本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
课题:10、5热力学第二定律的微观解释
学习目标:
知识与技能:
1、知道有序和无序,宏观态和微观态的概念
2、知道熵的概念,知道熵是反映系统无序程度的物理量。知道任何自然过程中,一个孤立系统的总熵不会减少
3、了解热力学第二定律的微观意义。知道随着条件的变化,熵是变化的。
过程与方法:
1、 学会通过现象总结规律的科学方法
2、 知道熵的概念,知道任何自然过程中一个孤立系统的总熵不会减少
情感态度和价值观:
培养分析、归纳、综合能力
重点:热力学第二定律的微观解释
难点:熵的概念
知识链接:
1、热力学第一定律
2、热力学第二定律的第一种表述:
3、热力学第二定律的第二种表述:
21世纪教育网
学习过程:
1、 举例说明什么是有序和无序。
无序意味着各处都一样,平均、没有差别,有序则相反。有序和无序是相对的。
2、 简述什么是宏观态和微观态。
21世纪教育网
系统的宏观态所对应的微观态的多少表现为宏观态无序程度的大小。如果一个“宏观态”对应的“微观态”比较多,就说这个“宏观态”是比较无序的,同时也决定了宏观过程的方向性——从有序到无序。
3、什么样的宏观态是比较无序的?
4、阅读教材p64总结热力学第二定律的微观意义
5、写出熵与微观态数目的定量关系
6、写出熵增加原理
熵和系统内能一样都是一个状态函数,仅由系统的状态决定。从分子运动论的观点来看,熵是分子热运动无序(混乱)程度的定量量度。
一个系统的熵是随着系统状态的变化而变化的。在自然过程中,系统的熵是增加的。
在绝热过程或孤立系统中,熵是增加的,叫做熵增加原理。对于其它情况,系统的熵可能增加,也可能减小。
从微观的角度看,热力学第二定律是一个统计规律:一个孤立系统总是从熵小的状态向熵大的状态发展,而熵值较大代表着较为无序,所以自发的宏观过程总是向无序程度更大的方向发展。
例1 一个物体在粗糙的平面上滑动,最后停止。系统的熵如何变化?21世纪教育网
解析:因为物体由于受到摩擦力而停止运动,其动能变为系统的内能,增加了系统分子无规则运动的程度,使得无规则运动加强,也就是系统的无序程度增加了,所以系统的熵增加。
21世纪教育网
21世纪教育网
课堂小结:
针对训练:
1、 课后练习1:
(1)
(2)
(3)
(4)
2、课后练习2:
课后阅读:
1.熵与熵增加原理
“熵”是什么?“熵”是德国物理学家克劳修斯在1850年创造的一个术语,他用熵来表示任何一种能量在空间分布的均匀程度。能量分布得越均匀,熵就越大。如果对于我们所考虑的那个系统来说,能量完全均匀地分布,那么这个系统的熵就达到最大值。简单的说,“熵”就是微观粒子的无序程度、能量差别的消除程度。
在克劳修斯看来,在一个封闭的系统中,运动总是从有序到无序发展的。比如,把一块冰糖放入水中,结果整杯水都甜了。这就是说,糖分子的运动扩展到了整杯水中,它们的运动变得更加无序了。对于一个封闭的系统,能量差也总是倾向于消除的。比如,有水位差的两个水库,如果把它们连接起来,那么,重力就会使一个水库的水面降低,而使另一个水库的水面升高,直到两个水库的水面均等,势能取平为止。
克劳修斯总结说,自然界中的一个普遍规律是:运动总是从有序到无序,能量的差异总是倾向变成均等,也即“熵将随着时间而增大”。
熵
对于由大量分子构成的系统而言,宏观态包含的微观态数目往往很大,这不利于实际计算。为此,玻耳兹曼引进了熵的概念,并定义系统的熵为s∝klnΩ,后来普朗克把它写成s=klnΩ,式中k叫做玻耳兹曼常数,s 为系统的熵,Ω为一个宏观状态所对应的微观状态数目。
引入熵后,关于自然过程的方向性就可以表述为:在任何自然过程中,一个孤立系统的总熵不会减小,从微观角度看,热力学的第二定律是一个统计规律:一个孤立系统总是从熵小的状态向熵大的状态发展,而熵值较大代表着较为无序,所以自发的宏观过程总是向无序度更大的方向发展。因此热力学第二定律也叫做熵增加原理。
2.宇宙热寂说
克劳修斯把他的熵增加原理应用到无限的宇宙中去,得出了“宇宙热寂说”。
“宇宙热寂说”主要有以下几个结论:第一,宇宙的离散度不断增加。第二,所有的机械运动都转化为热运动。第三,热量停止传递。最后我们可以设想出这么一个宇宙的图景:宇宙的有效生命将停止。能量还保存着,但已失去一切活动的能力,它无力再使宇宙运动,正如一潭死水不能使水车转动起来一样,我们将处在一个死寂的、热的宇宙中。但宇宙真会热寂吗?首先,热力学试验成果是以有限的、孤立封闭的系统为研究对象的。以有限的范围、有限的事件得出的规律能否推广到全宇宙呢?其次,自然界的规律是否同样适用于高级的生命运动呢?第三,黑洞理论指出,宇宙的离散度并非不断增加。宇宙中存在的黑洞在不断地吸引物质。所以说,克劳修斯的“宇宙热寂说”仅仅是一种形而上学的自然观,我们不必杞人忧天地担心宇宙会进入“热寂”。
3.大爆炸理论
大爆炸宇宙理论认为,宇宙的演化是从物质分布为均匀的状态演化到非均匀状态。宇宙膨胀是引力理论的一个结果,在宇宙范围内,引力是主导的,引力系统的热力学与无引力的热力学会导致十分不同的结论。比如,原来密度均匀的物质由于涨落可产生密度差,在引力占主导的条件下,高密度区域会吸引更多的物质而使密度变得更高,更多的物质会逃离低密度区而使密度变得更低。各种星体就是通过这种非均匀化过程聚集而成的。经典热力学的结论是不考虑引力,在静态空间下证明的,不适用于引力占主导地位的膨胀宇宙。
应该指出,在一个非孤立的、有能量输入的系统中,熵是完全可以减小的。比如地球就是这样一个系统,它源源不断地吸收太阳能,而最终进化出了一个和谐有序的生物世界。
学后反思:
www.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
课题:§7.1物体是由大量分子组成的
学习目标: 1、知道物体是由大量分子组成的
2、知道油膜法测分子大小的原理,并能进行测量和计算。通过油膜法实验知道科学研究中的一种方法:利用宏观量求微观量 21世纪教育网21世纪教育网
3、知道分子的球形模型,知道分子直径的数量级。初步认识到微观世界是可以认知的。人类探究微观世界经历了漫长的过程,而且意识到这种探索还将持续下去。
4、知道阿伏加德罗常数的物理意义、数值和单位。
重点难点: 重点是知道分子大小的数量级;用阿伏伽德罗常数进行有关计算或估算的方法;
难点是理解和学会用单分子油膜法估算分子大小(直径)的方法
学习方法: 自主学习,合作完成(分组实验)
学习过程:
【导读】阅读教材P2-4,体会①组成物体的分子数目之“巨大”,和分子本身的线度之“微小”②利用对宏观量的测定求出微观量的方法。并请同学们完成下列任务:
【导思】
1、在研究物质的化学组成时,我们认为物质是如何组成的?而本书又是如何认定的呢?
2、教材中讲到估测分子的大小的方法是 ,这种估测分子大小的原理是
3、分子很小很小的,是我们不能用肉眼观察到的。我们一般情况把分子简化成 ,这是对分子的一个简化,实际上分子有着复杂的内部结构,并不是小球。
4、除了一些有机大分子外,多数分子尺寸的数量级为 m。这只是一个粗略的数量级,反映了分子所占的空间的大小。
5、教材3页上,图7.1-3用扫描隧道显微镜拍摄的石墨表面原子照片, 反映碳原子,这同时进一步说明把分子看成是球形,仅仅是对分子的简化。
6、阿伏加德罗常数是指 ,用符号NA表示。阿伏加德罗常数是一个很重要的常数,它把 、 这些宏观量与分子质量,分子大小等微观量联系起来了。
【典例1】将1cm3的油酸溶于酒精,制成200 cm3的油酸酒精溶液,已知1cm3的溶液有50滴。现在取1滴油酸酒精溶液滴到水面上,随着酒精溶液溶于水,油酸在水面上形成以单分子薄层,已测出这一薄层的面积为0.2m2,由此估算油酸分子的大小。 5×10-10m
【解析】
【点拨】本题关键是知道分子的球形模型,理解用油膜法测分子直径的原理,运用公式[来源:21世纪教育网]
【典例2】已知金刚石的密度为ρ=3.5×103kg/m3,现有一小块体积为4.0×10-8m3的金刚石,它含有多少个碳原子?假如金刚石中的碳原子是紧密地挨在一起的,试估算碳原子的直径。(保留两位有效数字)
【解析】 1.8×10-10m
[来源:21世纪教育网]
【点拨】由宏观量去计算微观量,或由微观量计算宏观量,都要通过阿伏加德罗常数建立联系,所以说,阿伏加德罗常数是联系宏观量与微观量的桥梁。由物体体积计算分子的大小,可视分子为立方体。这是估算分子大小的通用方法。
【导练】水的分子量是18,水的密度ρ=1.0×103kg/m3,阿伏加德罗常数NA=6.02×1023mol-1。在标准状况下,水蒸气的摩尔体积是22.4×10-3m3、mol,则水蒸气分子的平均间距大约是水分子直径的( )
A、1倍 B、10倍. C、100倍 D、1000倍
[点拨]固体和液体分子是紧密排列的,分子间距可看成分子直径;而气体分子间的距离远大于分子直径,在标准状况下,用摩尔体积除以阿伏加德罗常数,得到的是一个分子占有周围空间的体积,而不是一个分子的体积。分割气体空间时必须分割成紧密相连的立方体,而不应该是球体。21世纪教育网
小结:
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
9.2、液体??
教学目标
??1.在物理知识方面的要求:
(1)知道液体表面有收缩的趋势;了解液体表面张力的意义和方向;了解表面张力系数。
(2)知道液体对固体有浸润和不浸润的特点。
(3)了解毛细现象及其生活和生产中的应用。
??2.学习这部分知识时注意培养学生对自然现象的观察能力。要通过对这部分知识的学习和这部分知识在生活、生产中的应用,来培养和激发学生对物理 ( http: / / www.21cnjy.com / )的兴趣。
重点、难点分析
??1.通过演示实验,让学生看到液体表面有收缩趋势,液体对固体有浸润和不浸润,细管中液面上升和下降等现象。
??2.液体表面收缩现象、浸润与不浸润现象和毛细现象的分子动理论解释是这节课的难点。表面张力的含义也是让学生不易接受的概念,只能作初级的介绍。
教具
??1.油滴在水和酒精混合液里呈球形:长方形玻璃缸、酒精和水适当的比例兑成混合液、车用机油,滴入水中呈圆球形悬浮其中。
??2.带有绵线的铁丝环、有木把的钢针、烧杯、肥皂液、酒精灯。
??3.演示浸润和不浸润:水银、水、玻璃板、锌片、烧杯、实物投影幻灯。
??4.演示毛细现象:一组毛细管(内径大小不同)、两臂直径不等的U形玻璃管(两臂的直径比例差别大些)、水、水槽、水银、水银槽、支架、实物投影幻灯。[来源:21世纪教育网]
教学过程
引入新课
??液体与固体、液体相比较,它在宏观上突出的特性是没有一定形状,具有流动性。但它具有一定的体积,而且不易压缩,这方面特点比较接近固体。从微观上看,液体内部分子也是密集在一起的,分子间距较小,分子间相互作用力较大。液体分子运动主要表现为在平衡位置附近做微小振动,在很小区域内,液体分子是有规则排列的。但是液体分子区别于固体分子,液体分子没有长期固定的平衡位置,不断移动,造成液体具有流动性。
??液体有很多区别于固体和气体的性质,今天只研究液体与气体接触的表面层的性质和液体与固体的接触层的一些性质。
新课教学
一.液体的表面现象
??(1)演示实验:长方形玻璃缸内,润滑机油在水和酒精混合液内,呈圆球形悬浮。
??我们知道相同体积的各种形状中,只有球形物体的表面积最小。润滑油在混合液内呈球形,说明液体表面有收缩到最小的趋势。
??演示实验:用肥皂水做实验来证明液面有收缩趋势。21世纪教育网
??①把一根棉线拴在铁丝上(棉线不要拉紧),铁丝环在肥皂水里浸过后,环上出现肥皂水的薄膜,用热针刺破铁丝环上、棉线两侧肥皂水薄膜的任意一部分,造成棉线被另一侧薄膜拉成弧形,棉线被拉紧。
??②把一个棉线圈拴在铁丝环上,让环上布满肥皂水的薄膜。如果用热针刺破棉线圈内的那部分薄膜,外边的薄膜会把棉线拉紧呈圆形。
??以上实验说明液体表面好像紧张的橡皮膜一样,具有收缩的趋势。
??(2)液体表面具有收缩趋势的微观解释
??液体与气体接触的表面形成一薄层,叫表面层。由于表面层上方是气体,所以表面层内的液体分子受到周围分子作用力小于液体内部分子,表面层里的分子要比液体内部分子稀疏一些,这样表面层分子间引力比液体内部更大一些。在液体内部分子间引力和斥力处于平衡状态,而表面层内由于分子引力较大,因此表面层有收缩的趋势。
??(3)表面张力和表面张力系数
??液体表面各个部分之间的相互吸引力,叫表面张力。如同一根弹簧被拉伸后,其中的一圈与另一圈之间有收缩作用一样。
??说明表面张力的方向垂直液面分界线,又与液面相切。
??表面张力系数是液体表面上单位长度分界线上的表面张力。同一种液体温度升高,表面张力系数减小。不同液体表面张力系数不同,如水银的表面张力系数较大,而水又比酒精的表面张力系数大。
二.浸润和不浸润
??(1)演示实验:用实物投影幻灯来观察浸润和不浸润现象。
??两块洁净的玻璃片上各滴一滴水和一滴水银,观察两种液滴在玻璃片上的状态。
??再用洁净的玻璃片分别浸入盛有水和水银的烧杯内,玻璃片从水中取出时其上附着一层水,而玻璃片从水银中取出时玻璃片上不附着水银。
??(2)说明浸润和不浸润的定义
??液体与固体接触时,液体与固体的接触面扩大而相互附着的现象叫做浸润。如果接触面趋于缩小而不附着,则叫做不浸润。
??(3)演示实验:用实物投影幻灯来观察烧杯内水面和另一烧杯内水银面。
??由于液体对固体有浸润或不浸润,造成液面在器壁附近上升或下降,液面弯曲,形成凹形或凸形的弯月面。
??(4)浸润和不浸润的微观解释
??液体与固体接触处形成一个液体薄层,叫做附着层。附着层里的分子既受固体分子的吸引,又受到液体内部分子的吸引。如果受到固体分子的吸引力较弱,附着层的分子就比液体内部稀疏,在附着层里分子间吸引力较大,造成跟固体接触的液体表面有缩小的趋势,形成不浸润。反之,如果附着层分子受固体分子吸引力相当强,附着层分子比液体内部更密集,附着层就出现液体相互推斥的力,造成跟固体接触的液体表面有扩展的趋势,形成浸润。21世纪教育网
??讨论课本中习题里讲到的缝衣针放在水面上不沉没、布雨伞不漏雨水等现象。
三.毛细现象
??(1)演示实验:
??用实物投影幻灯来观察几根内径粗细不同的细玻璃管插入一浅水槽中,管内水面高出水槽里水面,而且越细的管,水面上升得越高。
??用两侧直径大小不等的U形玻璃管,放入水银后,细管内水银面低于粗管水银面。
??(2)毛细现象的定义:
??浸润液体在细管里上升的现象和不浸润液体在细管里下降的现象,叫做毛细现象。
??(3)毛细现象的解释:
??解释浸润液体在毛细管里上升的现象。浸润液体与毛细管内壁接触的附着层有扩展的趋势,造成液体与空气接触面弯曲,呈凹形弯曲,液面与管壁接触的附近的表面张力是沿液面切线方向向上的。表面张力有使液面收缩趋势,造成管内液柱上升。直到表面张力向上的拉引作用与管内升高的液柱重力平衡,管内液体停止上升,液柱稳定在一定的高度,如图所示。细管越细,即管截面积小,那么液柱上升高度就越大。
??可用相似的分析方法,解释不浸润液体在毛细管里下降的现象。
??(4)举例说明毛细现象的应用:
??纸张、棉花脱脂后能够吸水的原因在于其内部有许多细小的孔道,起到毛细管作用。
??田间农作物的重要管理措施是锄地松土,防止土地板结,其目的是破坏土壤里的毛细管,使地下水分不会快速引上而蒸发掉。21世纪教育网
课堂小结
??1.液体与气体接触的表面有收缩的趋势,液面内相邻两部分之间的彼此相互吸引力叫表面张力。
??2.液体与固体接触的表面存在着附着层,由于附着层有收缩和扩展两种趋势,形成液体对固体有浸润和不浸润现象。
3.毛细现象是液体对固体浸润和不浸润现象在细管中的体现。毛细现象在日常生活中经常出现。[来源:21世纪教育网]
版权所有:高考资源网(www.k s 5 u.com)
版权所有:高考资源网(www.)
