28.2 二次函数与实际问题同步课时作业(2)
姓名:__________班级:__________考号:__________
一、选择题
1.某公司的生产利润原来是a元,经过连续两年的增长达到了y万元,如果每年增长的百分数都是x,那么y与x的函数关系是( )
A.y=x+a B.y=a(x-1) C.y=a(1-x) D.y=a(1+x)
2.将进货单价为70元的某种商品按零售价100元/个售出时每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价( )
B.10元 C.15元 D.20元
3.一台机器原价60万元,如果每年的折旧率为x,两年后这台机器的价位为y万元,则y关于x的函数关系式为( )
A.y=60(1﹣x)2 B.y=60(1﹣x2) C.y=60﹣x2 D.y=60(1+x)2
4.某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x倍,两年后产品y与x的函数关系是( )
A.y=20(1﹣x)2 B.y=20+2x C.y=20(1+x)2 D.y=20+20x2+20x
5.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数关系式为( )
A.y=2a(x﹣1) B.y=2a(1﹣x) C.y=a(1﹣x2) D.y=a(1﹣x)2
6.心理学家发现:学生对概念的接受能力y与提出概念的时间x(min)之间是二次函数关系,当提出概念13min时,学生对概念的接受力最大,为59.9;当提出概念30min时,学生对概念的接受能力就剩下31,则y与x满足的二次函数关系式为( )
A. y=﹣(x﹣13)2+59.9 B. y=﹣0.1x2+2.6x+31
C. y=0.1x2﹣2.6x+76.8 D. y=﹣0.1x2+2.6x+43
二、填空题
7.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为 m2.
8.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y= .
9.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为 元时,该服装店平均每天的销售利润最大.
10.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件,若使利润最大,则每件商品的售价应为_____元.
11.某超市销售某种玩具,进货价为20元.根据市场调查:在一段时间内,销售单价是30元时,销售量是400件,而销售单价每上涨1元,就会少售出10件玩具,超市要完成不少于300件的销售任务,又要获得最大利润,则销售单价应定为 元.
12.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为 .
13.某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是 元/件,才能在半月内获得最大利润.
三、解答题
14.一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300件,为提高利益,就对该T恤进行涨价销售,经过调查发现,每涨价1元,每周要少卖出10件,请确定该T恤涨价后每周销售利润y(元)与销售单价x(元)之间的函数关系式,并求出销售单价定为多少元时,每周的销售利润最大?
15.某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:
请根据上面的信息,解决问题:
(1)设AB=x米(x>0),试用含x的代数式表示BC的长;
(2)请你判断谁的说法正确,为什么?
16.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:
售价(元/件)
100
110
120
130
…
月销量(件)
200
180
160
140
…
已知该运动服的进价为每件60元,设售价为x元.
(1)请用含x的式子表示:①销售该运动服每件的利润是 ( )元;②月销量是 ( )件;(直接写出结果)
(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?
17.某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.
(1)求y关于x的函数关系式(不要求写出x的取值范围);
(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?
18.某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度))与电价x(元/千度)的函数图象如图:
(1)当电价为600元/千度时,工厂消耗每千度电产生利润是多少?
(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=10m+500,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?
19.每年六七月份我市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.
(1)水果商要把荔枝售价至少定为多少才不会亏本?
(2)在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元/千克)之间满足关系:m= -10x+120,那么当销售单价定为多少时,每天获得的利润w最大?
20.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y= -2x+100.(利润=售价-制造成本)
(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?
21.为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.
(1)求彩虹桥上车流密度为100辆/千米时的车流速度;
(2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?
(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.
22.大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).
(1)直接写出y与x之间的函数关系式;
(2)如何确定销售价格才能使月利润最大?求最大月利润;
(3)为了使每月利润不少于6000元应如何控制销售价格?
23.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人.设新工人李明第X天生产的粽子数量为y只,y与x满足如下关系:y=
(1)李明第几天生产的粽子数量为420只?
(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图形来刻画.若李明第x天创造的利润为w元,求w关于x的函数表达式,并求出第几天的利润最大,最大利润时多少元?(利润=出厂价﹣成本)
答案解析
一 、选择题
1.【考点】根据实际问题列二次函数关系式
【分析】本题是增长率的问题,基数是a元,增长次数2次,结果为y,根据增长率的公式表示函数关系式.
解:依题意,得y=a(1+x)2.故选D.
2.【考点】二次函的应用
【分析】设应降价x元,表示出利润的关系式为(20+x)(100-x-70)= -x2+10x+600,根据二次函数的最值问题求得最大利润时x的值即可.
解:设应降价x元,则(20+x)(100-x-70)= -x2+10x+600= -(x-5)2+625,
∵-1<0
∴当x=5元时,二次函数有最大值.
