章末综合测评(二)
(时间:120分钟,满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.根据偶函数定义可推得“函数f(x)=x2在R上是偶函数”的推理过程是( )
A.归纳推理 B.类比推理
C.演绎推理 D.非以上答案
C [根据演绎推理的定义知,推理过程是演绎推理,故选C.]
2.在△ABC中,E、F分别为AB、AC的中点,则有EF∥BC,这个问题的大前提为( )
A.三角形的中位线平行于第三边
B.三角形的中位线等于第三边的一半
C.EF为中位线
D.EF∥BC
A [这个三段论推理的形式为:大前提:三角形的中位线平行于第三边;小前提:EF为△ABC的中位线;结论:EF∥BC.]
3.在△ABC中,tan A·tanB>1,则△ABC是( )
A.锐角三角形 B.直角三角形
C.钝角三角形 D.不确定
A [∵tan A·tanB>1,∴A,B只能都是锐角,
∴tan A>0,tanB>0,1-tan A·tanB<0.
∴tan (A+B)=<0.
∴A+B是钝角.∴角C为锐角.故选A.]
4.下列推理正确的是( )
A.把a(b+c)与loga(x+y)类比,则有loga(x+y)=logax+logay
B.把a(b+c)与sin (x+y)类比,则有sin (x+y)=sin x+sin y
C.把a(b+c)与ax+y类比,则有ax+y=ax+ay
D.把(a+b)+c与(xy)z类比,则有(xy)z=x(yz)
D [(xy)z=x(yz)是乘法的结合律,正确.]
5.已知a+b+c=0,则ab+bc+ca的值( )
A.大于0 B.小于0
C.不小于0 D.不大于0
D [因为a+b+c=0,
所以a2+b2+c2+2ab+2ac+2bc=0,
所以ab+bc+ca=-≤0.故选D.]
6.对“a,b,c是不全相等的正数”,给出下列判断:
①(a-b)2+(b-c)2+(c-a)2≠0;
②a=b与b=c及a=c中至少有一个成立;
③a≠c,b≠c,a≠b不能同时成立.
其中判断正确的个数为( )
A.0个 B.1个
C.2个 D.3个
B [若(a-b)2+(b-c)2+(c-a)2=0,则a=b=c,与“a,b,c是不全相等的正数”矛盾,故①正确.a=b与b=c及a=c中最多只能有一个成立,故②不正确.由于“a,b,c是不全相等的正数”,有两种情形:至多有两个数相等或三个数都互不相等,故③不正确.]
7.我们把平面几何里相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体.下列几何体中,一定属于相似体的有( )
①两个球体;②两个长方体;③两个正四面体;④两个正三棱柱;⑤两个正四棱锥.
A.4个 B.3个
C.2个 D.1个
C [类比相似形中的对应边成比例知,①③属于相似体.]
8.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( )
A.28 B.76
C.123 D.199
C [利用归纳法,a+b=1,a2+b2=3,a3+b3=4=3+1,a4+b4=4+3=7,a5+b5=7+4=11,a6+b6=11+7=18,a7+b7=18+11=29,a8+b8=29+18=47,a9+b9=47+29=76,a10+b10=76+47=123,规律为从第三组开始,其结果为前两组结果的和.]
9.对任意的锐角α,β,下列不等式中正确的是( )
A.sin (α+β)>sin α+sin β
B.sin (α+β)>cos α+cos β
C.cos (α+β)>sin α+sin β
D.cos (α+β)<cos α+cos β
D [因为α,β为锐角,所以0<α<α+β<π,所以cos α>cos(α+β).又cos β>0,所以cos α+cos β>cos(α+β).]
10.在等差数列{an}中,若a10=0,则有等式a1+a2+…+an=a1+a2+…+a19-n(n<19且n∈N*)成立,类比上述性质,在等比数列{bn}中,若b11=1,则有( )
A.b1·b2·…·bn=b1·b2·…·b19-n
B.b1·b2·…·bn=b1·b2·…·b21-n
C.b1+b2+…+bn=b1+b2+…+b19-n
D.b1+b2+…+bn=b1+b2+…+b21-n
B [令n=10时,验证即知选B.]