高考资源网(www.)
www.
来源:高考资源网
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
课题:§7.4 温度和温标
学习目标: 1、知道是状态参量,什么是平衡态
2、理解热平衡的概念及热平衡定律,体会生活中的热平衡现象。了解热力学温度的应用
3、理解温度的意义
4、知道常见温度计的构造,会使用常见的温度计
5、掌握温度的定义,知道什么是温标、热力学温标,以及热力学温度的表示。理解摄氏温度与热力学温度的转换关系。
重点难点: 热平衡定律又叫热力学第零定律是本节的重点
学习方法: 自主学习,合作完成、教师点拨
学习过程:
【导读与导思】仔细反复研读教材初步掌握本节内容,完成下列任务
1、 状态参量:在研究系统的各种性质(包括几何性质、力学性质、热学性质、电磁性质等等)时需要用到一些物理量,例如,用体积描述它的几何性质,用压强描述力学性质,用温度描述热学性质,等等。这些 ,叫做系统的状态参量。
2、 平衡态与非平衡态 (可以举例说明什么是平衡态与非平衡态)
21世纪教育网
【补充说明】
1 在外界影响下,系统也可以处于一种宏观性质不随时间变化的状态,但这不是平衡态。比如:一根长铁丝,一端插入1000C的沸水中,另一端放在00C恒温源中,经过足够长时间,温度随铁丝有一定的分布,而且不随时间变化,这种状态不是平衡态,只是一种稳定状态,因为存在外界的影响,当撤去外界影响,系统各部分的状态参量就会变化。
2 热力学系统的平衡态是一种动态平衡,组成系统的分子仍在做无规则运动,只是分子运动的平均效果不随时间变化,表现为系统的宏观性质不随时间变化。而力学中的平衡是指物体的运动状态处于静止或匀速直线运动
3 平衡态是一种理想情况,因为任何系统完全不受外界影响是不可能的。系统处于平衡态时,由于涨落,仍可能发生偏离平衡状态的微小变化。
3、两个系统达到了热平衡是指
【说明】热平衡概念不仅适用于相互作用的系统,也适用于两个原来没有发生过作用的系统。因此可以说,只要两个系统在接触时他们的状态不发生变化,我们就说这两个系统原来是
4、热平衡定律又叫 ,其内容表述为:
5、温度的概念:
6、决定一个系统与另一个系统是否达到热平衡状态的物理量是 ;一切达到热平衡的物体都具有相同的 。实验室常用温度计的原理是:
例如:在一个绝热的系统中,有一块烧烫的铁块,还有一些较冷的沙土。使两者接触,铁块会慢慢变冷,沙土会慢慢变热,后来她们变得一样“热”了,就不再变了。这种“冷热程度相同”就是他们的“共同性质”。这个“共同性质”的物理量即为 。
7、温度计与温标:用来测温的仪器, 第一个制造了温度计后,温度就不再是一个主观感觉,而形成了一个客观的物理量。到目前,形形色色的温度计已经应用在各种场合。如果要想定量地描述温度,就必须有一套方法,这套方法就是 。也就是说,为了表示出温度的数值,对温度零点、分度方法所做的规定,就是温标。
21世纪教育网
【补充说明】生活中常见的温标有摄氏温标、华氏温标等。不同的温标都包含三个要素:第一,选择某种具有测温属性的测温物质;第二,了解测温物质随温度变化的函数关系;第三,确定温度零点和分度方法。
8、热力学温标表示的温度叫做 ,它是国际单位制中七个基本物理量之一,用符号
表示,单位是 ,符号是 。摄氏温度与热力学温度的关系是
【典例1】关于热力学温标的正确说法是( )
A、热力学温标是一种更为科学的温标.[21世纪教育网
B、热力学温标的零度为—273.150C。叫绝对零度.
C、气体温度趋近于绝对零度时期体积为零
D、在绝对零度附近气体已经液化.
【导练1】以下说法正确的是( )
A、绝对零度永远达不到. B、现代技术可以达到绝对零度
C、物体的绝对零度是—273K D、物体的绝对零度是—273.150C.
【典例2】关于热力学温度下列说法正确的是( )
A、-330C=240.15K.B、温度变化10C,也就是温度变化1K.
C、摄氏温度与热力学温度都可能取负值D、温度由t0C升至2t0C,对应的热力学温度升高了273.15K+t21世纪教育网
【导练2】关于热力学温标和摄氏温标,下列说法正确的是( )
A、热力学温标中每1K与摄氏温标中每10C大小相等.21世纪教育网
B、热力学温标中升高1K大于摄氏温度升高10C
C、热力学温标中升高1K等于摄氏温度升高10C.
D、某物体摄氏温度100C,即热力学温度10K
【典例3】“在测定某金属块的比热容时,先把质量已知的金属块放在沸水中加热,经过一段时间后把它迅速放进质量、温度均已知的水中,并用温度计测量水的温度,根据实验数据就可以计算出金属块的比热容”。以上叙述中,哪个地方涉及了“平衡态”和“热平衡”的概念
【点拨】金属块在沸水中加热一段时间后,二者就达到了“热平衡”,此时的沸水和金属块就处于“平衡态”;将金属块放入质量、温度已知的水之前,金属块和水处于各自的“平衡态”,当放入金属块后水温不再上升时,金属块和水均处于“热平衡”,此时温度计的读数就是水和金属块的共同温度。
【小结】:
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
课题:9、2液体
学习目标:
知识与技能:
(1) 知道液体具有一定的体积,不易被压缩,没有固定形状,具有流动性,掌握液体的微观结构。
(2) 知道液体表面有收缩的趋势,会分析表面层的分子微观结构,理解液体表面存在张力,会对相关现象做出解释。
(3) 知道浸润和不浸润现象,会从分子微观结构对浸润于不浸润想象进行解释。
(4) 知道什么是毛细现象,会进行原因分析。
过程与方法:
通过演示实验和学生实验,让学生对液体的相关特殊现象产生兴趣,培养学生分析问题的方法——从现象到本质,由潜入深,用分子的微观结构来分析物质的宏观特性和主动、积极的科学探究能力。
情感态度与价值观:
让学生猛然发觉看似简单的液体竟会蕴含如此多的相关想象,激发了学生学习物理的兴趣和积极性,让学生体会到分子动理论不但能在微观意义上研究气体、固体,而且能研究液体。
重点:液体的几种现象
难点:几种现象产生的原因
知识链接:
简述分子间作用力与分子距离的关系。
学法指导:21世纪教育网
学习过程:
1、 液体的微观结构
1、 举例说明液体分子间的距离比气体分子间距离小得多。
2、 举例说明液体分子间作用力比固体分子间作用力要小。
3、 举例说明液体分子的移动比固体更容易。
2、 液体的表面张力
4、 哪些实例说明液体存在表面张力?(有趣的实验可以做一做)
5、 利用分子动理论解释液体为什么存在表面张力?
3、 浸润和不浸润
6、 什么是浸润?什么是不浸润?
7、 举例说明哪些液体和哪些固体浸润,哪些液体和哪些固体不浸润。
8、 液体放在玻璃容器中浸润与不浸润有什么区别?
21世纪教育网
9、 从分子力的角度解释浸润与不浸润现象。
4、 毛细现象
10、 什么是毛细现象?
11、毛细现象是因为液体浸润管壁,那么管壁粗细和液面高度有什么关系?
12、举例说说生活中的毛细现象。
21世纪教育网
[来源:21世纪教育网]
5、 液晶
13、简述奥地利植物学家赖尼策发现液晶的过程。(口述)
14、德国物理学家雷曼经过系统研究发现了液晶的性质,请你在下面写出。
15、说说液晶在现代生活中有哪些应用?
课堂小结:
达标训练:
1、 教材p4练习1
2、 教材p42练习2
3、 教材p42练习3
4、 教材p42练习4
5、 教材p42练习5
6、 教材p42练习6
7、下列现象中与表面张力有关的是( ).
(A)水中的气泡呈球形 (B)草叶上的露珠呈球形21世纪教育网
(C)刚洗完头,头发粘在一起 (D)木块浮在水A中
8、下列现象中因液体表面张力引起的是(A ).
(A)雨点都近似球形的
(B)蜡烛燃烧时,融化后的蜡烛油冷却后呈球形
(C)熔化的玻璃可做成各种玻璃器皿
(D)缝衣针能飘浮在水面上
9、下列现象中与毛细现象有关的是( ).
(A)水银压强计示数要比实际稍小 (B)吸水纸有吸水性
(C)油沿灯芯向上升 (D)水顺着树向卜升
10、对于液晶,外界条件的微小变动都会引起液晶分子排列的变化,因而改变液晶的某些性质,例如___ ____、___ ___、摩擦、电磁作用、容器表面的差异等,都可以改变液晶的光学性质.
11、通常棒状分子、__ ____、___ __的物质容易具有液晶态.
12、液晶像液体具有_______,又像晶体,分子在特定方向排列比较整齐,具有_______.
13、关于液体表面张力的方向和大小,正确的说法是( ).
(A)表面张力的方向与液面垂直
(B)表面张力的方向与液面相切,并垂直于分界线
(C)表面张力的大小是跟分界线的长度成正比的
(D)表面张力就本质上来说也是万有引力
14、若没有空气阻力,雨滴在自由下落时的形状如图的( ).
15、利用液晶___________________________________________________的特性可以做成显示元件.
16、在密闭的容器内,放置一定量的液体,如图(a)所示,若将此容器置于在轨道上正常运行的人造地球卫星上,则容器内液体的分布情况,应是( ).
(A)仍然如图(a)所示 (B)只能如图(b)中(1)所示
(C)可能如网(b)中(3)或可能(4)所示 (D)可能如图(b)中(1)或可能(2)所示
学后反思:
21世纪教育网
www.