∴为了获得最大利润,则应降价5元.
故选A.
3.【考点】根据实际问题列二次函数关系式.
【分析】原价为60,一年后的价格是60×(1﹣x),二年后的价格是为:60×(1﹣x)×(1﹣x)=60(1﹣x)2,则函数解析式求得.
解:二年后的价格是为:
60×(1﹣x)×(1﹣x)=60(1﹣x)2,
则函数解析式是:y=60(1﹣x)2.
故选A.
点评:本题需注意二年后的价位是在一年后的价位的基础上降价的.
4.【考点】根据实际问题列二次函数关系式.
【分析】根据已知表示出一年后产品数量,进而得出两年后产品y与x的函数关系.
解:∵某工厂一种产品的年产量是20件,每一年都比上一年的产品增加x倍,
∴一年后产品是:20(1+x),
∴两年后产品y与x的函数关系是:y=20(1+x)2.
故选:C.
点评:此题主要考查了根据实际问题列二次函数关系式,得出变化规律是解题关键.
5.【考点】根据实际问题列二次函数关系式.
【分析】原价为a,第一次降价后的价格是a×(1﹣x),第二次降价是在第一次降价后的价格的基础上降价的,为a×(1﹣x)×(1﹣x)=a(1﹣x)2.
解:由题意第二次降价后的价格是a(1﹣x)2.
则函数解析式是y=a(1﹣x)2.
故选D.
点评:本题需注意第二次降价是在第一次降价后的价格的基础上降价的.
6.考点: 根据实际问题列二次函数关系式.
分析: 利用顶点式求出二次函数解析式进而得出答案.
解答: 解:设抛物线解析式为:y=a(x﹣13)2+59.9,
将(30,31)代入得:
31=a(30﹣13)2+59.9,
解得:a=﹣0.1,
故:y=﹣0.1(x﹣13)2+59.9═﹣0.1x2+2.6x+43.
故选:D.
点评: 此题主要考查了二次函数的应用,根据题意利用顶点式求出是解题关键.
二 、填空题
7.【考点】二次函数的应用.
【分析】设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,表示出总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75即可求得面积的最值.
解:设垂直于墙的材料长为x米,
则平行于墙的材料长为27+3﹣3x=30﹣3x,
则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,
故饲养室的最大面积为75平方米,
故答案为:75.
【点评】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出函数模型,难度不大.
8.【考点】根据实际问题列二次函数关系式.
【分析】由一月份新产品的研发资金为a元,根据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.
解:∵一月份新产品的研发资金为a元,
2月份起,每月新产品的研发资金与上月相比增长率都是x,
∴2月份研发资金为a×(1+x),
∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.
故填空答案:a(1+x)2.
【点评】此题主要考查了根据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.
9.【考点】二次函数的应用.
【分析】根据“利润=(售价﹣成本)×销售量”列出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;把二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答.
解:设定价为x元,
根据题意得:y=(x﹣15)[8+2(25﹣x)]
=﹣2x2+88x﹣870
∴y=﹣2x2+88x﹣870,
=﹣2(x﹣22)2+98
∵a=﹣2<0,
∴抛物线开口向下,
∴当x=22时,y最大值=98.
故答案为:22.
【点评】此题题考查二次函数的实际应用,为数学建模题,借助二次函数解决实际问题,解决本题的关键是二次函数图象的性质.
10.【考点】二次函数的应用-销售问题.
【分析】先建立函数关系式,然后通过配方法求出最值
解:设最大利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,
∵20≤x≤30,
∴当x=25时,二次函数有最大值25,
故答案为:25.
11.【考点】二次函数的应用.
【专题】销售问题.
【分析】根据题意分别表示出每件玩具的利润以及销量,进而结合超市要完成不少于300件的销售任务,进而求出x的值.
【解答】解:设销售单价应定为x元,根据题意可得:
利润=(x﹣20)[400﹣10(x﹣30)]
=(x﹣20)(700﹣10x)
=﹣10x2+900x﹣14000
=﹣10(x﹣45)2+6250,
∵超市要完成不少于300件的销售任务,
∴400﹣10(x﹣30)≥300,
解得:x≤40,
即x=40时,销量为300件,此时利润最大为:﹣10(40﹣45)2+6250=6000(元),
故销售单价应定为40元.
故答案为:40.
【点评】此题主要考查了二次函数的应用,根据题意结合二次函数的性质得出商品定价是解题关键.
12.【考点】二次函数的应用.
【分析】根据题意可以列出相应的不等式,从而可以解答本题.