11.将石子摆成如图1的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 018项与5的差,即a2 018-5=( )
图1
A.2023×2018 B.2023×2017
C.1012×2016 D.1012×2017
D [an-5表示第n个梯形有n-1层点,最上面一层为4个,最下面一层为n+2个.
∴an-5=,∴a2 018-5==2 017×1 012.]
12.如图2中(1),在△ABC中,AB⊥AC于点A,AD⊥BC于点D,则有AB2=BD·BC,类似地有命题:如图(2),在三棱锥A-BCD中,AD⊥面ABC,若A在△BCD内的射影为O,则S=S△BCO·S△BCD,那么上述命题( )
图2
A.是真命题
B.增加条件“AB⊥AC”后才是真命题
C.是假命题
D.增加条件“三棱锥A-BCD是正三棱锥”后才是真命题
A [由已知垂直关系,不妨进行如下类比:将题图(2)中的△ABC,△BCO,△BDC分别与题图(1)中的AB,BD,BC进行类比即可.严格推理如下:连结DO并延长交BC于点E,连结AE(图略),则DE⊥BC,AE⊥BC.因为AD⊥面ABC,所以AD⊥AE.又因为AO⊥DE,所以AE2=EO·ED,所以S=(BC·EA)2=(BC·EO)·(BC·ED)=S△BCO·S△BCD.故选A.]
二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)
13.已知x,y∈R,且x+y>2,则x,y中至少有一个大于1,在用反证法证明时,假设应为________.
x,y均不大于1(或者x≤1且y≤1) [“至少有一个”的反面为“一个也没有”,即“x,y均不大于1”,亦即“x≤1且y≤1”.]
14.当n=1时,有(a-b)(a+b)=a2-b2,当n=2时,有(a-b)(a2+ab+b2)=a3-b3,当n=3时,有(a-b)(a3+a2b+ab2+b3)=a4-b4,当n∈N*时,你能得到的结论是________.
(a-b)(an+an-1b+…+abn-1+bn)=an+1-bn+1 [根据题意,由于当n=1时,有(a-b)(a+b)=a2-b2,当n=2时,有(a-b)(a2+ab+b2)=a3-b3,当n=3时,有(a-b)(a3+a2b+ab2+b3)=a4-b4,当n∈N*时,左边第二个因式可知为an+an-1b+…+abn-1+bn,那么对应的表达式为(a-b)·(an+an-1b+…+abn-1+bn)=an+1-bn+1.]
15.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.
1和3 [法一:由题意得丙的卡片上的数字不是2和3.
若丙的卡片上的数字是1和2,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和3,满足题意;
若丙的卡片上的数字是1和3,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和2,不满足甲的说法.
故甲的卡片上的数字是1和3.
法二:因为甲与乙的卡片上相同的数字不是2,所以丙的卡片上必有数字2.又丙的卡片上的数字之和不是5,所以丙的卡片上的数字是1和2.因为乙与丙的卡片上相同的数字不是1,所以乙的卡片上的数字是2和3,所以甲的卡片上的数字是1和3.]
16.现有一个关于平面图形的命题:同一平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为.类比到空间,有两个棱长为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为________.
[解法的类比(特殊化),易得两个正方体重叠部分的体积为.]
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)用综合法或分析法证明:
(1)如果a,b>0,则lg ≥;
(2)+>2+2.
[证明] (1)当a,b>0时,有≥,
∴lg ≥lg ,
∴lg ≥lg ab=.
(2)要证+>2+2,
只要证(+)2>(2+2)2,
即2>2,这是显然成立的,
所以,原不等式成立.
18.(本小题满分12分)下列推理是否正确?若不正确,指出错误之处.
(1)求证:四边形的内角和等于360°.
证明:设四边形ABCD是矩形,则它的四个角都是直角,有∠A+∠B+∠C+∠D=90°+90°+90°+90°=360°,所以四边形的内角和为360°.
(2)已知和都是无理数,试证:+也是无理数.
证明:依题设和都是无理数,而无理数与无理数之和是无理数,所以+必是无理数.
(3)已知实数m满足不等式(2m+1)(m+2)<0,用反证法证明:关于x的方程x2+2x+5-m2=0无实根.
证明:假设方程x2+2x+5-m2=0有实根.由已知实数m满足不等式(2m+1)(m+2)<0,解得-2<m<-,而关于x的方程x2+2x+5-m2=0的判别式Δ=4(m2-4),∵-2
[解] (1)犯了偷换论题的错误,在证明过程中,把论题中的四边形改为矩形.