液体分子的微观结构
液体的表面张力
浸润与不浸润
毛细现象
液晶的性质和液晶分子排列的特点
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
7.5、内能
教学目标
?1.在物理知识方面要求:(1)知道分子的动能,分子的平均动能,知道物体的温度是分子平均动能大小的标志。(2)知道分子的势能跟物体的体积有关,知道分子势能随分子间距离变化而变化的定性规律。(3)知道什么是物体的内能,物体的内能与哪个宏观量有关,能区别物体的内能和机械能。
?2.在培养学生能力方面,这节课中要让学生建立:分子动能、分子平均动能、分子势能、物体内能、热量等五个以上物理概念,又要让学生初步知道三个物理规律:温度与分子平均动能关系,分子势能与分子间距离关系,做功与热传递在改变物体内能上的关系。因此,教学中着重培养学生对物理概念和规律的理解能力。
?3.渗透物理学方法的教育:在分子平均动能与温度关系的讲授中,渗透统计的方法。在分子间势能与分子间距离的关系上和做功与热传递关系上都要渗透归纳推理方法。
重点、难点分析
??1.教学重点是使学生掌握三个概念(分子平均动能、分子势能、物体内能),掌握三个物理规律(温度与分子平均动能关系、分子势能与分子之间距离关系、热传递与功的关系)。2.区分温度、内能、热量三个物理量是教学上的一个难点;分子势能随分子间距离变化的势能曲线是教学上的另一难点。
主要教学过程
引入新课
我们知道做机械运动的物体具有机械能,那么热现象发生过程中,也有相应的能量变化。另一方面,我们又知道热现象是大量分子做无规律热运动产生的。那么热运动的能量与大量的无规律运动有什么关系呢?这是今天学习的问题。
教学过程的设计
一、温度的宏观和微观意义是什么?如何理解?
分子的无规则运动特点是多、变、快、乱,在热现象中,关心的是多个发分子,而不是单个分子。
(1)、分子的平均动能――所有分子的动能的平均值
m~10 -26 kg v=10 5 m / s
(2)、温度:宏观――表示物体的冷热程度
微观――是物体平均动能的标志
(3)、 温度相同,平均动能就相同,不论物体的组成、结构、种类和物态 (无论如何)
二、什么是分子势能?分子势能与什么有关?
(1)、由于分子间存在着相互作用的引力和斥力而具有的与其相对位置有关的能量,叫做分子势能。 (类似于重力势能和弹性势能)。因此任何物体都是有内能的。
(2)、微观――与相对位置有关21世纪教育网
宏观――与体积有关
三、什么是物体的内能,它与什么有关?
1、 所有分子做热运动的动能和分子势能的总和叫做物体的内能,也叫热力学能
2、 与温度T、体积V和分子个数N有关
3、 一切物体都具有内能
四、内能和机械能又什么区别?
1、 宏观物体的机械运动对应机械能。机械能可以为零。
2、 微观物体对应内能。内能不可以为零。
3、 内能和机械能之间可以相互转化。
物体机械运动对应着机械能,热运动对应着内能。任何物体都具有内能,同时还可以具有机械能。例如在空中飞行的炮弹,除了具有内能,还具有机械能——动能和重力势能
五 区别内能、热量和温度
课堂练习
1、 温度的高低是由人的感觉决定的(×)
2、 物体平均速度大的物体的温度高(×)
3、 20℃的水和20℃的铜的平均动能相同(√)
4、 体积变大,内能变大(×)
5、 温度升高,所有的分子的平均动能都变大(×)
6、 温度越高,总动能越大(×)
7、 同温度的水和氢气相比,氢气的平均速度大(√)
8、 温度高的物体,内能不一定大。
9、 同样质量的水在100℃时的内能比60℃时的内能大。
10、 内能大的物体,温度一定高。
11、 下列各个实例中,比较物体的内能大小,并说明理由。
??①一块铁由15℃升高到55℃,比较内能。
??②质量是1kg50℃的铁块与质量是0.1kg50℃的铁块,比较内能。
??③质量是1kg100℃的水与质量是1kg100℃的水蒸气,比较内能。
改变内能的两种方式
一、做功改变物体的内能
摩擦生热、压缩气体、搅拌
1、 对物体做功,物体的内能增加
2、 物体对外做功,物体的内能减小
3、 做了多少功,就改变多少内能
二、热传递改变物体的内能
教室里的热水、火炉上的凉水
1、 外界向物体传递热量(吸热),物体的内能增加
2、 物体向外界传递热量(放热),物体的内能减小
3、 传递多少热量,内能就改变多少
三、做功和热传递的实质
1、 做功改变内能,是能量的转化,用功的数值来度量
2、 热传递改变内能,是能量的转移,用热量来度量
四、做功和热传递的等效性
做功和热传递在改变内能上是等效的。
例如:使物体升高温度,可以用热传递的方法,也可以用做功的方法,得到的结果是相同的,如果事先不知道,我们无法知道它是通过哪种途径改变的内能。
1 cal=4.2 J 1 J=0.24 cal
多维链接
温度计和温标的发明
公元前200一100年间,古希腊菲隆和希隆各自制造过一种以空气膨胀为原理的测温器。其后,人们还在三个容器中分别装上冷、温、热水来判断物体的冷热:用手摸进行比较。
1592或1595年,伽利略制成了第一个气体温度计。玻璃管与玻璃泡相连,管内有有色液体,倒置于水杯之中。当被测温度的物体与泡接触时,泡内空气就会因热胀冷缩而发生体积变化,使有色液柱上升或下降,再由玻管上标有“热度”(即现在所说的“温度”)的刻度读出。这是有史以来的第一支有刻度的温度计。显然,这种温度计不完善:变化着的大气压也会使液柱升降,测量范围极其狭窄。
[来源:21世纪教育网]
物理学中热力学里有一门叫计温学的分支学科,它是利用物质的热效应来研究测温技术的。它包括温度分度法、温度参照点的选择、温度计按不同用途的设计、制定各种测温标准、提高测温精度、准确度、测定实用温标和热力学温标的差值等。伽利略发明气体温度计后,人们的工作就大致按这些内容进行。
1611年,伽利略的同事桑克托留斯改进了伽利略的气体温度计,制成一种蛇状玻璃管气体温度计,玻管上有llO个刻度,可测体温。
1629年,约瑟夫·德米蒂哥这位物理学家兼犹太教师出版了一本叫《花园中的喷泉》的书,书中载有盛有白兰地的玻璃泡温度计,它旁边的小字上写着“oleb”(上升)。有人认为这是人类第一支较准确的温度计。但现未能查明其发明者,而只能猜测是伽利略或他在帕多瓦大学的同事德米蒂哥。具体发明年代只能大致确定在17世纪初。
1631—1632年,法国化学家詹·雷伊把伽利略的玻璃管倒转过来,并直接用水而不是空气的体积变化来测定温度。这是第一支用水作工作物质的温度计。但因管口末密封,水会蒸发而产生越来越大的误差。
1641年,第一支以酒精为工作物质的温度计首次出现在意大利托斯卡纳大公爵费迪南二世的宫庭里。1644—1650年间,这位大公将其不断完善:用蜡把红色酒精温度计的玻管口封位,在玻管上刻度。可见,这支温度计已具有现代温度计的雏型,以致不少人将温度计的发明归功于这位大公。1654年,这种温度计已在佛罗伦萨普及,以致这一年被一些人认为是温度计诞生之年。它还被传到英国和荷兰。
1646年,意大利物理学家莱纳尔第尼明智地提出以水的冰点和沸点作为温度计刻度的两个定点。但无奈当时流行的酒精温度计里酒精的沸点(78.5℃)低于水的沸点(100℃),所以用水的沸点为第二个定点对酒精温度计显然不切实际,所以这一建议当时未能实施。
1657年成立的意大利佛罗伦萨实验科学院在其存在的10年间地进行了水银和酒精温度计的研究,制作过40(或80)个等分标度的没有定点的酒精温度计:它在1660年冬最冷时显示11—12“度”,冰的熔点显示13.5“度”,夏天最热时为40“度”。
1658年,法国天文学家伊斯梅尔·博里奥制成第一支用水银作工作物质的温度计。
1660年,意大利材料测试研究所也制成了水银温度计。
1665年,荷兰物理学、数学家惠更斯地提议把水的冰点和沸点作温度计刻度的两个定点,以便各种温度计标准化。同年,英国物理学、化学家波义耳根据他于1662年发现的气体定律(即玻义耳定律,后经法国物理学家马略特完善后称波义耳一马略特定律,简称波一马定律),指出气体温度计不准的原因及其他缺点。其后,人们大多转向其他工作物质的温度计的研究。
1672年,休宾在巴黎发明了第一个不受大气压影响的空气温度计。
1688年,达兰西的温度计以水和牛油熔解时的两个温度作温度计刻度的两个固定点。
18世纪初,形形色色的温度标准(温标)已多达30余种。例如,丹麦天文学家罗默(他以1676年用观测木星卫星蚀的方法第一次证实光的传播是等速运动而闻名于世)以人体温度为22.5“度”和水的沸点为60“度”作温度计上刻度的两个定点。牛顿于1701—1703年制作的亚麻子油(一说蓖麻油)温度计把雪的熔点0“度”和人体的温度12“度”作温度计的两个定点。
法国物理学家阿蒙东最先指出测温液体是规则膨胀的,“有绝对零度存在”也是他最先指出的,他于1703年也制成了一支实用气体温度计。
在18世纪以前,温标不统一且不太实用。这些工作历史地落在华伦海特等人的肩上。
迁居荷兰的德国玻璃工华伦海特也在英国居住过。他经过1709—1714年的研究,把冰、水、氯化铵的混合物平衡温度定为0℉,人体温度定为96℉(如以今天我国标准体温37℃,则应为98.6℉,可见他采用的体温不是今天我国的标准体温),其间分为96格,每格为1℉。1724年,他又把水的沸点定为2120℉。但遗憾的是,他未能将冰的熔点定为0℉,而是定为32℉。这就是华氏温标,其符号为tF。这是曾长期使用且至今仍在香港和世界许多地方使用的第一种温标。他还发明了在填充水银时进行净化的方法,制成了第一种实用的水银温度计。
1730年,主要研究物理学和动物学的法国博物学家列奥缪尔制成了一种酒精温度计,他把水的冰点0oR和沸点80oR刻在温度计上作两个定点,再把其问分为80格,每隔为1oR。这是其后流行了多年的第二种温标——列氏温标,其符号为tR。
1742年,瑞典物理学家、天学家摄尔修斯制成的水银温度计则把水的沸点和冰的熔点分别定为0℃和100℃,其间分为100格,每格为1℃,这是第三种得到广泛流行的实用温标——摄氏温标,其符号为t或tc。1743年,克里森指出上述定点不符合越热的物体温度越高的习惯,8年以后的1750年,摄尔修斯接受同事斯特默尔的建议,把上述两定点的温度对调,这才成了现在的摄氏温标即百分温标。
上述三种温标都是初级原始的温标,其缺点有二。一是温度值只有在两个定点是准确的其余各点都不准确;二是定义范围很窄,例如水银温度计测量范围是—38.87—+356.9℃。以下第四种温标克服了这些缺点。[来源:21世纪教育网]
1848年,英国物理学家汤姆逊即开尔文提出热力学温标。其符号为TK或T,并于1854年指出只需选用一个固定点数值,这种温标就能确定。这个点就是“绝对零度”。然而,在实际建立热力学温度单位时,考虑到历史传统和当时的技术条件,他不得不用摄尔修斯的0—100℃的间隔作为100个新温度的间隔,即新温度的每个间隔为1开氏度(1oK)与 l摄氏度(1℃)相当。这就是开氏温标。历史上类似而含义不尽相同的名称还有理想气体温标、热力学绝对温标等。这第四种温标的特点是:与任何物体的性质无关,不受工作物质的影响,解除了工作物质因凝固、汽化而受到的限制,仅与热量有关。1927年,第七届国际计量大会确定它为最基本的温标。1954年大会又决定把273.16oK这一水的三相点作为这一温标的唯一定点。这一温标实际包含的另一定点是不能用物质的已知性质来定义的,它是理论上推导出来的最低温度——绝对零度。1967年,第十三届国际计量大会将这种温标的单位“开氏度”(oK)改为“开尔文”(K),而前述“开氏温标”及“开氏温度”被分别代之以“新国际实用温标”和“热力学温度”,我国也最终由国务院于1984年2月27日下达命令在1991年1月1日起正式施行使用。
第五种温标为兰氏温标,在19世纪由英国工程师兰金发明,其符号为TR,兰氏度的符号为Ro。这种温标的水三相点约491.7Ro,水的沸点约671.6Ro。这种温标比前四种用得更少。
随着上述摄氏,国际温标的建立和技术的成熟,以及实际测量的需要,人们改进、发明了形形色色的温度计。
1743年,法国克利斯廷在里昂改制了像摄尔修斯那样的温度计,这更接近现代温度计。
1782年,西克斯发明了 “最高最低温度计”,丹尼尔·卢瑟福在1794年作了改进。1782年,英国韦奇伍德.和德国塞格尔各自发明了测定火焰温度或炉温用的温度计,后者的发明被称为塞格尔测温锥。
1821—1822年,德国塞贝克发现热电(温差电)现象,提出温差电动势序,认识到由此可制成热电偶即温差电偶来测温度。1830年便出现了这种温差电偶,用它还可探测红外线。选用适当的导体或半导体作热电偶材料,可以测量很宽的温度范围(如—50—+1600℃),若用特殊热电偶材料,则更可扩大到—180—2000℃,这显然是酒精或水银温度计望尘莫及的。
俄国楞次和英国戴维于1835年得知金属在受热时电阻会增大,A·F·斯文贝尔格于1857年便用这一原理发明了差示温度计(由一个接在测量电桥中的涂黑铜螺线组成)。[来源:21世纪教育网]
1860年,德国威廉·西门子发明了遥测式电阻温度计,1869年他为它加装了一根钠丝作测量探头,可测更高的温度。
19世纪60年代初,英国医生阿尔伯特发明了现在仍在位用的那种体温计:其最大特点是细管内有一段特别狭窄,体温计离开被测人体后水银在这狭处中断而水银柱并不下降,可从容不迫地读出体温。
1881年,兰利将涂黑的铂带作热敏元件制成辐射热测量计(或电阻测辐射热计)测量辐射热。21世纪教育网
其后,温度计新品种不断涌现。例如,光学高温计(测600℃以上高温)、光度计(测星球表面温度)、红外显微镜(测小至10—100微米的点的温度)、半导体点温度计(测点的温度)、石英振子温度计(可测低温至250间的温度,精度特高)
对10000℃以上的高温,一般温度测量法已无能为力。这时,要用原子光谱的谱线和温度间的关系来计算出温度。
版权所有:高考资源网(www.k s 5 u.com)
版权所有:高考资源网(www.)
r0=10 -10m
r<r0
引力<斥力
表现斥力
r=r0
引力=斥力
合力=0
r>r0
引力>斥力
表现引力
r=10 r0
r=10 r0
引力=斥力=0
合力=0
r=r0
Ep最小
r>r0 引力
做负功
Ep增加
r<r0 斥力
做负功
Ep增加
斥力
引力
r0
EP
温度计
接打气筒
胶塞
高考资源网(www.)
www.
