坐标是( )
A.(a﹣1,b+3) B.(a﹣1,b﹣3) C.(a+1,b+3) D.(a+1,b﹣3)
8.如图,在平面直角坐标系中,△ABC位于第二象限,点B的坐标是(﹣5,2),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于于x轴对称的△A2B2C2,则点B的对应点B2的坐标是( )
A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)
9.在平面直角坐标系中,把点A(﹣1,2)向右平移5个单位得B点,若点C到直线AB的距离为2,且△ABC是直角三角形,则满足条件的C点有( )
A.8个 B.6个 C.4个 D.2个
10.如图,在平面直角坐标系xOy中,点C,B,E在y轴上,Rt△ABC经过变化得到Rt△EDO,若点B的坐标为(0,1),OD=2,则这种变化可以是( )
A.△ABC绕点C顺时针旋转90°,再向下平移5个单位长度
B.△ABC绕点C逆时针旋转90°,再向下平移5个单位长度
C.△ABC绕点O顺时针旋转90°,再向左平移3个单位长度
D.△ABC绕点O逆时针旋转90°,再向右平移1个单位长度
11.在平面直角坐标系中,P点关于原点的对称点为P1(﹣3,﹣),P点关于x轴的对称点为P2(a,b),则=( )
A.﹣2 B.2 C.4 D.﹣4
12.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么B(﹣3,2)的对应点B′的坐标是( )
A.(2,3) B.(3,2) C.(2,﹣3) D.(3,﹣2)
二.填空题(共6小题,满分24分,每小题4分)
13.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,﹣1)和(﹣3,1),那么“卒”的坐标为 .
14.阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1 y2=x2 y1.根据该材料填空:已知=(2,3),=(4,m),且∥,则m= .
15.如图,在平面直角坐标系第一象限有一点P,其横坐标为3,在x轴上有一点A(﹣1,0),已知PA两点间的距离为2,则P的纵坐标为 .
16.点A(a,b)与点B(﹣3,4)关于y轴对称,则a+b的值为 .
17.如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程: .
18.如图,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是 ,第(2018)个三角形的直角顶点的坐标是 .
三.解答题(共7小题,满分60分)
19.(8分)当m为何值时
(1)点A(2,3m)关于原点的对称点在第三象限;
(2)点B(3m﹣1,0.5m+2)到x轴的距离等于它到y轴距离的一半?
20.(8分)已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:
(1)在坐标系内描出点A、B、C的位置;
(2)求出以A、B、C三点为顶点的三角形的面积;
(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由.
21.(8分)如图,在平面直角坐标系中,已知A(0,2),B(3,0),C(3,4)三点,
(1)求三角形ABC的面积;
(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积.
(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.
22.(8分)阅读下列一段文字,然后回答下列问题:
已知平面内两点M(x1,y1)、N(x2,y2),则这两点间的距离可用下列公式计算:MN=.
例如:已知P(3,1)、Q(1,﹣2),则这两点的距离PQ==.
特别地,如果两点M(x1,y1)、N(x2,y2)所在的直线与坐标轴重合或平行于坐标轴或垂直于坐标轴,那么这两点间的距离公式可简化为MN=|x1﹣x2|或|y1﹣y2|.
(1)已知A(1,2)、B(﹣2,﹣3),试求A、B两点间的距离;
(2)已知A、B在平行于y轴的同一条直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离;
(3)已知△ABC的顶点坐标分别为A(0,4)、B(﹣1,2)、C(4,2),你能判定△ABC的形状吗?请说明理由.
23.(8分)在如图所示的直角坐标系中,△ABC的顶点坐标分别是A(﹣4,﹣1),B(1,1),C(﹣1,4);点P(x1,y1)是△ABC内一点,当点P(x1,y1)平移到点P′(x1+4,y1+1)时.
①请写出平移后新△A1B1C1三个顶点的坐标;
②求△A1B1C1的面积.
24.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;
(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;
(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.
25.(10分)如图,点O为平面直角坐标系的原点,点A在x轴上,△AOC是边长为2的等边三角形.