【解答】解:设未来30天每天获得的利润为y,
y=(20+4t)2﹣(20+4t)a
化简,得
y=﹣4t2+t+1400﹣20a
每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,
∴≥﹣4×302+×30+1400﹣20a
解得,a≤5,
又∵a>0,
即a的取值范围是:0<a≤5.
13.【考点】二次函数的应用.
【分析】设销售单价为x元,销售利润为y元,求得函数关系式,利用二次函数的性质即可解决问题.
解:设销售单价为x元,销售利润为y元.
根据题意,得:
y=(x﹣20)[400﹣20(x﹣30)]
=(x﹣20)(1000﹣20x)
=﹣20x2+1400x﹣20000
=﹣20(x﹣35)2+4500,
∵﹣20<0,
∴x=35时,y有最大值,
故答案为35.
三 、解答题
14.【考点】二次函数的应用.
【分析】用每件的利润乘以销售量即可得到每周销售利润,即y=(x﹣40)[300﹣20(x﹣60)],再把解析式整理为一般式,然后根据二次函数的性质确定销售单价定为多少元时,每周的销售利润最大.
解:根据题意得y=(x﹣40)[300﹣10(x﹣60)]
=﹣10x2+1300x﹣36000,
∵x﹣60≥0且300﹣10(x﹣60)≥0,
∴60≤x≤90,
∵a=﹣10<0,
而抛物线的对称轴为直线x=65,即当x>65时,y随x的增大而减小,
而60≤x≤90,
∴当x=65时,y的值最大,
即销售单价定为65元时,每周的销售利润最大.
【点评】本题考查了二次函数的应用:利用二次函数解决利润问题,在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.
15.【考点】二次函数的应用.
【分析】(1)设AB=x米,根据等式x+x+BC=69+3,可以求出BC的表达式;
(2)得出面积关系式,根据所求关系式进行判断即可.
解:(1)设AB=x米,可得BC=69+3﹣2x=72﹣2x;
(2)小英说法正确;
矩形面积S=x(72﹣2x)=﹣2(x﹣18)2+648,
∵72﹣2x>0,
∴x<36,
∴0<x<36,
∴当x=18时,S取最大值,
此时x≠72﹣2x,
∴面积最大的不是正方形.
【点评】本题主要考查二次函数的应用,借助二次函数解决实际问题.其中在确定自变量取值范围时要结合题目中的图形和长>宽的原则,找到关于x的不等式.
16.【考点】二次函数的应用.
【分析】(1)根据利润=售价﹣进价求出利润,运用待定系数法求出月销量;
(2)根据月利润=每件的利润×月销量列出函数关系式,根据二次函数的性质求出最大利润.
解:(1)①销售该运动服每件的利润是(x﹣60)元;
②设月销量W与x的关系式为w=kx+b,
由题意得,,
解得,,
∴W=﹣2x+400;
(2)由题意得,y=(x﹣60)(﹣2x+400)
=﹣2x2+520x﹣24000
=﹣2(x﹣130)2+9800,
∴售价为130元时,当月的利润最大,最大利润是9800元.
【点评】本题考查的是二次函数的应用,掌握待定系数法求函数解析式和二次函数的性质以及最值的求法是解题的关键.
17.【考点】二次函数的应用.
【分析】(1)由图象过点(20,20)和(30,0),利用待定系数法求直线解析式;
(2)每天利润=每千克的利润×销售量.据此列出表达式,运用函数性质解答.
解:(1)设y=kx+b,由图象可知,
,
解之,得:,
∴y=﹣2x+60;
(2)p=(x﹣10)y
=(x﹣10)(﹣2x+60)
=﹣2x2+80x﹣600,
∵a=﹣2<0,
∴p有最大值,
当x=﹣=20时,p最大值=200.
即当销售单价为20元/千克时,每天可获得最大利润200元.
【点评】此题主要考查了待定系数法求一次函数解析式以及求二次函数最值等知识,解题的关键是理解题意,根据题意求得函数解析式,注意待定系数法的应用,注意数形结合思想的应用.
18.【考点】二次函数的应用
【分析】(1)把(0,300),(500,200)代入直线解析式可得一次函数解析式,把x=600代入函数解析式可得利润的值;
(2)利润=用电量×每千度电产生利润,结合该工厂每天用电量不超过60千度,得到利润的最大值即可.
解:(1)工厂每千度电产生利润y(元/千度)与电价x(元/千度)的函数解析式为:
y=kx+b.
该函数图象过点(0,300),(500,200),
∴
解得
∴ y= (x≥0).
当电价x=600元/千度时,该工厂消耗每千度电产生利润y==180(元).
答:工厂消耗每千度电产生利润是180元.
(2)设工厂每天消耗电产生利润为w元,由题意得:
W=my=m()
=m[ ].
化简配方,得:w= -2(m-50)2+5000.