来源:高考资源网
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
10.4、热 力 学 第 二 定 律
教学目标
①、了解热力学第二定律的发展简史,
②、了解什么是第二类永动机,为什么第二类永动机不可以制成。
③、了解热传导的方向性,
④、了解热力学第二定律的两种表述方法,以及这两种表述的物理实质,
⑤、了解什么是能量耗散
教学重点
热力学第二定律及所反映出的热现象的宏观过程的方向性。
教学难点
热力学第二定律中所描述的 "不发生其他变化"
教学方法
多媒体辅助教学,分析讨论讲解相结合
教学器材
多媒体演示系统、自制电脑教学软件
教学过程
引入新课
复习提问
①热力学第一定律的内容是什么?
②第一类永动机为什么没有制成?
③能量守恒定律是怎样表述的?
引入新课
在能量守恒定律中,存在着能量的 "转移"和 "转化",具体到热力学第二定律,内能和内能之间存在着"转移"以及内能和机械能之间也存在着"转化"的过程,引入课题:热力学第二定律。
新课教学
一、内能的转移
内能转移实质就是热传递。
举例:1 冰箱中的冰激凌在停电时的融化过程,引导学生分析融化的原因。
(热量可以从高温物体传递给低温物体)[来源:21世纪教育网]
2 冰箱里的冰激凌在冰箱正常工作时并没有融化。
进一步思考热量只能从高温物体传递给低温物体这种说法是否妥当。
如果不妥当应该怎样说。
从而得出所谓的热量从高温物体向低温物体传递是一个自发的过程,热量从低温物体向高温物体转移需要其他的物理 ( http: / / www.21cnjy.com / )过程参与。
(以模拟动画说明内能转移过程的方向性)
得出热力学第二定律克劳修斯表述:
不可能使热量从低温物体传递到高温物体而不产生其他变化。(内能转移过程的方向性)21世纪教育网
说明: 不产生其他变化是指没有其他物理过程参与
二、内能和机械能之间的转化
瓦特蒸汽机的发明说明人们开始了热机理论的研究,("热机"就是一种把内能转化为机械能的机械)
1824年,卡诺在《论火的动力》中指出 "凡是有温度差的地方就能够发生动力"
1834年,克拉珀龙把卡诺这一思想几何化为"卡诺循环"
热机从高温热源吸收热量Q,其中一部分对外做功W,另一部分被释放给低温热源,根据能量守恒定律
Q1 = Q2 + W
η=W/ Q1 = (Q1- Q2) /Q1 =1 - Q2/ Q1
可以知道Q2 越少,η越高
于是人们就考虑能否让Q2不存在,这样就可以产生一个η=100%的热机,就可以产生另一种永动机,可以看到这种机械并不违反能量守恒定律,这一类永动机叫第二类永动机。
第二类永动机:能从单一热源吸收热量全部用来做功而不引起其他变化的机械。
如果这一类永动机能够制成,它就可以从外界诸如空气、海洋、土壤等单一热源中不断地吸取能量,而对外做功。众所周知在空气和海洋中内能是取之不尽的,这样的话飞机不用带油箱,轮船不用带燃料。人们为此做出了许多努力,做了大量的尝试,但是第二类永动机始终还是没能制成。伴随着一次次的失败,终于认识到第二类永动机是不可能制成的。[21世纪教育网
这个结论是开尔文首先提出来的。
开尔文表述:不可能从单一热源吸收热量并把它全部用来做功,而不产生其他变化。即:第二类永动机是不可能制成的。
说明热力学第二定律两种表述形式实质是一样的,只是侧重角度不同:
1、克劳修斯表述体现热传导的方向性
2、开尔文表述体现机械能和内能之间转化的方向性
三、能量耗散
引导学生阅读46页能量耗散的内容并归纳出自然界中的能量有的便于利用而有的不便于利用,内能作为能量发展的最终形式是没有办法把这些流散的内能重新收集起来加以利用。
举例:电能转化为光能再转化为内能:烤火时高温物体的内能变为低温物体的内能
都是无法将散失的内能重新再利用
能量耗散是从能量转化的角度反映出自然界中的宏观过程具有的方向性。说明能量耗散不是能量损失,只是可便于利用的能量减少了。[来源:21世纪教育网]
扩展:热力学第二定律提示了有大量分子参与的宏观过程的方向性,使得它成为独立于热力学第一定律的一个重要自然规律。
说明:不仅仅在物理 ( http: / / www.21cnjy.com / )上存在这种"方向性",在其他领域也都存在。比如:化学中的不可逆反应;生物 ( http: / / www.21cnjy.com / )中的进化过程的不可逆都说明了这一点。
21世纪教育网
版权所有:高考资源网(www.k s 5 u.com)
高考资源网(www.)
www.
来源:高考资源网
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
温度和温标
目标导航
(1)知道什么是状态参量,什么是平衡态。
(2)知道什么是热平衡,什么是热平衡定律。
(3)知道温度的表示方法。
(4)知道常见温度计的构造,会使用常见的温度计。
(5)理解摄氏温标和热力学温标的转换关系。
诱思导学
1.平衡态和状态参量
在物理学中,通常把所研究的对象称为系统。[来源:21世纪教育网]
(1)状态参量21世纪教育网
用来描述系统状态的物理量,叫做系统的状态参量。
(2)平衡态
系统宏观性质不再随时间变化,这种情况下就说系统达到了平衡态。
2.热平衡与温度
(1)温度
温度是表示物体冷热程度的物理量,反映了组成物体的大量分子的无规则运动的激烈程度。
(2)热平衡
一切达到热平衡的系统都具有相同的温度。
3.温度计与温标
(1)温度计
是测量温度的工具。
家庭和物理实验室常用温度计是利用水银、酒精、煤油等液体的热膨胀规律来制成的。另外,还有金属电阻温度计、压力表式温度计、热电偶温度计、双金属温度计、半导体热敏电阻温度计、磁温度计、声速温度计、频率温度计等等。
(2)温标
温度的数值表示法叫做温标。
用摄氏温标表示的温度叫做摄氏温度;在国际单位制中,常采用热力学温标表示的温度,叫热力学温度。
热力学温度(T)与摄氏温度(t)的关系为:
T=t+273。15 (K)
说明:①两种温度数值不同,但改变1 K和1℃的温度差相同。
②0K是低温的极限,只能无限接近,但不可能达到。
典例探究
例1 细心观察可以发现,常见液体温度计的下部的玻璃泡较大,壁也比较薄,上部的管均匀而且很细,想一想,温度计为什么要做成这样呢?21世纪教育网
解析:这样做的目的都是为了使测量更准确、更方便。下部较大而上部很细,这样下部储存的液体就比较多,当液体膨胀收缩时,膨胀或收缩不大的体积,在细管中的液面就有较大的变化,可以使测量更精确;下部的壁很薄,可以使玻璃泡内的测温物质的温度较快地与待测物质的温度一致;细管的粗细是均匀的,是为了使刻度均匀,更便于读数。
课后问题与练习点击[21世纪教育网
1.略
2.略
3.解析: 物理量X与热力学温度T成正比,即:X= C·T (C为常量),又因为T=t+273.15 K,所以X=C·(t +273.15),因此,t=X/C-273.15(℃)
4.电流表上代表t1、t2的两点,t1应该标在电流比较大的温度上。
解析:由图7.4-2甲可以看出,t1温度下金属丝电阻比较小,因为电路中电池的电动势和内阻都是不变的,根据闭合电路的欧姆定律可以知道,此时电路中电流比较大。
基础训练
1.两个物体放在一起彼此接触,它们若不发生热传递,其原因是( )
A.它们的内能相同
B.它们的比热相同
C.它们的分子总动能相同
D.它们的温度相同
2.下列关于热力学温度的说法中,不正确的是( )
A.热力学温度的零度是-273。15 ℃
B.热力学温度的每一度的大小和摄氏温度是相同的
C.绝对零度是低温的极限,永远达不到
D.1℃就是1 K
3.冬天,北方的气温最低可达-40℃,为了测量那里的气温应选用( )
A. 水银温度计
B.酒精温度计
C.以上两种温度计都可以
D.以上两种温度计都不行
4.在25℃左右的室内,将一只温度计从酒精中拿出,观察它的示数变化情况是( )
A.温度计示数上升 B.温度计示数下降
C.温度计示数不变 D.示数先下降后上升
5.常用的温度计是利用液体的________来测量温度的。摄氏温度把标准大气压下________的温度规定为0度。
6.体温计的测量范围是________,最小刻度值是________。
7.一支读数为37。8℃的体温计,不经甩过,先后依次测量两个人的体温,若他们的真实体温分别是36。5℃和38℃,那么这支体温计的读数依次是________、________。
8.液体温度计越精确,则其玻璃泡的容积与细管的容积相差必定越(填“大”或“小”)_______________,此时玻璃泡里的液体有微小的膨胀,细管里的液柱 。
9.能不能用体温计作为寒暑表使用?试说明理由。
多维链接
温度计和温标的发明
公元前200一100年间,古希腊菲隆和希隆各自制造过一种以空气膨胀为原理的测温器。其后,人们还在三个容器中分别装上冷、温、热水来判断物体的冷热:用手摸进行比较。
1592或1595年,伽利略制成了第一个气体温度计。玻璃管与玻璃泡相连,管内有有色液体,倒置于水杯之中。当被测温度的物体与泡接触时,泡内空气就会因热胀冷缩而发生体积变化,使有色液柱上升或下降,再由玻管上标有“热度”(即现在所说的“温度”)的刻度读出。这是有史以来的第一支有刻度的温度计。显然,这种温度计不完善:变化着的大气压也会使液柱升降,测量范围极其狭窄。
物理学中热力学里有一门叫计温学的分支学科,它是利用物质的热效应来研究测温技术的。它包括温度分度法、温度参照点的选择、温度计按不同用途的设计、制定各种测温标准、提高测温精度、准确度、测定实用温标和热力学温标的差值等。伽利略发明气体温度计后,人们的工作就大致按这些内容进行。
1611年,伽利略的同事桑克托留斯改进了伽利略的气体温度计,制成一种蛇状玻璃管气体温度计,玻管上有llO个刻度,可测体温。
1629年,约瑟夫·德米蒂哥这位物理学家兼犹太教师出版了一本叫《花园中的喷泉》的书,书中载有盛有白兰地的玻璃泡温度计,它旁边的小字上写着“oleb”(上升)。有人认为这是人类第一支较准确的温度计。但现未能查明其发明者,而只能猜测是伽利略或他在帕多瓦大学的同事德米蒂哥。具体发明年代只能大致确定在17世纪初。
1631—1632年,法国化学家詹·雷伊把伽利略的玻璃管倒转过来,并直接用水而不是空气的体积变化来测定温度。这是第一支用水作工作物质的温度计。但因管口末密封,水会蒸发而产生越来越大的误差。
1641年,第一支以酒精为工作物质的温度计首次出现在意大利托斯卡纳大公爵费迪南二世的宫庭里。1644—1650年间,这位大公将其不断完善:用蜡把红色酒精温度计的玻管口封位,在玻管上刻度。可见,这支温度计已具有现代温度计的雏型,以致不少人将温度计的发明归功于这位大公。1654年,这种温度计已在佛罗伦萨普及,以致这一年被一些人认为是温度计诞生之年。它还被传到英国和荷兰。
1646年,意大利物理学家莱纳尔第尼明智地提出以水的冰点和沸点作为温度计刻度的两个定点。但无奈当时流行的酒精温度计里酒精的沸点(78.5℃)低于水的沸点(100℃),所以用水的沸点为第二个定点对酒精温度计显然不切实际,所以这一建议当时未能实施。
1657年成立的意大利佛罗伦萨实验科学院在其存在的10年间地进行了水银和酒精温度计的研究,制作过40(或80)个等分标度的没有定点的酒精温度计:它在1660年冬最冷时显示11—12“度”,冰的熔点显示13.5“度”,夏天最热时为40“度”。
1658年,法国天文学家伊斯梅尔·博里奥制成第一支用水银作工作物质的温度计。
1660年,意大利材料测试研究所也制成了水银温度计。
1665年,荷兰物理学、数学家惠更斯地提议把水的冰点和沸点作温度计刻度的两个定点,以便各种温度计标准化。同年,英国物理学、化学家波义耳根据他于1662年发现的气体定律(即玻义耳定律,后经法国物理学家马略特完善后称波义耳一马略特定律,简称波一马定律),指出气体温度计不准的原因及其他缺点。其后,人们大多转向其他工作物质的温度计的研究。
1672年,休宾在巴黎发明了第一个不受大气压影响的空气温度计。
1688年,达兰西的温度计以水和牛油熔解时的两个温度作温度计刻度的两个固定点。
18世纪初,形形色色的温度标准(温标)已多达30余种。例如,丹麦天文学家罗默(他以1676年用观测木星卫星蚀的方法第一次证实光的传播是等速运动而闻名于世)以人体温度为22.5“度”和水的沸点为60“度”作温度计上刻度的两个定点。牛顿于1701—1703年制作的亚麻子油(一说蓖麻油)温度计把雪的熔点0“度”和人体的温度12“度”作温度计的两个定点。