(1)写出△AOC的顶点C的坐标: .
(2)将△AOC沿x轴向右平移得到△OBD,则平移的距离是
(3)将△AOC绕原点O顺时针旋转得到△OBD,则旋转角可以是 度
(4)连接AD,交OC于点E,求∠AEO的度数.
答案与解析
一.选择题(共12小题,满分36分,每小题3分)
1.【分析】根据已知两点的坐标确定坐标系;再确定点的坐标.
【解答】解:根据题意:由(4,5)表示小明的位置,(2,4)表示小刚的位置,可以确定平面直角坐标系中x轴与y轴的位置,则小红的位置可表示为(1,2).
故选:D.
2.【分析】根据非负数的和为零,可得每个非负数同时为零,可得x、y的值.
【解答】解:由x2+|y|=0,得
x=0,y=0.
点M在在原点,
故选:C.
3.【分析】根据解不等式,可得点的横坐标的取值范围,纵坐标的取值范围,根据点在象限内点的坐标特点,可得答案.
【解答】解:﹣1>0,﹣|b﹣1|﹣1<﹣1,
P(﹣1,﹣|b﹣1|﹣1)落在第四象限,
故选:D.
4.【分析】根据平行于x轴的直线上的点的纵坐标相等求出a的值,再根据A、B为不同的两点确定b的值.
【解答】解:∵AB∥x轴,
∴a=4,
∵AB=3,
∴b=5+3=8或b=5﹣3=2.
则a+b=4+8=12,或a+b=2+4=6,
故选:D.
5.【分析】根据勾股定理解答即可.
【解答】解:因为点A坐标为(3,0),B是y轴正半轴上一点,AB=5,
所以OB=,
所以点B的坐标为(0,4),
故选:B.
6.【分析】根据排列规律可知从1开始,第N排排N个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数
根据此规律即可得出结论.
【解答】解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.
故选:A.
7.【分析】依据B(1,3),D(2,0),可得线段AB向右平移1个单位,向下平移3个单位得到线段CD,再根据P(a,b),即可得到对应点Q(a+1,b﹣3).
【解答】解:由图可得,点A、B的对应点分别为点C、D,而B(1,3),D(2,0),
∴线段AB向右平移1个单位,向下平移3个单位得到线段CD,
又∵P(a,b),
∴Q(a+1,b﹣3),
故选:D.
8.【分析】首先利用平移的性质得到△A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到△A2B2C2中B2的坐标,即可得出答案.
【解答】解:把△ABC向右平移4个单位长度得到△A1B1C1,此时点B(﹣5,2)的对应点B1坐标为(﹣1,2),
则与△A1B1C1关于于x轴对称的△A2B2C2中B2的坐标为(﹣1,﹣2),
故选:D.
9.【分析】直接利用平移中点的变化规律求解即可.
【解答】解:根据题意:点B的坐标为(4,2),AB=5,且点C到直线AB的距离为2;
若角A是直角,则C的坐标有两种情况(﹣1,4)(﹣1,0);
若角B是直角,则C的坐标有两种情况(4,4)(4,0);
若角C是直角,则C有4种情况,故满足条件的C点有8个.
10.【分析】依据Rt△ABC经过变化得到Rt△EDO,点B的坐标为(0,1),OD=2,可得将△ABC绕点C顺时针旋转90°,再向下平移3个单位长度,即可得到△DOE;或将△ABC绕点O顺时针旋转90°,再向左平移3个单位长度,即可得到△DOE.
【解答】解:∵Rt△ABC经过变化得到Rt△EDO,点B的坐标为(0,1),OD=2,
∴DO=BC=2,CO=3,
∴将△ABC绕点C顺时针旋转90°,再向下平移3个单位长度,即可得到△DOE;
或将△ABC绕点O顺时针旋转90°,再向左平移3个单位长度,即可得到△DOE;
故选:C.
11.【分析】利用关于原点对称点的坐标性质得出P点坐标,进而利用关于x轴对称点的坐标性质得出P2坐标,进而得出答案.