由题意得:a= -2<0,m≤60,
∴当m=50时,w最大=5000,
即当工厂每天消耗50千度电时,工厂每天消耗电产生利润为5000元.
19.【考点】二次函数的应用
【分析】(1)设购进荔枝a千克,荔枝售价定为b元/千克时,水果商要不亏本,由题意建立不等式求出其值就可以了.
(2)由(1)可知,每千克荔枝的平均成本为6元,再根据售价-进价=利润就可以表示出w,然后化为顶点式就可以求出最值.
解:(1)设购进荔枝a千克,荔枝售价定为b元/千克时,水果商才不会亏本,由题意得
ba(1-5%)≥(5+0.7)a,
∵a>0,
∴95%b≥5.7
∴b≥6
所以,水果商要把荔枝售价至少定为6元/千克才不会亏本.
(2)由(1)可知,每千克荔枝的平均成本为6元,由题意得
w=(x-6)m
=(x-6)(-10x+120)
= -10(x-9)2+90,
∵a= -10<0
∴w有最大值
∴当x=9时,w有最大值.
所以,当销售单价定为9元/千克时,每天可获利润w最大.
20.【考点】二次函数的应用
【分析】(1)根据每月的利润z=(x-18)y,再把y= -2x+100代入即可求出z与x之间的函数解析式,
(2)把z=350代入z= -2x2+136x-1800,解这个方程即可,将z═-2x2+136x-1800配方,得z= -2(x-34)2+512,即可求出当销售单价为多少元时,厂商每月能获得最大利润,最大利润是多少.
解:(1)z=(x-18)y=(x-18)(-2x+100)
= -2x2+136x-1800,
∴z与x之间的函数解析式为z= -2x2+136x-1800;
(2)由z=350,得350= -2x2+136x-1800,
解这个方程得x1=25,x2=43
所以,销售单价定为25元或43元,
将z═-2x2+136x-1800配方,得z= -2(x-34)2+512,
答:当销售单价为34元时,每月能获得最大利润,最大利润是512万元;
21.【考点】二次函数的应用.
【分析】(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;
(2)由(1)的解析式建立不等式组求出其解即可;
(3)设车流量y与x之间的关系式为y=vx,当20≤x≤220时表示出函数关系,由函数的性质就可以求出结论.
解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得
,
解得:,
∴当20≤x≤220时,v=﹣x+88,
当x=100时,v=﹣×100+88=48(千米/小时);
(2)由题意,得
,
解得:70<x<120,
∴应控制大桥上的车流密度在70<x<120范围内;
(3)设车流量y与x之间的关系式为y=vx,
当20≤x≤220时,
y=(﹣x+88)x=﹣(x﹣110)2+4840,
∴当x=110时,y最大=4840,
∵4840>1600,
∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.
【点评】本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.
22.【考点】二次函数的应用.
【分析】(1)直接根据题意售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件,进而得出等量关系;
(2)利用每件利润×销量=总利润,进而利用配方法求出即可;
(3)利用函数图象结合一元二次方程的解法得出符合题意的答案.
解:(1)由题意可得:y=;
(2)由题意可得:w=,
化简得:w=,
即w=,
由题意可知x应取整数,故当x=﹣2或x=﹣3时,w<6125<6250,
故当销售价格为65元时,利润最大,最大利润为6250元;
(3)由题意w≥6000,如图,令w=6000,
将w=6000带入﹣20≤x<0时对应的抛物线方程,即6000=﹣20(x+)2+6125,
解得:x1=﹣5,
将w=6000带入0≤x≤30时对应的抛物线方程,即6000=﹣10(x﹣5)2+6250,
解得x2=0,x3=10,
综上可得,﹣5≤x≤10,
故将销售价格控制在55元到70元之间(含55元和70元)才能使每月利润不少于6000元.
【点评】此题主要考查了二次函数的应用以及配方法求二次函数最值等知识,利用函数图象得出x的取值范围是解题关键.
23.【考点】二次函数的应用.
【分析】(1)把y=420代入y=30x+120,解方程即可求得;
(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答;
解:(1)设李明第n天生产的粽子数量为420只,
由题意可知:30n+120=420,
解得n=10.
答:第10天生产的粽子数量为420只.
(2)由图象得,当0≤x<9时,p=4.1;
当9≤x≤15时,设P=kx+b,
把点(9,4.1),(15,4.7)代入得,,
解得,
∴p=0.1x+3.2,
①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大=513(元);
②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,
∵x是整数,
∴当x=9时,w最大=741(元);
③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,
∵a=﹣3<0,
∴当x=﹣=12时,w最大=768(元);
综上,当x=12时,w有最大值,最大值为768.
【点评】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.