法国物理学家阿蒙东最先指出测温液体是规则膨胀的,“有绝对零度存在”也是他最先指出的,他于1703年也制成了一支实用气体温度计。
在18世纪以前,温标不统一且不太实用。这些工作历史地落在华伦海特等人的肩上。
迁居荷兰的德国玻璃工华伦海特也在英国居住过。他经过1709—1714年的研究,把冰、水、氯化铵的混合物平衡温度定为0℉,人体温度定为96℉(如以今天我国标准体温37℃,则应为98.6℉,可见他采用的体温不是今天我国的标准体温),其间分为96格,每格为1℉。1724年,他又把水的沸点定为2120℉。但遗憾的是,他未能将冰的熔点定为0℉,而是定为32℉。这就是华氏温标,其符号为tF。这是曾长期使用且至今仍在香港和世界许多地方使用的第一种温标。他还发明了在填充水银时进行净化的方法,制成了第一种实用的水银温度计。
1730年,主要研究物理学和动物学的法国博物学家列奥缪尔制成了一种酒精温度计,他把水的冰点0oR和沸点80oR刻在温度计上作两个定点,再把其问分为80格,每隔为1oR。这是其后流行了多年的第二种温标——列氏温标,其符号为tR。
1742年,瑞典物理学家、天学家摄尔修斯制成的水银温度计则把水的沸点和冰的熔点分别定为0℃和100℃,其间分为100格,每格为1℃,这是第三种得到广泛流行的实用温标——摄氏温标,其符号为t或tc。1743年,克里森指出上述定点不符合越热的物体温度越高的习惯,8年以后的1750年,摄尔修斯接受同事斯特默尔的建议,把上述两定点的温度对调,这才成了现在的摄氏温标即百分温标。
上述三种温标都是初级原始的温标,其缺点有二。一是温度值只有在两个定点是准确的其余各点都不准确;二是定义范围很窄,例如水银温度计测量范围是—38.87—+356.9℃。以下第四种温标克服了这些缺点。
1848年,英国物理学家汤姆逊即开尔文提出热力学温标。其符号为TK或T,并于1854年指出只需选用一个固定点数值,这种温标就能确定。这个点就是“绝对零度”。然而,在实际建立热力学温度单位时,考虑到历史传统和当时的技术条件,他不得不用摄尔修斯的0—100℃的间隔作为100个新温度的间隔,即新温度的每个间隔为1开氏度(1oK)与 l摄氏度(1℃)相当。这就是开氏温标。历史上类似而含义不尽相同的名称还有理想气体温标、热力学绝对温标等。这第四种温标的特点是:与任何物体的性质无关,不受工作物质的影响,解除了工作物质因凝固、汽化而受到的限制,仅与热量有关。1927年,第七届国际计量大会确定它为最基本的温标。1954年大会又决定把273.16oK这一水的三相点作为这一温标的唯一定点。这一温标实际包含的另一定点是不能用物质的已知性质来定义的,它是理论上推导出来的最低温度——绝对零度。1967年,第十三届国际计量大会将这种温标的单位“开氏度”(oK)改为“开尔文”(K),而前述“开氏温标”及“开氏温度”被分别代之以“新国际实用温标”和“热力学温度”,我国也最终由国务院于1984年2月27日下达命令在1991年1月1日起正式施行使用。
第五种温标为兰氏温标,在19世纪由英国工程师兰金发明,其符号为TR,兰氏度的符号为Ro。这种温标的水三相点约491.7Ro,水的沸点约671.6Ro。这种温标比前四种用得更少。
随着上述摄氏,国际温标的建立和技术的成熟,以及实际测量的需要,人们改进、发明了形形色色的温度计。
1743年,法国克利斯廷在里昂改制了像摄尔修斯那样的温度计,这更接近现代温度计。
1782年,西克斯发明了 “最高最低温度计”,丹尼尔·卢瑟福在1794年作了改进。1782年,英国韦奇伍德.和德国塞格尔各自发明了测定火焰温度或炉温用的温度计,后者的发明被称为塞格尔测温锥。
1821—1822年,德国塞贝克发现热电(温差电)现象,提出温差电动势序,认识到由此可制成热电偶即温差电偶来测温度。1830年便出现了这种温差电偶,用它还可探测红外线。选用适当的导体或半导体作热电偶材料,可以测量很宽的温度范围(如—50—+1600℃),若用特殊热电偶材料,则更可扩大到—180—2000℃,这显然是酒精或水银温度计望尘莫及的。
俄国楞次和英国戴维于1835年得知金属在受热时电阻会增大,A·F·斯文贝尔格于1857年便用这一原理发明了差示温度计(由一个接在测量电桥中的涂黑铜螺线组成)。
1860年,德国威廉·西门子发明了遥测式电阻温度计,1869年他为它加装了一根钠丝作测量探头,可测更高的温度。
19世纪60年代初,英国医生阿尔伯特发明了现在仍在位用的那种体温计:其最大特点是细管内有一段特别狭窄,体温计离开被测人体后水银在这狭处中断而水银柱并不下降,可从容不迫地读出体温。
1881年,兰利将涂黑的铂带作热敏元件制成辐射热测量计(或电阻测辐射热计)测量辐射热。21世纪教育网
其后,温度计新品种不断涌现。例如,光学高温计(测600℃以上高温)、光度计(测星球表面温度)、红外显微镜(测小至10—100微米的点的温度)、半导体点温度计(测点的温度)、石英振子温度计(可测低温至250间的温度,精度特高)
对10000℃以上的高温,一般温度测量法已无能为力。这时,要用原子光谱的谱线和温度间的关系来计算出温度。
版权所有:高考资源网(www.k s 5 u.com)
版权所有:高考资源网(www.)
高考资源网(www.)
www.
来源:高考资源网
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
w.w.w.k.s.5.u.c.o.m热力学第二定律的微观解释 教案
目标导航
1.了解有序和无序,宏观态和微观态的概念。
2.了解热力学第二定律的微观意义。
3.了解熵的概念,知道熵是反映系统无序程度的物理量。
4.知道随着条件的变化,熵是变化的。
诱思导学21世纪教育网[来源:21世纪教育网]
1.有序和无序
有序:只要确定了某种规则,符合这个规则的就叫做有序。
无序:不符合某种确定规则的称为无序。
无序意味着各处都一样,平均、没有差别,有序则相反。21世纪教育网
有序和无序是相对的。
2.宏观态和微观态
宏观态:符合某种规定、规则的状态,叫做热力学系统的宏观态。
微观态:在宏观状态下,符合另外的规定、规则的状态叫做这个宏观态的微观态。
系统的宏观态所对应的微观态的多少表现为宏观态无序程度的大小。如果一个“宏观态”对应的“微观态”比较多,就说这个“宏观态”是比较无序的,同时也决定了宏观过程的方向性——从有序到无序。
3.热力学第二定律的微观意义
一切自然过程总是沿着分子热运动的无序性增大的方向进行。
4.熵和系统内能一样都是一个状态函数,仅由系统的状态决定。从分子运动论的观点来看,熵是分子热运动无序(混乱)程度的定量量度。
一个系统的熵是随着系统状态的变化而变化的。在自然过程中,系统的熵是增加的。
在绝热过程或孤立系统中,熵是增加的,叫做熵增加原理。对于其它情况,系统的熵可能增加,也可能减小。
从微观的角度看,热力学第二定律是一个统计规律:一个孤立系统总是从熵小的状态向熵大的状态发展,而熵值较大代表着较为无序,所以自发的宏观过程总是向无序程度更大的方向发展。
典例探究
例1 一个物体在粗糙的平面上滑动,最后停止。系统的熵如何变化?
解析:因为物体由于受到摩擦力而停止运动,其动能变为系统的内能,增加了系统分子无规则运动的程度,使得无规则运动加强,也就是系统的无序程度增加了,所以系统的熵增加。
友情提示:本题考查的是对熵增加原理的理解和应用。21世纪教育网
课后问题与练习点击:
1.解析:①全是甜的,对应的微观态1个,宏观态出现的概率是1/32;②全是咸的,对应的微观态1个,宏观态出现的概率是1/32;③1甜4咸,对应的微观态5个,宏观态出现的概率是5/32;④4甜1咸,对应的微观态5个,宏观态出现的概率是5/32;⑤2甜3咸,对应的微观态10个,宏观态出现的概率是10/32;⑥3甜2咸,对应的微观态10个,宏观态出现的概率是10/32;
(3)概率
(4)无序性增大了
3.略
基础训练
w.w.w.k.s.5.u.c.o.m 1.一定质量的气体被压缩,从而放出热量,其熵怎样变化?
2.保持体积不变,将一个系统冷却,熵怎样变化?
多维链接
1.熵与熵增加原理
“熵”是什么?“熵”是德国物理学家克劳修斯在1850年创造的一个术语,他用熵来表示任何一种能量在空间分布的均匀程度。能量分布得越均匀,熵就越大。如果对于我们所考虑的那个系统来说,能量完全均匀地分布,那么这个系统的熵就达到最大值。简单的说,“熵”就是微观粒子的无序程度、能量差别的消除程度。
在克劳修斯看来,在一个封闭的系统中,运动总是从有序到无序发展的。比如,把一块冰糖放入水中,结果整杯水都甜了。这就是说,糖分子的运动扩展到了整杯水中,它们的运动变得更加无序了。对于一个封闭的系统,能量差也总是倾向于消除的。比如,有水位差的两个水库,如果把它们连接起来,那么,重力就会使一个水库的水面降低,而使另一个水库的水面升高,直到两个水库的水面均等,势能取平为止。
克劳修斯总结说,自然界中的一个普遍规律是:运动总是从有序到无序,能量的差异总是倾向变成均等,也即“熵将随着时间而增大”。
2.宇宙热寂说
克劳修斯把他的熵增加原理应用到无限的宇宙中去,得出了“宇宙热寂说”。
“宇宙热寂说”主要有以下几个结论:第一,宇宙的离散度不断增加。第二,所有的机械运动都转化为热运动。第三,热量停止传递。最后我们可以设想出这么一个宇宙的图景:宇宙的有效生命将停止。能量还保存着,但已失去一切活动的能力,它无力再使宇宙运动,正如一潭死水不能使水车转动起来一样,我们将处在一个死寂的、热的宇宙中。
但宇宙真会热寂吗?首先,热力学试验成果是以有限的、孤立封闭的系统为研究对象的。以有限的范围、有限的事件得出的规律能否推广到全宇宙呢?其次,自然界的规律是否同样适用于高级的生命运动呢?第三,黑洞理论指出,宇宙的离散度并非不断增加。宇宙中存在的黑洞在不断地吸引物质。所以说,克劳修斯的“宇宙热寂说”仅仅是一种形而上学的自然观,我们不必杞人忧天地担心宇宙会进入“热寂”。
3.大爆炸理论21世纪教育网
大爆炸宇宙理论认为,宇宙的演化是从物质分布为均匀的状态演化到非均匀状态。宇宙膨胀是引力理论的一个结果,在宇宙范围内,引力是主导的,引力系统的热力学与无引力的热力学会导致十分不同的结论。比如,原来密度均匀的物质由于涨落可产生密度差,在引力占主导的条件下,高密度区域会吸引更多的物质而使密度变得更高,更多的物质会逃离低密度区而使密度变得更低。各种星体就是通过这种非均匀化过程聚集而成的。经典热力学的结论是不考虑引力,在静态空间下证明的,不适用于引力占主导地位的膨胀宇宙。
应该指出,在一个非孤立的、有能量输入的系统中,熵是完全可以减小的。比如地球就是这样一个系统,它源源不断地吸收太阳能,而最终进化出了一个和谐有序的生物世界。
www.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
课题:§7.3 分子间的作用力
学习目标: 1、知道分子间存在间隙
2、知道分子之间同时存在着引力和斥力,其大小与分子间距离有关。
3、知道分子间的距离r<r0时,实际表现的分子力为斥力,此斥力随r的减小而迅速增大;知道分子间的距离r>r0时,实际表现的分子力为引力,此引力随r的增大而减小。
重点难点: 理解分子间存在相互作用并认识分子间相互作用力的基本规律是本节的重点
学习方法: 自主学习,合作完成,点拨引导
学习过程:【生活与科技点滴】
1、 我们把一碗黄豆和一碗绿豆倒在一个比较多盆里,搅和以后在分装在两个碗里,看看会出现什么情况?为什么?
2、 我们去一瓶酒精和一瓶矿泉水,然后把它们倒进同一个比较大的容器里,之后再分装回刚才的两个瓶子里,看看有会出现什么情况?
3、 这个实验说明了什么? [21世纪教育网]
4、 再来观察教材3页图7.1-3照片中的阴影部分表示什么?
5、 一个装有无色空气的广口瓶倒扣在装有红棕色二氧化氮气体的广口瓶上,中间用玻璃板隔开。然后抽去玻璃板,过一段时间可以发现,红棕色的二氧化氮气体运动到上面的瓶中去了,是上面的瓶中的气体运动变成了淡红棕色;上面的无色气体运动到下面去了,使下面的气体颜色变淡。最后发现两种气体混合在一起,上下两瓶气体的颜色变得均匀一致。这个实验说明了什么?
6、 酱油腌制过的鸡蛋可以变色,这说明 ,否则鸡蛋不会变色
7、 扩散现象和布朗运动不但说明 ,同时也说明 ,否则分子便不能运动了。
【导读】仔细研读教材第8页,完成下列任务
【导思】1、分子间虽然有空隙,大量分子却能聚集在一起形成固体或液体,说明 ;用力拉伸物体,物体内要产生反抗拉伸的力,就是因为 。
【做一做】找两块纯净的铅压紧,之后我们要再把它们拉开可就相当困难了,这是为什么?