【解答】解:∵P点关于原点的对称点为P1(﹣3,﹣),
∴P(3,),
∵P点关于x轴的对称点为P2(a,b),
∴P2(3,﹣),
∴==﹣2.
故选:A.
12.【分析】作辅助线构造全等三角形,根据旋转的性质和点B(﹣3,2)可以求得点B′的坐标.
【解答】解:如图,过B作BC⊥x轴于C,过B'作B'D⊥x轴于D,则∠OCB=∠B'DO=90°,
由旋转可得,BO=OB',∠BOB'=90°,
∴∠BOC+∠B'OD=90°=∠BOC+∠OBC,
∴∠OBC=∠B'OD,
∴△BOC≌△OB'D,
∴BC=OD,CO=DB',
又∵B(﹣3,2),
∴BC=OD=2,CO=DB'=3,
∴B'(2,3),
故选:A.
二.填空题(共6小题,满分24分,每小题4分)
13.【分析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.
【解答】解:“卒”的坐标为(﹣2,﹣2),
故答案为:(﹣2,﹣2).
14.【分析】由题意设=(x1,y1),=(x2,y2),∥,则x1 y2=x2 y1,由此列出方程即可解决问题.
【解答】解:由题意:∵=(2,3),=(4,m),且∥,
∴2m=12,
∴m=6,
故答案为6.
15.【分析】设P点的纵坐标为y,则P(3,y),PA=,又PA两点间的距离为2,依此为等量关系列出方程求出y的值,即可求出点P的坐标.
【解答】解:设P点的纵坐标为y(y>0),则P(3,y),
依题意得=2,
解得y=±2(舍去负值).
故答案为:2.
16.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a,b的值,再求a+b即可.
【解答】解:∵点A(a,b)与点B(﹣3,4)关于y轴对称,
∴a=3,b=4,
∴a+b=3+4=7,
故答案为:7.
17.【分析】根据旋转的性质,平移的性质即可得到由△OCD得到△AOB的过程.
【解答】解:△OCD绕C点顺时针旋转90°,并向左平移2个单位得到△AOB(答案不唯一).
故答案为:△OCD绕C点顺时针旋转90°,并向左平移2个单位得到△AOB.
18.【分析】利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可.
【解答】解:∵点A(﹣4,0),B(0,3),
∴OA=4,OB=3,
∴AB==5,
∴第(2)个三角形的直角顶点的坐标是(4,);
∵5÷3=1余2,
∴第(5)个三角形的直角顶点的坐标是(,),
∵2018÷3=672余2,
∴第(2018)个三角形是第672组的第二个直角三角形,
其直角顶点与第672组的第二个直角三角形顶点重合,
∴第(2018)个三角形的直角顶点的坐标是(8068,).
故答案为:(16,);(8068,)
三.解答题(共7小题,满分60分)
19.【分析】(1)首先根据关于原点对称点的坐标可得关于原点的对称点坐标为(﹣2,﹣3m),再根据第三象限内点的坐标符号可得﹣3m<0,再解即可;
(2)根据题意可得纵坐标的绝对值=×横坐标的绝对值,然后计算即可.
【解答】解:(1)∵点A(2,3m),
∴关于原点的对称点坐标为(﹣2,﹣3m),
∵在第三象限,
∴﹣3m<0,
∴m>0;
(2)由题意得:①0.5m+2=(3m﹣1),
解得:m=;
②0.5m+2=﹣(3m﹣1),
解得:m=﹣.
20.【分析】(1)根据点的坐标,直接描点;
(2)根据点的坐标可知,AB∥x轴,且AB=3﹣(﹣2)=5,点C到线段AB的距离3﹣1=2,根据三角形面积公式求解;
(3)因为AB=5,要求△ABP的面积为10,只要P点到AB的距离为4即可,又P点在y轴上,满足题意的P点有两个.