28.2 二次函数与实际问题同步课时作业(2)
姓名:__________班级:__________考号:__________
一、选择题
1.某公司的生产利润原来是a元,经过连续两年的增长达到了y万元,如果每年增长的百分数都是x,那么y与x的函数关系是( )
A.y=x+a B.y=a(x-1) C.y=a(1-x) D.y=a(1+x)
2.将进货单价为70元的某种商品按零售价100元/个售出时每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价( )
B.10元 C.15元 D.20元
3.一台机器原价60万元,如果每年的折旧率为x,两年后这台机器的价位为y万元,则y关于x的函数关系式为( )
A.y=60(1﹣x)2 B.y=60(1﹣x2) C.y=60﹣x2 D.y=60(1+x)2
4.某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x倍,两年后产品y与x的函数关系是( )
A.y=20(1﹣x)2 B.y=20+2x C.y=20(1+x)2 D.y=20+20x2+20x
5.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数关系式为( )
A.y=2a(x﹣1) B.y=2a(1﹣x) C.y=a(1﹣x2) D.y=a(1﹣x)2
6.心理学家发现:学生对概念的接受能力y与提出概念的时间x(min)之间是二次函数关系,当提出概念13min时,学生对概念的接受力最大,为59.9;当提出概念30min时,学生对概念的接受能力就剩下31,则y与x满足的二次函数关系式为( )
A. y=﹣(x﹣13)2+59.9 B. y=﹣0.1x2+2.6x+31
C. y=0.1x2﹣2.6x+76.8 D. y=﹣0.1x2+2.6x+43
二、填空题
7.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为 m2.
8.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y= .
9.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为 元时,该服装店平均每天的销售利润最大.
10.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件,若使利润最大,则每件商品的售价应为_____元.
11.某超市销售某种玩具,进货价为20元.根据市场调查:在一段时间内,销售单价是30元时,销售量是400件,而销售单价每上涨1元,就会少售出10件玩具,超市要完成不少于300件的销售任务,又要获得最大利润,则销售单价应定为 元.
12.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为 .
13.某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是 元/件,才能在半月内获得最大利润.
三、解答题
14.一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300件,为提高利益,就对该T恤进行涨价销售,经过调查发现,每涨价1元,每周要少卖出10件,请确定该T恤涨价后每周销售利润y(元)与销售单价x(元)之间的函数关系式,并求出销售单价定为多少元时,每周的销售利润最大?
15.某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:
请根据上面的信息,解决问题:
(1)设AB=x米(x>0),试用含x的代数式表示BC的长;
(2)请你判断谁的说法正确,为什么?
16.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:
售价(元/件)
100
110
120
130
…
月销量(件)
200
180
160
140
…
已知该运动服的进价为每件60元,设售价为x元.
(1)请用含x的式子表示:①销售该运动服每件的利润是 ( )元;②月销量是 ( )件;(直接写出结果)
(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?
17.某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.
(1)求y关于x的函数关系式(不要求写出x的取值范围);
(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?
18.某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度))与电价x(元/千度)的函数图象如图:
(1)当电价为600元/千度时,工厂消耗每千度电产生利润是多少?
(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=10m+500,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?
19.每年六七月份我市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.
(1)水果商要把荔枝售价至少定为多少才不会亏本?
(2)在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元/千克)之间满足关系:m= -10x+120,那么当销售单价定为多少时,每天获得的利润w最大?
20.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y= -2x+100.(利润=售价-制造成本)
(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?
21.为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.
(1)求彩虹桥上车流密度为100辆/千米时的车流速度;
(2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?
(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.
22.大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).
(1)直接写出y与x之间的函数关系式;
(2)如何确定销售价格才能使月利润最大?求最大月利润;
(3)为了使每月利润不少于6000元应如何控制销售价格?
23.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人.设新工人李明第X天生产的粽子数量为y只,y与x满足如下关系:y=
(1)李明第几天生产的粽子数量为420只?
(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图形来刻画.若李明第x天创造的利润为w元,求w关于x的函数表达式,并求出第几天的利润最大,最大利润时多少元?(利润=出厂价﹣成本)
答案解析
一 、选择题
1.【考点】根据实际问题列二次函数关系式
【分析】本题是增长率的问题,基数是a元,增长次数2次,结果为y,根据增长率的公式表示函数关系式.
解:依题意,得y=a(1+x)2.故选D.
2.【考点】二次函的应用
【分析】设应降价x元,表示出利润的关系式为(20+x)(100-x-70)= -x2+10x+600,根据二次函数的最值问题求得最大利润时x的值即可.
解:设应降价x元,则(20+x)(100-x-70)= -x2+10x+600= -(x-5)2+625,
∵-1<0
∴当x=5元时,二次函数有最大值.