2、分子间有引力,但分子间还是有空隙,说明他们没有能紧紧吸在一起,这说明 。
用力压缩物体,我们会感受到物体内要产生反抗压缩的力(弹力),这就是物体内
的宏观表现。
3、研究表明,分子间同时存在着 ,
他们的大小都跟分子间的距离有关。研读教材之后,请你把分子间的
作用力与距离的关系图画在右面的虚线框里。
【热点问题】①知道分子间的距离r<r0时,实际表现的分子力为斥力,此斥力随r的减小而迅速增大;②知道分子间的距离r>r0时,实际表现的分子力为引力,此引力随r的增大而减小。21世纪教育网
1、 分子动理论的内容: ; ;
5、热学研究的两个方面是:一方面 ;另一方面
6、统计规律的含义:
7、举一些生活中的实例,说明统计规律的普遍性
【典例1】关于分子间的作用力下面说法正确的是(其中r0为分子间平衡位置之间的距离)( )
A、两个分子间距离小于r0时,分子间只有斥力
B、两个分子间距离大于r0时,分子间只有引力
C、压缩物体时,分子间斥力增大,引力减小
D、拉伸物体时,分子斥力和引力都要减小.
【典例2】表面平滑的太空飞行器在太空中互相摩擦时,很容易发生“黏合”现象,这是由于( )
A、摩擦生热的作用 B、化学反应的作用 C、分子力的作用. D、万有引力的作用
【典例3】分子甲和乙距离较远,设甲固定不动,乙逐渐向甲分子靠近,直到不能再近的这一过程中
A、分子力总是对乙做正功 B、乙总是克服分子力做功
C、先是乙克服分子力做功,然后分子力对乙做正功21世纪教育网
D、先是分子力对乙做正功,然后乙克服分子力做功.21世纪教育网
【典例4】下列现象能说明分子之间有相互作用力的是( )
A、一般固体难于拉伸,说明分子间有引力.
B、一般液体易于流动和变成小液滴,说明液体分子间有斥力
C、用气筒给自行车打气,越打越费力,说明压缩后的气体分子间有斥力
D、高压密闭的钢筒的油沿筒壁渗出,说明钢分子对油分子有斥力
【导练1】 关于分子间的作用力,下列说法不确的是(其中r0为分子间平衡位置之间的距离)( )
A、当分子间距离为r0时,它们之间既没有引力,也没有斥力21世纪教育网
B、分子间的平衡距离r0可以看做分子直径的大小,其数量级为10-10m.
C、两个分子间距离由较远减小到r=r0过程中,分子力先增大,后减小,分子力为引力.
D、两个分子间距离由极小逐渐增大到r=r0过程中,引力和斥力都同时减小,分子力斥力.
【导练2】下列现象可以说明分子间有引力的是( )
A、正负电荷的相互吸引B、磁铁吸引附近的小铁钉
C、光滑的铅块经过挤压后黏在一起.D、用电焊把两块铁焊在一起.
小结:
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
8.1 气体的等温变化学案导学
[学习目标]
1、 知道气体的状态及三个参量。
2、 掌握玻意耳定律,并能应用它解决气体的等温变化的问题、解释生活中的有关现象。
3、 知道气体等温变化的p—v图象,即等温线。
4、 了解用实验探究气体等温变化规律的方法和思路,培养动手操作能力、采集数据能力及运用计算机处理数据的能力。
[自主学习]
一、气体的状态及参量
1、研究气体的性质,用 、 、 三个物理量描述气体的状态。描述气体状态的这三个物理量叫做气体的 。
2、温度:温度是表示物体 的物理量,从分子运动论的观点看,温度标志着物体内部 的剧烈程度。
在国际单位制中,用热力学温标表示的温度,叫做 温度。用符号 表示,它的单位是 ,简称 ,符号是 。
热力学温度与摄氏温度的数量关系是:T= t+ 。
3、体积:气体的体积是指气体 。在国际单位制中,其单位是 ,符号 。体积的单位还有升(L)毫升、(mL)1L= m3,1mL= m3。
4、压强: 叫做气体的压强,用 表示。在国际单位制中,压强的的单位是 ,符号 。气体压强常用的单位还有标准大气压(atm)和毫米汞柱(mmHg),1 atm= Pa= mmHg。
5、气体状态和状态参量的关系:对于一定质量的气体,如果温度、体积、压强这三个量 ,我们就说气体处于一定的状态中。如果三个参量中有两个参量发生改变,或者三个参量都发生了变化,我们就说气体的状态发生了改变,只有一个参量发生改变而其它参量不变的情况是 发生的。
二、玻意耳定律
1、英国科学家玻意耳和法国科学家马略特各自通过实验发现:一定质量的气体,在温度不变的情况下,压强p与体积v成 。这个规律叫做玻意耳定律。
2、玻意耳定律的表达式:pv=C(常量)或者 。其中p1 、v1和p2、v2分别表示气体在1、2两个不同状态下的压强和体积。
三、气体等温变化的p—v图象
一定质量的气体发生等温变化时的p—v图象如图
8—1所示。图线的形状为 。由于它描述
的是温度不变时的p—v关系,因此称它为 线。
一定质量的气体,不同温度下的等温线是不同的。
1、 在图8—1中,一定质量的气体,不同温度下的两条等温线,判断t1、t2的高低。
2、 画出p—图象,说明图线的形状,图线的斜率与温度的关系。
[典型例题]
例1、 如图8—2所示,粗细均匀的U形管的A端是封闭的,B端开口向上。两管中水银面的高度差h=20cm。外界大气压强为76cmHg。求A管中封闭气体的压强。
例2、在温度不变的情况下,把一根长为100cm,上端封闭的玻璃管竖直插入水银槽中,插入后管口到槽内水银面的距离是管长的一半,若大气压为75cmHg,求水银进入管内的长度。
21世纪教育网
例3、如图8—3所示,为一定质量的气体在不同温度下的两条等温线,则下列说法正确的是:( )
A、 从等温线可以看出,一定质量的气体在发生等温
变化时,其压强与体积成反比
B、 一定质量的气体,在不同温度下的等温线是不同的
C、 有图可知T1>T2
D、 有图可知T1<T2
例4、汽车轮胎的容积是2.5×10-2m3,轮胎原有1atm的空气。向轮胎内打气,直至压强增加到8atm为止。应向轮胎里打进1atm的多少体积的空气。(温度不变)
[当堂达标]21世纪教育网[来源:21世纪教育网]
1、 如图8—5所示,一个横截面积为S的圆筒形容器竖直放置,
金属圆板的上表面是水平的,下表面与水平面的夹角为θ,
圆板的质量为M,不计圆板与容器内壁间的摩擦。若大气
压强为P0,则被圆板封闭在容器中的气体压强等于
A、P0+Mgcosθ/S B、P0/cosθ+Mg /Scosθ
C、P0+Mgcos2θ/S D、P0+Mg /S
2、一个气泡从水底升到水面上时,增大2倍,设水的密度为ρ=1×103Kg/m3,大气压强P0=1×105Pa,水底与水面温差不计,求水的深度。(g=10m/s2)
21世纪教育网
3、如图8—6所示,为一定质量的气体在不同温度下的两条p—图线。由图可知( )
A、 一定质量的气体在发生等温变化时,其压强与体积成正比
B、 一定质量的气体在发生等温变化时,其p—图线的延长
线是经过坐标原点的
C、 T1>T2
D、T1<T2
4、喷雾器筒内药液面上方有打气孔,可通过打气筒将外界空气压入筒内液面上方,使被封闭的空气压强增大。设喷雾器筒内上方的空气体积为1.5L,然后用打气筒缓慢向药液上方打气,每次打进1atm的空气0.25L,设打气过程中温度不变,要使喷雾器里的压强达到4atm,打气筒应打气 次。
5、如图8—7所示,若气压式保温瓶内水面与出水口的距离为h时,密封空气体积为V,设水的密度为ρ,大气压强为P0,欲使水从出水口流出,瓶内空气压缩量(即体积减小量)△V至少为多少?(设瓶内弯曲管的容积不计,压水前管内无水,温度保持不变)
[能力训练]
1、下列过程可能发生的是( )
A、气体的温度变化,但压强、体积保持不变
B、气体的温度、压强保持不变,而体积发生变化
C、气体的温度保持不变,而压强、体积发生变化
D、气体的温度、压强、体积都发生变化
2、一定质量的气体发生等温变化时,若体积增大为原来的n倍,则压强变为原来的 倍
A、2n B、n C、1/n D、2/n
3、在温度均匀的水池中,有一空气泡从池底缓缓地向上浮起,在其上浮的过程中,泡内气体(可看成理想气体)( )
A、内能减少,放出热量
B、内能增加,吸收热量
C、对外做功,同时吸热,内能不变
D、对外做的功等于吸收的热量
4、如图8—8所示,一定质量的气体由状态A变到状态B再变到状态C的过程,A、C两点在同一条双曲线上,则此变化过程中( )
A、从A到B的过程温度升高
B、从B到C的过程温度升高
C、从A到C的过程温度先降低再升高
D、A、C两点的温度相等
5、如图8—9所示,两端开口的均匀玻璃管竖直插入水银槽中,管中有一段水银柱h1封闭一定质量的气体,这时管下端开口处内外水银面高度差为h2,若保持环境温度不变,当外界压强增大时,下列分析正确的是( )
A、h2变长 B、h2变短
C、h1上升 D、h1下降
6、一个容积是10升的球,原来盛有1个大气压的空气,现在使球内气体压强变为5个大气压,应向球内打入 升1个大气压的空气(设温度不变)
7、抽气机对某容器抽气,已知被抽容器的容积是抽气机最大活动容积的两倍,在按最大活动容积抽气2次后,容器中气体的压强变为原来的 倍。
[21世纪教育网
[学后反思]
课后作业:
问题与练习1、2、4
参考答案
[自主学习]
1、 气体的状态及参量
1、 压强、体积、温度;状态参量
2、 冷热程度,分子热运动;热力学,T,开尔文,开,K;273.15K
3、 分子所能占据空间的体积,米3,m3,10-3,10-6
4、 气体作用在器壁单位面积上的压力,P,帕斯卡,Pa,1.015×105,760
5、 都不变,不会
2、 玻意耳定律
1、 反比
2、 P1V1=P2V2
3、 气体等温变化的P—V图象
双曲线,等温
1、 t2>t1
2、 通过原点的直线,斜率越大温度越高
[典型例题]
例1、56cmHg 例2、25cm 例3、A、B、D 例4、1.75×10-1m3
[当堂达标]
1、 D 2、10m 3、B、D 4、18 5、△V≥ρghv/(ρ0+ρgh)
[能力训练]
1、C、D 2、C 3、C、D 4、A、D 5、D 6、40 7、4/9
v
p
o
t1
t2
图8—1
A
B
h
图8—2
v
p
o
T1
T2
图8—3
θ
图8—5
P
1/v
图8—6
0
T2
T1
h
V
图8—7
V
C
O
P
B
A
图8—8
图8—9
h2
h1
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
第十章 热力学定律
单元教材分析
本章以焦耳的实验为基础,研究了功和内能变化、热和内能变化之间的关系,总结出做功和热传递是改变系统内能的两种方式,两种方式对改变物体的内能是等效的,但是这两种方式又存在着重要区别。在此基础上,进一步提出了热力学第一定律和能量守恒定律。能量守恒定律使我们认识到“第一类永动机”不可能制成,使我们认识到一切与热现象有关的客观自然过程都是不可逆的,热力学第二定律就是反映这种宏观自然过程的方向性的定律。热力学第二定律的两种表述是等价的,同时又使我们认识到“第二类永动机”也不可能制成。熵的概念使我们认识到热力学第二定律的微观本质,能量在数值上虽然守恒,但其转移和转化却具有方向性,因而我们要合理开发能源,要节约能源,减小能源利用过程中对环境的破坏,保护环境,树立可持续发展的观念,开发清洁、高效的新能源。
本章的特点是要求学生有较强的理论联系实际的能力,在学习过程中,不断提高理解能力、分析能力;会用热力学第一定律分析系统内能的变化,会用能量守恒观点解释有关的自然现象,了解熵是反映系统无序程度的物理量。
第1节 功和内能
目标导航
1.知道什么是绝热过程。
2.从热力学的角度认识内能的概念。
3.理解做功与内能改变的数量关系。
4.知道内能和功的单位是相同的。
诱思导学
1.绝热过程:物质系统与外界没有热量交换的情况下进行的物理过程。
即系统不从外界吸收热量,也不向外界放出热量。
2.功与系统内能改变的关系。[来源:21世纪教育网]
做功可以改变系统的内能。
①外界对系统做功,系统的内能增加
在绝热过程中,内能的增量就等于外界对系统做的功
即ΔU=U2-U1=W
②系统对外界做功,系统的内能减少。
在绝热过程中,系统对外界做多少功,内能就减少多少
即W=-ΔU
3.功是系统内能转化的量度。
4.在国际单位制中,内能和功的单位都是焦耳( J )。
典例探究
例1 下列哪个实例说明做功改变了系统的内能
A.用热水袋取暖 B.用双手摩擦给手取暖
C.把手放在火炉旁取暖 D.用嘴对手呵气给手取暖
解析:双手摩擦做功,使手的内能增加,感到暖和;A、C、D都是通过热传递来改变系统的内能。选项B正确。
答案:B
友情提示:注意分清做功和热传递两个过程的不同
例2 一个系统内能增加了20J。如果系统与周围环境不发生热交换,周围环境需要对系统做多少功?
