2018年秋新课堂高中数学人教A版必修五习题:章末综合测评 3 不等式

文档属性

名称 2018年秋新课堂高中数学人教A版必修五习题:章末综合测评 3 不等式
格式 zip
文件大小 92.0KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2018-09-09 09:36:49

图片预览

文档简介

章末综合测评(三) 不等式
满分:150分 时间:120分钟
一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.对于任意实数a,b,c,d,下列四个命题中:
①若a>b,c≠0,则ac>bc;
②若a>b,则ac2>bc2;
③若ac2>bc2,则a>b;
④若a>b>0,c>d,则ac>bd.
其中真命题的个数是(  )
A.1          B.2
C.3 D.4
A [若a>b,c<0时,acd>0时,ac>bd,④错,故选A.]
2.直线3x+2y+5=0把平面分成两个区域.下列各点与原点位于同一区域的是(  )
A.(-3,4) B.(-3,-4)
C.(0,-3) D.(-3,2)
A [当x=y=0时,3x+2y+5=5>0,则原点一侧对应的不等式是3x+2y+5>0,可以验证仅有点(-3,4)满足3x+2y+5>0.]
3.设A=+,其中a,b是正实数,且a≠b,B=-x2+4x-2,则A与B的大小关系是(  )
A.A≥B B.A>B
C.AB [∵a,b都是正实数,且a≠b,
∴A=+>2=2,即A>2,
B=-x2+4x-2=-(x2-4x+4)+2
=-(x-2)2+2≤2,
即B≤2,∴A>B.]
4.已知0A.loga(xy)<0
B.0C.1D.loga(xy)>2
D [0即0又0loga(xy)>logaa2=2,即loga(xy)>2.]
5.不等式2x2+2x-4≤的解集为(  )
A.(-∞,-3] B.(-3,1]
C.[-3,1] D.[1,+∞)∪(-∞,-3]
C [由已知得 2x2+2x-4≤2-1,
所以x2+2x-4≤-1,
即x2+2x-3≤0,
解得-3≤x≤1.]
6.不等式组的解集为(  )
A.[-4,-3] B.[-4,-2]
C.[-3,-2] D.?
A [?
??-4≤x≤-3.]
图3-1
7.已知点(x,y)是如图3-1所示的平面区域内(阴影部分且包括边界)的点,若目标函数z=x+ay取最小值时,其最优解有无数个,则的最大值是(  )
A. B.
C. D.
A [目标函数z=x+ay可化为y=-x+z,由题意知,当a<0,且直线y=-x+z与直线AC重合时,符合题意,此时kAC==1,所以-=1,a=-1,而=表示过可行域内的点(x,y)与点(-1,0)的直线的斜率,显然过点C(4,2)与点(-1,0)的直线的斜率最大,即=.]
8.若x,y满足则x+2y的最大值为(  )
A.1 B.3
C.5 D.9
D [作出可行域如图阴影部分所示.
设z=x+2y,则y=-x+z.
作出直线l0:y=-x,并平移该直线,可知当直线y=-x+z过点C时,z取得最大值.
由得故C(3,3).
∴zmax=3+2×3=9.
故选D.]
9.已知a,b,c∈R,a+b+c=0,abc>0,T=++,则(  )
A.T>0 B.T<0
C.T=0 D.T≥0
B [法一:取特殊值,a=2,b=c=-1,
则T=-<0,排除A,C,D,可知选B.
法二:由a+b+c=0,abc>0,知三数中一正两负,
不妨设a>0,b<0,c<0,
则T=++===.
∵ab<0,-c2<0,abc>0,故T<0.]
10.若不等式x2+ax+1≥0对一切x∈都成立,则a的最小值为(  )
A.0 B.-2
C.-3 D.-
D [由对一切x∈,不等式x2+ax+1≥0都成立,
所以ax≥-x2-1,即a≥-x-.
设g(x)=-x-,只需a≥g(x)max,
而g(x)=-x-在x∈上是增函数,
所以g(x)=-x-的最大值是g=-.]
11.若直线y=2x上存在点(x,y)满足约束条件则实数m的最大值为(  )
A.-1 B.1
C. D.2
B [如图所示,约束条件表示的可行域如阴影部分所示.当直线x=m从如图所示的实线位置运动到过A点的位置时,m取最大值.解方程组得A点坐标为(1,2),
∴m的最大值是1,故选B.]
12.已知x>0,y>0.若+>m2+2m恒成立,则实数m的取值范围是(  )
A.m≥4或m≤-2 B.m≥2或m≤-4
C.-2D [∵x>0,y>0,
∴+≥8.
若+>m2+2m恒成立,则m2+2m<8,解之得-4二、填空题(每小题5分,共20分,把答案填在题中横线上)
13.已知不等式x2-ax-b<0的解集为(2,3),则不等式bx2-ax-1>0的解集为________.
 [方程x2-ax-b=0的根为2,3.根据根与系数的关系得:a=5,b=-6.所以不等式为6x2+5x+1<0,解得解集为]