【解答】解:(1)描点如图;
(2)依题意,得AB∥x轴,且AB=3﹣(﹣2)=5,
∴S△ABC=×5×2=5;
(3)存在;
∵AB=5,S△ABP=10,
∴P点到AB的距离为4,
又点P在y轴上,
∴P点的坐标为(0,5)或(0,﹣3).
21.【分析】(1)将A,B,C坐标在直角坐标系中表示出来,由三角形面积公式即可求解,(2)因为P在第二象限,将四边形ABOP的面积表示成三角形APO和三角形AOB的面积和,即可求解,(3)当四边形ABOP的面积与△ABC的面积相等时,即3﹣m=6,得m=﹣3,即可进行求解.
【解答】解:(1)已知点A(0,2),B(3,0),C(3,4),
过A点作BC边上的高,交BC于点H,
则三角形ABC的面积为:S=BC AH=×4×3=6;
(2)四边形ABOP的面积可以看作是△APO和△AOB的面积和,
∵P在第二象限,∴m<0,SAPOB=S△AOB+SAPO=+×(﹣m)×2=3﹣m.
故四边形ABOP的面积为3﹣m;
(3)当四边形ABOP的面积与△ABC的面积相等时,
即3﹣m=6,得m=﹣3,
此时P点坐标为:(﹣3,),
存在P点,使四边形ABOP的面积与△ABC的面积相等.
22.【分析】(1)直接利用两点间的距离公式计算;
(2)由于横坐标相同,所以A、B两点间的距离等于纵坐标差的绝对值;
(3)先根据两点间的距离公式计算出AB、AC、BC,然后根据勾股定理的逆定理进行判断.
【解答】解:(1)AB==;
(2)AB=5﹣(﹣1)=6;
(3)△ABC为直角三角形.理由如下:
∵AB==,AC==2,BC==5,
∴AB2+AC2=BC2,
∴△ABC为直角三角形.
23.【分析】(1)根据点P平移前后的坐标,可得出平移的规律,继而可得出△A1B1C1三个顶点的坐标;
(2)利用构图法,求解△A1B1C1的面积.
【解答】解:①∵P(x1,y1)平移后点P′(x1+4,y1+1),
∴平移的规律为:向右平移4个单位,向上平移1个单位,
∴A1(0,0),B1(5,2),C1(3,5);
②S△A1B1C1=S△ABC=5×5﹣×3×5﹣×2×3﹣×2×5=.
24.【分析】(1)利用点C和点C1的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点A1,B1的坐标;
(2)根据关于原点对称的点的坐标特征求解;
(3)利用网格和旋转的性质画出△A2B3C3,然后写出△A2B3C3的各顶点的坐标.
【解答】解:(1)如图,△A1B1C1为所作,
因为点C(﹣1,3)平移后的对应点C1的坐标为(4,0),
所以△ABC先向右平移5个单位,再向下平移3个单位得到△A1B1C1,
所以点A1的坐标为(2,2),B1点的坐标为(3,﹣2);
(2)因为△ABC和△A1B2C2关于原点O成中心对称图形,
所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);
(3)如图,△A2B3C3为所作,A3(5,3),B3(1,2),C3(3,1);
25.【分析】(1)过C作CH⊥AO于H,利用勾股定理即可得到点C的坐标为(﹣1,);
(2)依据对应点的位置,即可得到平移的距离;
(3)依据旋转的方向以及对应点的位置,即可得到旋转角的度数;
(4)判定△ACE≌△DOE,即可得到CE=OE,依据三线合一可得AD⊥CO.
【解答】解:(1)如图,过C作CH⊥AO于H,则HO=AO=1,
∴Rt△COH中,CH==,
∴点C的坐标为(﹣1,),
故答案为:(﹣1,);
(2)由平移可得,平移的距离=AO=2,
故答案为:2;
(3)由旋转可得,旋转角=∠AOD=120°,
故答案为:120;
(4)如图,∵AC∥OD,
∴∠CAE=∠ODE,∠ACE=∠DOE,
又∵AC=DO,
∴△ACE≌△DOE,
∴CE=OE,
∴AD⊥CO,即∠AEO=90°.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)