解析:由功与系统内能改变的关系,则W=ΔU=20J
答案:20J
友情提示:注意功与内能改变的关系。
课后问题与练习点击21世纪教育网
1.解析:在分子动理论中,系统中所有分子热运动动能和分子间相互作用的分子势能的总和,叫做系统的内能;在热力学中,存在一个只与依赖于系统自身状态的物理量,由于这个物理量在两个状态之间的差别与外界在绝热过程中对系统所做的功相联系,而功是能量转化的量度,我们把这个物理量称为系统的内能。
由于在绝热过程中对系统做功,系统的温度、体积等状态就要发生变化,所有分子热运动的动能和分子间相互作用的分子势能就要发生变化,系统的内能就要发生变化,因此分子动理论是从微观的角度来定义内能,热力学是从宏观的角度来定义内能,但两者是一致的。
2.解析:如钻木取火;用铁锉来锉工件,工件和铁锉都会变热;用铁锤来打击铁块,铁锤和铁块都会变热等都说明做功可以改变系统的内能。
3.解析:在图10.1-2中,是机械能转化为内能;在图10.1-3中,是电能转化为内能。
4.解析:气体在真空中绝热膨胀时对外界不做功。
气体在空气中绝热膨胀时对外界做功。做功所需的能量来源于气体原来储存的内能21世纪教育网21世纪教育网
基础训练
1.下列实例中,属于做功来增加物体内能的是 ( )
A.铁棒放在炉子里被烧红
B.锯条锯木头时会发热
C.古时候的猿人钻木取火
D.冬天在阳光下取暖
2.下列现象属于用做功的方法改变系统内能的是 ( )
A.放在火炉边的物体温度升高了
B.把一杯热水放在冷水中冷却
C.用铁锤锻打工件,工件会发热
D.拉弯的弓把箭射出去
3.下列过程中,由于做功而使系统内能增加的是 ( )
A.把铁丝反复弯曲,弯曲处温度升高
B.烧开水时,蒸汽将壶盖顶起
C.铁块在火炉中被加热
D.铁球从空中自由下落(不计空气阻力)
4.用下列方法改变物体的内能,属于做功方式的是 ( )
A.搓搓手会感到手暖和些 B.汽油机气缸内被压缩的气体
C.车刀切下的炽热的铁屑 D.物体在阳光下被晒热
多维链接
1.用打气筒打气时,过一会筒壁会热起来,这是为什么?[来源:21世纪教育网]
解析:打气时活塞压缩空气做功,使筒内空气内能增加,温度升高;同时克服活塞与筒壁间的摩擦做功也使筒壁内能增加,温度升高。
2.焦耳与热力学
焦耳,英国物理学家。出身于曼彻斯特附近索尔福一个啤酒厂主家庭。青年时经常用业余时间进行有关电的、化学的相互作用和机械作用之间联系的实验,并得到化学家道尔顿的鼓励和支持。焦耳的贡献主要有三个方面。①首先研究了电流的热效应,指出导体中一定时间所生成的热量与导体的电阻及电流平方之积成正比。由于不久楞次也独立地发现了同样的规律,所以被称为焦耳——楞次定律②从1840~1879年用了近40年的时间钻研和测定了热量与机械功的当量关系,最后得到的热功当量数值是1卡=4.2焦耳。焦耳的实验工作以大量确凿的证据否定了热质说,为能量守恒与转化定律奠定了实验基础,因此焦耳是能量守恒与转化定律的发现者之一。③为了研究气体的内能,焦耳于1845年做了焦耳气体自由膨胀实验。发现一般气体的内能是温度和体积的函数,而理想气体的内能仅仅是温度的函数,与体积无关。为了纪念焦耳对科学发展的贡献,国际计量大会将能量、功、热量的单位命名为焦耳。
3.课本P62“做一做”
提示:研究对象是瓶内被封闭的气体;在瓶塞跳出的过程中,系统对外界做功;这个过程中系统的内能减少;从瓶塞跳出获得动能可以推断出它的内能减少。
1.解析:锯条锯木头与钻木取火时都会做功从而使物体的内能增加,故B、C正确。
答案:B、C
2.解析:用铁锤锻打工件,铁锤对工件做功,使它的内能增加,选C
答案:C
3.解析:选项B是系统对外界做功,内能减小,选项C是吸热使内能增加,而选项D内能不变。故选A。
答案:A
4.解析:选项D是吸热使内能增加,A、B、C正确。
答案:A、B、C
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
课题:10、3热力学第一定律 能量守恒定律
学习目标:
知识与技能:
1、 理解热力学第一定律。
2、 能运用热力学第一定律解释自然界能量的转化、转移问题。
3、 理解能量守恒定律,知道能量守恒定律是自然界普遍遵从的基本规律。
4、 通过能量守恒定律的学习,认识自然规律的多样性和统一性。
5、 知道第一类永动机是不能实现的。
过程与方法:促进学生自主学习,让学生积极参与、乐于探究、勇于实验、勤于思考,培养学生的科学探究能力。
情感态度与价值观:注重激发学生学习物理的情趣和振兴中华的使命感和责任感
重点:热力学第一定律
难点:能量守恒定律
学习过程:
一、热力学第一定律。
1、 焦耳的实验表明什么问题?
2、写出热力学第一定律的文字表述。
2、 写出热力学第一定律的数学表达式。
3、 回答课本p55思考与讨论的问题。
4、 总结△U,Q,W几个量取正、负的意义。
做功W 热量Q 内能的改变ΔU
取正值“+”
取负值“-”
二、能量守恒定律。
5、认真阅读教材后,写出能量守恒定律的内容。
6、被恩格斯列为19世纪三大发现有哪些事件?
三、永动机不可能制成21世纪教育网
7、什么是第一类永动机?
8、第一类永动机为什么不能制成?
课堂小结:
(1)应用热力学第一定律解题的一般步骤:
①根据符号法则写出各已知量(W、Q、ΔU)的正、负;
②根据方程ΔU=W+Q求出未知量;
③再根据未知量结果的正、负来确定吸热、放热情况或做功情况。
(2)⑴.自然界存在着多种不同形式的运动,每种运动对应着一种形式的能量。如机械运动对应机械能;分子热运动对应内能;电磁运动对应电磁能。
⑵.不同形式的能量之间可以相互转化。摩擦可以将机械能转化为内能;炽热电灯发光可以将电能转化为光能。
⑶.能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变。这就是能量守恒定律。
(4).热力学第一定律、机械能守恒定律都是能量守恒定律的具体体现。
(5).能量守恒定律适用于任何物理现象和物理过程。
(6). 能量守恒定律的重要意义
第一,能量守恒定律是支配整个自然界运动、发展、变化的普遍规律,学习这个定律,不能满足一般理解其内容,更重要的是,从能量形式的多样化及其相互联系,互相转化的事实出发去认识物质世界的多样性及其普遍联系,并切实树立能量既不会凭空产生,也不会凭空消失的观点,作为以后学习和生产实践中处理一切实际问题的基本指导思想之一。第二,宣告了第一类永动机的失败。
例1.一定量的气体在某一过程中,外界对气体做了8×104J的功,气体的内能减少了1.2×105J,则下列各式中正确的是 ( )
A.W=8×104J,ΔU =1.2×105J ,Q=4×104J
B.W=8×104J,ΔU =-1.2×105J ,Q=-2×105J
C.W=-8×104J,ΔU =1.2×105J ,Q=2×104J
D.W=-8×104J,ΔU =-1.2×105J ,Q=-4×104J
例2.一定质量的气体,在压缩过程中外界对气体做功300J,但这一过程中气体的内能减少了300J,问气体在此过程中是吸热还是放热?吸收(或放出)多少热量?
例3. 一定质量的气体从外界吸收了4.2×105J的热量,同时气体对外做了6×105J的功,问:
(1)物体的内能是增加还是减少?变化量是多少?
(2)分子势能是增加还是减少?
(3)分子的平均动能是增加还是减少?
达标训练:
1、 p58问题与练习1:
21世纪教育网
2、 p58问题与练习2:
(1)
(2)
3、 p58问题与练习3:
4、 p58问题与练习4:
5、 p58问题与练习5:
6、 p58问题与练习6:
7、关于物体内能的变化,以下说法正确的是 ( )
A.物体吸热,内能一定增大
B.物体对外做功,内能可能增大
C.物体吸收热量,同时对外做功,内能可能不变
D.物体放出热量,同时对外做功,内能可能不变
8、自由摆动的秋千摆动幅度越来越小,下列说法正确的是 ( )21世纪教育网
A.秋千的机械能守恒 B.秋千的能量正在消失
C.只有动能和重力势能的相互转化 D.减少的机械能转化为内能,但总能量守恒
9、下列各物体在所经历的过程中,内能增加的有 ( )
A.在光滑斜面上由静止释放而下滑的物体
B.水平飞行并射穿木块的子弹
C.在绝热的条件下被压缩的气体
D.在光滑水平面上运动的两个小球,碰撞后以共同的速度运动
10、在热力学第一定律的表达式ΔU=W+Q中关于ΔU、W、Q各个物理量的正、负,下列说法中正确的是 ( )[21世纪教育网
A.外界对物体做功时W为正,吸热时Q为负,内能增加时ΔU为正21世纪教育网
B.物体对外界做功时W为负,吸热时Q为正,内能增加时ΔU为负
C.物体对外界做功时W为负,吸热时Q为正,内能增加时ΔU为正
D.外界对物体做功时W为负,吸热时Q为负,内能增加时ΔU为负
11、对于在一个大气压下100℃的水变成100℃的水蒸气的过程中,下列说法正确的是 ( )
A.水的内能增加,对外界做功,一定是吸热
B.水的内能不变,对外界做功,从外界吸热
C.水的内能减少,对外界不做功,向外界放热
D.水的内能增加,对外界做功,向外界放热
12、为使一个与外界保持良好热交换状态的物体的内能能够明显变化,以下方法可行的是( )
A.以较大的功率对物体做功 B. .以较小的功率对物体做功
C.该物体以较大的功率对外做功 D. 该物体以较小的功率对外做功
13、图10.3-1所示是一定质量的理想气体从状态A经B至C的P—图线,则在此过程中( )
A.气体的内能改变 B.气体的体积增大
C.气体向外界放热 D.气体对外界做功 图10.3-1
学后反思:
www.
1/V
P
.
.
.
C
B
A
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
6 能源和可持续发展
三维目标
知识与技能
1.理解能量耗散和品质降低的概念。
2.理解能源的利用实际上是能量的转化和转移过程。
3.了解常规能源的使用带来的环境污染。
4.了解开发新能源的方法和意义。
过程与方法
从日常生活现象了解能源,了解常规能源的储量与人类需求的关系
情感、态度与价值观
知道能源和可持续发展的关系,培养学生探究知识的欲望和学习兴趣
教学重点难点
重点:理解能源的概念和能源的使用与环境污染的关系.
难点:能源的开发和利用与环境的关系.
教学方法:探究教学
教具:多媒体课件
教学过程设计:
引入新课
能源和环境是两个全球所关注的问题,能源是现代社会生活的重要物质基础,而常规能源的有限储藏量与人类的需求存在矛盾,同时大量消耗常规能源带来了环境问题,正确地协调和解决这一矛盾和问题是生活在地球上每一个人的职责.
新课教学
(一) 能量耗散和品质降低
由热力学第二定律知,能量的转移和转化具有方向性。21世纪教育网
1.能量耗散:系统的内能流散到周围环境中,没有办法把这些内能收集起来加以利用,这种现象叫做能量耗散。
2.品质降低:能量从高度有用的形式降级为不大可用的形式叫品质降低。
能量在利用过程中,总是由高品质的能量最终转化为低品质的内能。[来源:21世纪教育网]
从被利用的价值来看,内能较之机械能、电能等,是一种低品质的能量。由此可知,能量耗散虽然不会使能的总量减少,却会导致能量品质的降低。煤、石油、天然气等能量,在利用它们的时候,高品质的能量释放并最终转化为低品质的内能。所以我们要节约能源.
(二)能源与人类社会发展
能源是社会存在与发展永远不可或缺的必需品.是国民经济运动的物质基础.它与材料、信息构成现代社会的三大支柱。能源科技的每一次突破,都带来了生产力的巨大飞跃和社会的进步。
远古时代火的使用,使人们脱离了茹毛饮血的时代
18世纪末蒸汽机的发明和完善,带动了第一次产业革命和资本主义社会的成长.
内燃机的发展,推动了19世纪末、20世纪初开始的机械化和电气化进程.
20世纪中叶,蒸汽轮机和燃气轮机的发展为大规模发电和航空事业奠定了基础.
(三) 能源与环境
常规能源的大量消耗带来了环境问题
(1)温室效应:温室效应是由于大气里温室气体(二氧化碳、甲烷等)含量增大而形成的.石油和煤炭燃烧时产生二氧化碳.
(2)酸雨:大气中酸性污染物质,如二氧化硫、二氧化碳、氢氧化物等,在降水过程中溶入雨水,使其成为酸雨.煤炭中含有较多的硫,燃烧时产生二氧化硫等物质.
(3)光化学烟雾:氮氧化合物和碳氢化合物在大气中受到阳光中强烈的紫外线照射后产生的二次污染物质——光化学烟雾,主要成分是臭氧.
另外常规能源燃烧时产生的浮尘也是一种污染.
常规能源的大量消耗所带来的环境污染既损害人体健康,又影响动植物的生长,破坏经济资源,损坏建筑物及文物古迹,严重时可改变大气的性质.使生态受到伤害.