(2)使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原题的真实性仍无法判定.
(3)利用反证法进行证明时,要把假设作为条件进行推理,得出矛盾,本题在证明过程中并没有用到假设的结论,也没有推出矛盾,所以不是反证法.
19.(本小题满分12分)观察:
①tan 10°·tan 20°+tan 20°·tan 60°+tan 60°·tan 10°=1,②tan 5°·tan 10°+tan 10°·tan 75°+tan 75°·tan 5°=1.
由以上两式成立能得到一个从特殊到一般的推广,此推广是什么?并证明你的推广.
[解] 从已知观察到10°+20°+60°=90°,10°+75°+5°=90°,因此猜测推广式为若α+β+γ=,且α,β,γ都不为kπ+(k∈Z),则tan αtan β+tan βtan γ+tan γtan α=1.
证明如下:由α+β+γ=,得α+β=-γ.
因为tan (α+β)=tan =.又因为tan (α+β)=,所以tan α+tan β=tan (α+β)(1-tan αtan β)= (1-tan αtan β),所以tan αtan β+tan βtan γ+tan γtan α=tan γ(tan α+tan β)+tan αtan β=tan γ(1-tan αtan β)·+tan αtan β=1-tan αtan β+tan αtan β=1.
20.(本小题满分12分)如图2,正三棱柱ABC-A1B1C1的棱长均为a,D,E分别为C1C与AB的中点,A1B交AB1于点G.
图2
(1)求证:A1B⊥AD;
(2)求证:CE∥平面AB1D.
[证明] (1)连接A1D,BD,DG,
∵三棱柱ABC-A1B1C1是棱长均为a的正三棱柱,
∴四边形A1ABB1为正方形,
∴A1B⊥AB1.
∵D是C1C的中点,
∴△A1C1D≌△BCD,∴A1D=BD,
∵G为A1B中点,
∴A1B⊥DG.
又∵DG∩AB1=G,
∴A1B⊥平面AB1D,
又∵AD?平面AB1D,
∴A1B⊥AD.
(2)连接GE,∵EG∥A1A,
∴GE⊥平面ABC.
∵DC⊥平面ABC,
∴GE∥DC,∵GE=DC=a,
∴四边形GECD为平行四边形,∴EC∥GD,
又∵EC?平面AB1D,DG?平面AB1D,
∴EC∥平面AB1D.
21. (本小题满分12分)已知函数f(x)=ax+(a>1).
(1)证明:函数f(x)在(-1,+∞)上为增函数;
(2)用反证法证明方程f(x)=0没有负数根.
[证明] (1)法一:任取x1、x2∈(-1,+∞),不妨设x10,ax2-x1>1且ax1>0,
∴ax2-ax1=ax1(ax2-x1-1)>0,
又∵x1+1>0,x2+1>0,
∴-=
=>0,
于是f(x2)-f(x1)=ax2-ax1+->0,
故函数f(x)在(-1,+∞)上为增函数.
法二:f′(x)=axln a+=axln a+
∵a>1,∴ln a>0,∴axln a+>0,
f′(x)>0在(-1,+∞)上恒成立,
即f(x)在(-1,+∞)上为增函数.
(2)设存在x0<0(x0≠-1)满足f(x0)=0,
则ax0=-,且0∴0<-<1,即故方程f(x)=0没有负数根.
22. (本小题满分12分) (1)椭圆C:+=1(a>b>0)与x轴交于A、B两点,点P是椭圆C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,求证:·为定值b2-a2.
(2)类比(1)可得如下真命题:双曲线-=1(a>0,b>0)与x轴交于A、B两点,点P是双曲线C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,求证:·为定值,请写出这个定值(不要求写出解题过程).
[解] (1)证明如下:设点P(x0,y0),(x0≠±a).
依题意,得A(-a,0),B(a,0),
所以直线PA的方程为y=(x+a),
令x=0,得yM=.同理得yN=-.
所以yMyN=.
又点P(x0,y0)在椭圆上,所以+=1,
因此y=(a2-x).
所以yMyN==b2.
因为={a,yN},=(-a,yM),
所以·=-a2+yMyN=b2-a2.
(2)-(a2+b2).