∴为了获得最大利润,则应降价5元.
故选A.
3.【考点】根据实际问题列二次函数关系式.
【分析】原价为60,一年后的价格是60×(1﹣x),二年后的价格是为:60×(1﹣x)×(1﹣x)=60(1﹣x)2,则函数解析式求得.
解:二年后的价格是为:
60×(1﹣x)×(1﹣x)=60(1﹣x)2,
则函数解析式是:y=60(1﹣x)2.
故选A.
点评:本题需注意二年后的价位是在一年后的价位的基础上降价的.
4.【考点】根据实际问题列二次函数关系式.
【分析】根据已知表示出一年后产品数量,进而得出两年后产品y与x的函数关系.
解:∵某工厂一种产品的年产量是20件,每一年都比上一年的产品增加x倍,
∴一年后产品是:20(1+x),
∴两年后产品y与x的函数关系是:y=20(1+x)2.
故选:C.
点评:此题主要考查了根据实际问题列二次函数关系式,得出变化规律是解题关键.
5.【考点】根据实际问题列二次函数关系式.
【分析】原价为a,第一次降价后的价格是a×(1﹣x),第二次降价是在第一次降价后的价格的基础上降价的,为a×(1﹣x)×(1﹣x)=a(1﹣x)2.
解:由题意第二次降价后的价格是a(1﹣x)2.
则函数解析式是y=a(1﹣x)2.
故选D.
点评:本题需注意第二次降价是在第一次降价后的价格的基础上降价的.
6.考点: 根据实际问题列二次函数关系式.
分析: 利用顶点式求出二次函数解析式进而得出答案.
解答: 解:设抛物线解析式为:y=a(x﹣13)2+59.9,
将(30,31)代入得:
31=a(30﹣13)2+59.9,
解得:a=﹣0.1,
故:y=﹣0.1(x﹣13)2+59.9═﹣0.1x2+2.6x+43.
故选:D.
点评: 此题主要考查了二次函数的应用,根据题意利用顶点式求出是解题关键.
二 、填空题
7.【考点】二次函数的应用.
【分析】设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,表示出总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75即可求得面积的最值.
解:设垂直于墙的材料长为x米,
则平行于墙的材料长为27+3﹣3x=30﹣3x,
则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,
故饲养室的最大面积为75平方米,
故答案为:75.
【点评】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出函数模型,难度不大.
8.【考点】根据实际问题列二次函数关系式.
【分析】由一月份新产品的研发资金为a元,根据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.
解:∵一月份新产品的研发资金为a元,
2月份起,每月新产品的研发资金与上月相比增长率都是x,
∴2月份研发资金为a×(1+x),
∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.
故填空答案:a(1+x)2.
【点评】此题主要考查了根据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.
9.【考点】二次函数的应用.
【分析】根据“利润=(售价﹣成本)×销售量”列出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;把二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答.
解:设定价为x元,
根据题意得:y=(x﹣15)[8+2(25﹣x)]
=﹣2x2+88x﹣870
∴y=﹣2x2+88x﹣870,
=﹣2(x﹣22)2+98
∵a=﹣2<0,
∴抛物线开口向下,
∴当x=22时,y最大值=98.
故答案为:22.
【点评】此题题考查二次函数的实际应用,为数学建模题,借助二次函数解决实际问题,解决本题的关键是二次函数图象的性质.
10.【考点】二次函数的应用-销售问题.
【分析】先建立函数关系式,然后通过配方法求出最值
解:设最大利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,
∵20≤x≤30,
∴当x=25时,二次函数有最大值25,
故答案为:25.
11.【考点】二次函数的应用.
【专题】销售问题.
【分析】根据题意分别表示出每件玩具的利润以及销量,进而结合超市要完成不少于300件的销售任务,进而求出x的值.
【解答】解:设销售单价应定为x元,根据题意可得:
利润=(x﹣20)[400﹣10(x﹣30)]
=(x﹣20)(700﹣10x)
=﹣10x2+900x﹣14000
=﹣10(x﹣45)2+6250,
∵超市要完成不少于300件的销售任务,
∴400﹣10(x﹣30)≥300,
解得:x≤40,
即x=40时,销量为300件,此时利润最大为:﹣10(40﹣45)2+6250=6000(元),
故销售单价应定为40元.
故答案为:40.
【点评】此题主要考查了二次函数的应用,根据题意结合二次函数的性质得出商品定价是解题关键.
12.【考点】二次函数的应用.
【分析】根据题意可以列出相应的不等式,从而可以解答本题.