14.若正数x,y满足x2+3xy-1=0,则x+y的最小值是________.
 [对于x2+3xy-1=0可得y=·,
∴x+y=+≥2=(当且仅当x=时等号成立).]
15.若关于x、y的不等式组表示的平面区域是一个三角形,则k的取值范围是________.
∪(-∞,-2) [不等式|x|+|y|≤2表示的平面区域为如图所示的正方形ABCD及其内部.
直线y+2=k(x+1)过定点P(-1,-2),斜率为k,要使平面区域表示一个三角形,则kPD故016.若不等式≤a≤在t∈(0,2]上恒成立,则a的取值范围是________.
 [=,而y=t+在(0,2]上单调递减,故t+≥2+=,=≤(当且仅当t=2时等号成立),因为≥,所以=+=22-≥1(当且仅当t=2时等号成立),故a的取值范围为.]
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)已知集合A=,B={x|log(9-x2)[解] 由2x2-2x-3<3(x-1)=23-3x,
得x2+x-6<0,
所以-3故A={x|-3由集合B可得:解得-1B={x|-1A∩B={x|-1则a=-1,b=-2,所以a+b=-3.
18.(本小题满分12分)已知函数y=的定义域为R.
(1)求a的取值范围;
(2)解关于x的不等式x2-x-a2+a<0.
[解] (1)因为函数y=的定义域为R,所以ax2+2ax+1≥0,恒成立.
①当a=0时,1≥0恒成立;
②当a≠0时,则
解得0综上,a的取值范围为[0,1].
(2)由x2-x-a2+a<0得,(x-a)[x-(1-a)]<0.
因为0≤a≤1,
所以①当1-a>a,
即0≤a<时,
a②当1-a=a,即a=时,2<0,不等式无解;
③当1-a1-a综上所述,当0≤a<时,解集为(a,1-a);
当a=时,解集为?;
19.(本小题满分12分)设函数f(θ)=sin θ+cos θ,其中角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.若点P(x,y)为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.
[解] 作出平面区域Ω(即三角形区域ABC),如图中阴影部分所示,其中A(1,0),B(1,1),C(0,1),于是0≤θ≤.
又f(θ)=sin θ+cos θ=2sin,且≤θ+≤,故当θ+=,即θ=时,f(θ)取得最大值,且最大值等于2;当θ+=,即θ=0时,f(θ)取得最小值,且最小值等于1.
20.(本小题满分12分)已知函数f(x)=(x≠a,a为非零常数).
(1)解不等式f(x)(2)设x>a时,f(x)有最小值为6,求a的值.
[解] (1)f(x)整理得(ax+3)(x-a)<0.
当a>0时,(x-a)<0,
∴解集为;
当a<0时,(x-a)>0,
解集为.
(2)设t=x-a,则x=t+a(t>0),
∴f(x)=
=t++2a
≥2+2a
=2+2a.
当且仅当t=,
即t=时,等号成立,
即f(x)有最小值2+2a.
依题意有2+2a=6,
解得a=1.
21.(本小题满分12分)经观测,某公路段在某时段内的车流量y(千辆/小时)与汽车的平均速度v(千米/小时)之间有函数关系:y=(v>0).
(1)在该时段内,当汽车的平均速度v为多少时车流量y最大?最大车流量为多少?(精确到0.01)
(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?
[解] (1)y==≤=≈11.08.
当v=,即v=40千米/小时时,车流量最大,最大值为11.08千辆/小时.
(2)据题意有:≥10,
化简得v2-89v+1 600≤0,
即(v-25)(v-64)≤0,
所以25≤v≤64.
所以汽车的平均速度应控制在[25,64]这个范围内.
22.(本小题满分12分)先阅读下列不等式的证法,再解决后面的问题.
已知a1,a2∈R,a1+a2=1,求证:a+a≥.
证明:构造函数f(x)=(x-a1)2+(x-a2)2,
f(x)=2x2-2(a1+a2)x+a+a=2x2-2x+a+a.
因为对一切x∈R,恒有f(x)≥0,所以Δ=4-8(a+a)≤0,从而得a+a≥.
(1)若a1,a2,…,an∈R,a1+a2+…+an=1,请写出上述结论的推广式;
(2)参考上述解法,对你推广的结论加以证明.
[解] (1)若a1,a2,…,an∈R,a1+a2+…+an=1,
则:a+a+…+a≥.
(2)证明:构造函数
f(x)=(x-a1)2+(x-a2)2+…+(x-an)2
=nx2-2(a1+a2+…+an)x+a+a+…+a2 n
=nx2-2x+a+a+…+a.
因为对一切x∈R,恒有f(x)≥0,
所以Δ=4-4n(a+a+…+a)≤0,从而证得a+a+…+a≥.