【解答】解:设未来30天每天获得的利润为y,
y=(20+4t)2﹣(20+4t)a
化简,得
y=﹣4t2+t+1400﹣20a
每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,
∴≥﹣4×302+×30+1400﹣20a
解得,a≤5,
又∵a>0,
即a的取值范围是:0<a≤5.
13.【考点】二次函数的应用.
【分析】设销售单价为x元,销售利润为y元,求得函数关系式,利用二次函数的性质即可解决问题.
解:设销售单价为x元,销售利润为y元.
根据题意,得:
y=(x﹣20)[400﹣20(x﹣30)]
=(x﹣20)(1000﹣20x)
=﹣20x2+1400x﹣20000
=﹣20(x﹣35)2+4500,
∵﹣20<0,
∴x=35时,y有最大值,
故答案为35.
三 、解答题
14.【考点】二次函数的应用.
【分析】用每件的利润乘以销售量即可得到每周销售利润,即y=(x﹣40)[300﹣20(x﹣60)],再把解析式整理为一般式,然后根据二次函数的性质确定销售单价定为多少元时,每周的销售利润最大.
解:根据题意得y=(x﹣40)[300﹣10(x﹣60)]
=﹣10x2+1300x﹣36000,
∵x﹣60≥0且300﹣10(x﹣60)≥0,
∴60≤x≤90,
∵a=﹣10<0,
而抛物线的对称轴为直线x=65,即当x>65时,y随x的增大而减小,
而60≤x≤90,
∴当x=65时,y的值最大,
即销售单价定为65元时,每周的销售利润最大.
【点评】本题考查了二次函数的应用:利用二次函数解决利润问题,在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.
15.【考点】二次函数的应用.
【分析】(1)设AB=x米,根据等式x+x+BC=69+3,可以求出BC的表达式;
(2)得出面积关系式,根据所求关系式进行判断即可.
解:(1)设AB=x米,可得BC=69+3﹣2x=72﹣2x;
(2)小英说法正确;
矩形面积S=x(72﹣2x)=﹣2(x﹣18)2+648,
∵72﹣2x>0,
∴x<36,
∴0<x<36,
∴当x=18时,S取最大值,
此时x≠72﹣2x,
∴面积最大的不是正方形.
【点评】本题主要考查二次函数的应用,借助二次函数解决实际问题.其中在确定自变量取值范围时要结合题目中的图形和长>宽的原则,找到关于x的不等式.
16.【考点】二次函数的应用.
【分析】(1)根据利润=售价﹣进价求出利润,运用待定系数法求出月销量;
(2)根据月利润=每件的利润×月销量列出函数关系式,根据二次函数的性质求出最大利润.
解:(1)①销售该运动服每件的利润是(x﹣60)元;
②设月销量W与x的关系式为w=kx+b,
由题意得,,
解得,,
∴W=﹣2x+400;
(2)由题意得,y=(x﹣60)(﹣2x+400)
=﹣2x2+520x﹣24000
=﹣2(x﹣130)2+9800,
∴售价为130元时,当月的利润最大,最大利润是9800元.
【点评】本题考查的是二次函数的应用,掌握待定系数法求函数解析式和二次函数的性质以及最值的求法是解题的关键.
17.【考点】二次函数的应用.
【分析】(1)由图象过点(20,20)和(30,0),利用待定系数法求直线解析式;
(2)每天利润=每千克的利润×销售量.据此列出表达式,运用函数性质解答.
解:(1)设y=kx+b,由图象可知,
,
解之,得:,
∴y=﹣2x+60;
(2)p=(x﹣10)y
=(x﹣10)(﹣2x+60)
=﹣2x2+80x﹣600,
∵a=﹣2<0,
∴p有最大值,
当x=﹣=20时,p最大值=200.
即当销售单价为20元/千克时,每天可获得最大利润200元.
【点评】此题主要考查了待定系数法求一次函数解析式以及求二次函数最值等知识,解题的关键是理解题意,根据题意求得函数解析式,注意待定系数法的应用,注意数形结合思想的应用.
18.【考点】二次函数的应用
【分析】(1)把(0,300),(500,200)代入直线解析式可得一次函数解析式,把x=600代入函数解析式可得利润的值;
(2)利润=用电量×每千度电产生利润,结合该工厂每天用电量不超过60千度,得到利润的最大值即可.
解:(1)工厂每千度电产生利润y(元/千度)与电价x(元/千度)的函数解析式为:
y=kx+b.
该函数图象过点(0,300),(500,200),
∴
解得
∴ y= (x≥0).
当电价x=600元/千度时,该工厂消耗每千度电产生利润y==180(元).
答:工厂消耗每千度电产生利润是180元.
(2)设工厂每天消耗电产生利润为w元,由题意得:
W=my=m()
=m[ ].
化简配方,得:w= -2(m-50)2+5000.
由题意得:a= -2<0,m≤60,
∴当m=50时,w最大=5000,
即当工厂每天消耗50千度电时,工厂每天消耗电产生利润为5000元.
19.【考点】二次函数的应用
【分析】(1)设购进荔枝a千克,荔枝售价定为b元/千克时,水果商要不亏本,由题意建立不等式求出其值就可以了.
(2)由(1)可知,每千克荔枝的平均成本为6元,再根据售价-进价=利润就可以表示出w,然后化为顶点式就可以求出最值.
解:(1)设购进荔枝a千克,荔枝售价定为b元/千克时,水果商才不会亏本,由题意得
ba(1-5%)≥(5+0.7)a,
∵a>0,
∴95%b≥5.7
∴b≥6
所以,水果商要把荔枝售价至少定为6元/千克才不会亏本.
(2)由(1)可知,每千克荔枝的平均成本为6元,由题意得
w=(x-6)m
=(x-6)(-10x+120)
= -10(x-9)2+90,
∵a= -10<0
∴w有最大值
∴当x=9时,w有最大值.
所以,当销售单价定为9元/千克时,每天可获利润w最大.
20.【考点】二次函数的应用
【分析】(1)根据每月的利润z=(x-18)y,再把y= -2x+100代入即可求出z与x之间的函数解析式,
(2)把z=350代入z= -2x2+136x-1800,解这个方程即可,将z═-2x2+136x-1800配方,得z= -2(x-34)2+512,即可求出当销售单价为多少元时,厂商每月能获得最大利润,最大利润是多少.
解:(1)z=(x-18)y=(x-18)(-2x+100)
= -2x2+136x-1800,
∴z与x之间的函数解析式为z= -2x2+136x-1800;
(2)由z=350,得350= -2x2+136x-1800,
解这个方程得x1=25,x2=43
所以,销售单价定为25元或43元,
将z═-2x2+136x-1800配方,得z= -2(x-34)2+512,
答:当销售单价为34元时,每月能获得最大利润,最大利润是512万元;
21.【考点】二次函数的应用.
【分析】(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;
(2)由(1)的解析式建立不等式组求出其解即可;
(3)设车流量y与x之间的关系式为y=vx,当20≤x≤220时表示出函数关系,由函数的性质就可以求出结论.
解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得
,
解得:,
∴当20≤x≤220时,v=﹣x+88,
当x=100时,v=﹣×100+88=48(千米/小时);
(2)由题意,得
,
解得:70<x<120,
∴应控制大桥上的车流密度在70<x<120范围内;
(3)设车流量y与x之间的关系式为y=vx,
当20≤x≤220时,
y=(﹣x+88)x=﹣(x﹣110)2+4840,
∴当x=110时,y最大=4840,
∵4840>1600,
∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.
【点评】本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.
22.【考点】二次函数的应用.
【分析】(1)直接根据题意售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件,进而得出等量关系;
(2)利用每件利润×销量=总利润,进而利用配方法求出即可;
(3)利用函数图象结合一元二次方程的解法得出符合题意的答案.
解:(1)由题意可得:y=;
(2)由题意可得:w=,
化简得:w=,
即w=,
由题意可知x应取整数,故当x=﹣2或x=﹣3时,w<6125<6250,
故当销售价格为65元时,利润最大,最大利润为6250元;
(3)由题意w≥6000,如图,令w=6000,
将w=6000带入﹣20≤x<0时对应的抛物线方程,即6000=﹣20(x+)2+6125,
解得:x1=﹣5,
将w=6000带入0≤x≤30时对应的抛物线方程,即6000=﹣10(x﹣5)2+6250,
解得x2=0,x3=10,
综上可得,﹣5≤x≤10,
故将销售价格控制在55元到70元之间(含55元和70元)才能使每月利润不少于6000元.
【点评】此题主要考查了二次函数的应用以及配方法求二次函数最值等知识,利用函数图象得出x的取值范围是解题关键.
23.【考点】二次函数的应用.
【分析】(1)把y=420代入y=30x+120,解方程即可求得;
(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答;
解:(1)设李明第n天生产的粽子数量为420只,
由题意可知:30n+120=420,
解得n=10.
答:第10天生产的粽子数量为420只.
(2)由图象得,当0≤x<9时,p=4.1;
当9≤x≤15时,设P=kx+b,
把点(9,4.1),(15,4.7)代入得,,
解得,
∴p=0.1x+3.2,
①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大=513(元);
②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,
∵x是整数,
∴当x=9时,w最大=741(元);
③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,
∵a=﹣3<0,
∴当x=﹣=12时,w最大=768(元);
综上,当x=12时,w有最大值,最大值为768.
【点评】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.