(四)开发新能源
(1).新能源:指目前尚未被人类大规模利用而有待进一步研究、开发和利用的能源,如核能、太阳能、风能、地热能、海洋能、氢能等。
(2).无穷无尽的太阳能:太阳以其巨大的、无穷无尽的辐射能形式提供地球最清洁的能源能。
①数量巨大:太阳辐射功率为3.9×1026瓦。能到达地球表面的太阳能每年约为1.3×1010吨标准煤,是目前全世界所消耗的各种能量总和的1×104倍。
②时间长久:根据天文学的研究结果,可知太阳系已存在大约5×109年左右,估计尚可继续维持大约1010年之久。
③清洁安全:太阳能素有“干净能源”和“安全能源”之称,它不仅毫无污染,也毫无危险。
6.永葆青春的风能:风能是由于太阳辐射造成地球各部分受热不均匀,而引起的空气流动所产生的能量。整个地球接受到的太阳能辐射能约有0.2%被转换成风能,全球的风能总量估计有1.6×1022J。这是一个巨大的潜在的能源宝库,如果1%被利用,即可满足人类对能量的全部需求。
7.丰富干净的海洋能:包括潮汐能、波浪能、海流能、温差能等,它们不仅可以再生,还具有不污染环境的优点。据科学家估计,世界海洋能源总量为40多万亿千瓦,这些能量超过目前世界能源消费的一万倍,如果开发出其中一小部分,即可满足人类对能源的全部需求。
8.深藏不露的地热能:地球本身是一个巨大的天然储热库。地热能指地球内部可释出来的热量。据估计,从地球内部每年传到地球表面的热量,相当于370亿吨标准煤燃烧时所放出的热量。
9.未来能源的希望——核能:在当前开发和利用的新能源中,核能尤其重要。核能包括裂变能和聚变能,其中受控热核聚变的原料氘和氚可取自海洋,足够人类使用几十亿年,是取之不尽的能源。
典例探究
例1 某地的平均风速为5m/s,已知空气密度是1.2kg/m3,有一风车,它的车叶转动时可形成半径为12m的圆面,如果这个风车能将此圆内10%的气流的动能转变为电能,则该风车带动的发电机功率是多大?
解析:首先可以求出在时间t内作用于风车的气流质量为 m=лr2υtρ,这些气流的动能为mυ2;转变的电能为,故风车带动发电机发电的功率为
代入数据以后得P=3.4kW
友情提示:从能量守恒定律入手,注意能量转移的方向性是解答本题的关键。
例2据《中国环境报》报道:从一份科技攻关课题研究结果显示,我国酸雨区已占国土面积的40%以上,研究结果还表明,我国农业每年因遭受酸雨而造成的经济损失高达15亿多元.为了有效控制酸雨,目前国务院已批准《酸雨控制区和二氧化硫污染控制区划分方案》等法规.
(1)在英国进行的一项研究结果表明:高烟囱可有效地降低地面浓度.在20世纪的60~70年代的10年间,由发电厂排放的增加了35%,但由于建造高烟囱的结果,地面浓度降低了30%之多.请你从全球环境保护的角度,分析这种作法是否可取?说其理由. ___________________________________________________________________
(2)用传统的煤、石油做燃料,其主要缺点是什么?与传统的煤、石油做燃料相比,哪种物质可以作为新能源?主要优点是什么缺点又是什么?
【解析】本题涉及能源、环保等社会热点问题,我们要从化学视角去关注这些与生态环境、人们的健康密切相关的问题.环境污染的恶果是直接影响人类的延续和发展,酸雨是影响全球的问题.
减少酸雨的产生是要杜绝污染源,而不是建造高烟囱转移污染.而杜绝酸雨的污染途径一般有三个:一是对煤、石油等传统能源进行处理,使其在燃烧过程中不产生;二是对污染物进行回收利用,三是开辟新能源.而目前最理想的能源为氢能源,因为它原料来源丰富,燃烧的产物又是水,既不污染环境,又可以循环利用.
(1)不可取,因为的排放总量并没有减少,进一步形成的酸雨仍会造成对全球的危害.
(2)煤、石油是不易再生的化工燃料,其资源是有限的,其次燃烧后产生的、等严重污染大气,进而形成酸雨,燃烧后产生的又会造成温室效应.第一,可以用水作为原料来制取;其次,燃烧时放热多,放出的热量约为同质量汽油的3倍;第三,氢燃料的最大优点是燃烧产物为水,不易污染环境,还可循环使用.
[小结]常规能源储存量有限,在利用过程中会带来环境污染,新能源的开发和利用成为当务之急.
21世纪教育网[来源:21世纪教育网]
[来源:21世纪教育网]
1,3,5
1,3,5
1,3,5
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
物体是由大量分子组成的
要 点:理解油膜法测分子直径的方法
知道阿伏加德罗常数的数值和单位,能进行相应的计算
知道一般分子的直径的数量级和质量数量级
教学难点:宏观到微观的思维方法的改变和适应21世纪教育网
考试要求:高考Ⅰ(物质是由大量分子组成的),会考
课堂设计:鉴于学生在初中已接触分子运动的基本内容,而又有一定化学(原子)知识,不必再对这个理论的形成进行讲述。课堂教学针对学生认为不可能(用简单方法测到分子直径)的实验引起学生的兴趣,并详细介绍实验中的“放大”作用,体会怎样通过宏观量来(间接)测量微观量,使得在没有实验、多媒体的配合下有一个新奇的印象。通过对分子的具体计算和比较、抽象思维和理想化模型的处理,对看不见摸不着很微小的分子(直径数量级、质量数量级)有个初步的了解。利用阿伏加德罗常数进行数量计算后,通过小结点明思维方法的不同,激发学习兴趣。[来源:21世纪教育网]
解决难点:学生对由宏观量表示微观量的认识并不难,但这种简单原理应用中有极高的思维要求,尽管学生可以通过结合化学知识、阿伏加德罗常数对微小量进行计算,但其真正体会分子小到什么程度还需要相应的练习来理解和巩固。
学生现状:学生知道分子很小,但没有建立数量级,无法表示小到什么程度;
不能理解油膜法测分子直径的实验原理和意义;
首次涉及测定微小量中的思维能力缺乏准备。21世纪教育网
培养能力:分析综合能力,理解推理能力,实验能力
思想教育:唯物主义世界观,爱国主义,自信和自强
课堂教具:直玻管(一端封闭)、水杯、红色水、酒精、小烧杯、滴管
备 注:学生实验《用油膜法估测分子的大小》不安排在夏令营中进行
一、引入(8’)
从今天开始我们将学习热学,热学知识主要分为两部分:第一部分是从微观角度研究热学问题,即从分子动理论的观点认识热现象;第二部分是从宏观角度研究热学问题,即从能量的观点认识热现象。这一章先学第一部分,即从分子动理论的观点来认识热现象。
【问】 首先谈谈你们对分子的认识,你认可三大内容的理由?
①物质由大量分子组成
证明:微粒间有空隙
——能找到这种空隙就能证明微粒的存在
演示水和酒精混合后体积减小
②分子在不停地作无规则运动
气味的扩散、溶解、墨水的扩散
③分子间有相互的作用力
(注:物理学中把原子、分子、离子统称为分子,区别与化学中的分子)
研究分子运动与原来高一知识是不同的:宏观与微观,个体与群体,实验与想象。本节课我们就来学习构成物质的微粒的特点。
二、分子大小的测定(20’)
【问】你们认为分子很小,小到什么程度?
1厘米3的水,分子数为3.35×1022个,若均匀分布地球表面,则5亿个/米2;若像拉面一样拉成一列,长度是地球太阳间的90倍。
若我们吸满一个口腔的空气,以1亿个/秒的速度吸入气体分子,达到1大气压需要2200个世纪。
分子极其微小,不但用肉眼不能直接看到它们,就是用光学显微镜也看不到它们。现在有了能放大几亿倍的扫描隧道显微镜,用它能观察到物质表面的分子。 怎样才能知道分子的大小呢?
【思考】现在我们有一个集装箱的乒乓球,如何测得一个球的高度?
请注意:微观的“球”是不能直接测得高度的
阅读课本测定分子大小的方法(油膜法), 思考
这个实验中主要推荐的是一种科学的思维方式:怎样用宏观量表示微观量。
【思考题】
1、 用什么方法来测定分子的大小和直径?
2、 怎样才能用此方法来测分子的直径和大小?
3、 用此方法测分子直径的科学依据是什么?
分析:1、粗略测定法:单分子层油膜法测分子直径
油膜法测定分子直径: 对应具体的数据计算
①取一滴油,测出其体积 1厘米3
②稀释(放大) 加溶剂至 200厘米3
③取稀释液1滴 如125滴为1厘米3,此时
含油为1/(200·125)厘米3
④扩展成油膜 水面尽量扩展
⑤测油膜面积 单层划格,得S
一般油膜能达到1/4~1/3米2,以割补法求所占格的面积
⑥设分子为球形且单层排列 理想化模型
⑦计算厚度(直径) D=1/(200·125·S)厘米
一般在10-10m数量级上
2、测定原理d=V/s
3、科学依据:
①油分子看成球形
②将油膜看成单分子油膜
③不考虑油分子之间的间隙
注:建立理想化分子模型是物理研究的重要方法
4、分子直径的数量级:10-10m
举例:水分子直径的数量级 4×10-10m;氢气分子直径2.3×10-10m。
分子是很小的,如果把水分子跟乒乓球比就相当于乒乓球跟地球大小相比,每个物体分子的数目都大的惊人。
例如:1cm3水中约有3.3×1022m个分子,假如全世界的人不分男女老少都来数这些分子,每人每秒数一个也需要大约17万年才能数完。
例:一滴石油体积为10-3cm3,把它滴在平静的湖面上,扩散成面积为2.5m2的单分子层油膜,则石油的半径为多少?(2×10-10m)[来源:21世纪教育网]
三、阿伏加德罗常数(10’)
【问】怎么理解“摩尔”?
物质量的单位——国际单位制中的基本单位之一
1971年第14届国际计量大会决定,把0.012克C12所含的结构粒子数定义为1摩尔。
即:NA=6.02×1023mol-1
单位:个/摩尔——类似箱、打、年、光年等单位量
摩尔有两个含义:①能表示一种(特定)物质的质量[来源:21世纪教育网]
②能表示所含的结构粒子数
它是一个很大的数,但用在微观上,并不一定表示很多的量(如体积、质量等)
因为分子很小,所以构成一般(宏观上能测量到的)物体,需要很大的数目,NA就是起这样作用的一个单位量。
这是一个极其重要的物理量,它时宏观量和微观量之间的联系桥梁:
例:已知1摩尔的水质量0.018千克,求水分子质量
m=0.018千克/NA=3.0×10-26千克
微观的极小量构成了宏观,宏观的测量证实了微观(辩证关系)
无法直接测得的分子大小、分子质量跟宏观的摩尔体积、摩尔质量联系在一起。
四、小结和练习(5’)
分子很小:直径数量级10-10m
分子很轻:质量数量级10-26~10-30kg
重要常数:NA=6.02×1023mol-1
阅读材料《纳米技术》
作业:课本P71 练习一(检查板演的列式)
摩尔质量:1摩尔该种物质分子的集合总质量(与物质有关),千克/摩尔
若以克/摩尔为单位,则摩尔质量恰好是其分子量
摩 尔 数:一定物质量中含有的粒子数是摩尔的倍数
教学札记:
1.
2.
3.
水
d
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
10.3、热力学第一定律 能量守恒定律
教学目的
1.认识物质的运动形式有多种,对应不同运动形式的运动有不同形式的能,各种形式的能在一定条件下可以相互转化
2. 进一步掌握能的转化和守恒定律,并了解能的转化和守恒定律的意义
3.运用公式△U=W+Q分析有关问题并具体进行计算
教学重点 热力第一定律
教学难点 能量守恒
教 具 多媒体课件
教学过程
复习提问
问:物体做什么样的运动具有机械能?机械能转化和守恒定律的内容是什么?
新课教学
1、 热力学第一定律
分析下列特殊情况:
①如果物体只与外有热交换,没有做功,外界传给物体4J热量物体的内能增加了多少?物体若向外界传出了4J热量,物体内能如何变化?21世纪教育网
结论:在没有做功情况下,物体与外界间传递热量Q,物体内能变化为 △U,则△U=Q,为了在此表达式中能反映物体对外界是吸热不是放热,作出规定:吸热Q取正值,放热Q取负值,由此可知:物体吸热,内能增加,放热,内能减少。
②如果物体和外界不发生热交换,当外界对物体做了10J功,物体内能增加了多少?当物体对外做了10J功,物体内能又如何变化?
结论:在无热交换情况下,△U=W(对外做功时,W取负值)
③如果物体内能在改变的过程中,既有热传递又有做功,例如外界对物体做了10J的功,同时物体吸收4J热量,物体的内能如何变化?
④又如,外界对物体做10J功,物体放热4J物体内能又如何变化?又物体对外界做了10J功,物体吸热4J,物体放热4J物体内能又如何变化?
综上所述:
在能的转化转移过程中,一个物体,如果没有吸收热量也没有放出热量,那么外界对它做多少功它的内能就增加多少;如果它既没有对外做功,外界也没有对其做功,则它从外界吸收多少热量,它的内能就增加多少。
用△U表示物体内能的增量,用Q表示吸收的热量,用W表示外界对物体所做的功,那么:△U=Q+W
上式就是热力学第一定律。21世纪教育网
[例]一定量的气体从外界吸收了2.6×105J的热量,内能增加了4.2×105J,外界对物体做了多少功?21世纪教育网
解:根据热力学第一定律得,
W=△U-Q=4.2×105J-2.6×105J=1.6×105J
二.能的转化
课件 ( http: / / www.21cnjy.com / )展示,举例说明物体的每一种运动形式都有一种对应的能
机械运动――机械能 热运动――内能
电荷运动――电能 化学运动――化学 ( http: / / www.21cnjy.com / )能
生物运动――生物 ( http: / / www.21cnjy.com / )能 原子核内部的运动――原子能
各种形式的能可以相互转化:
机械能中的动能和势能可互相转化(自由落体运动)[来源:21世纪教育网]
机械能可以与内能相互转化(摩擦生热,消耗了机械能通过做功的形式转化为内能;热机中的气体推动活塞做功把气体内能转化为机械能)
其它形式有能也可以转化为内能,如电流通过导体时,把电能转化为内能;炽热的灯丝发光,又把内能转化成光能;燃烧时,把化学能转化成内能)
三.能量守恒定律[来源:21世纪教育网]
内容:能量既不会凭空产生,也不会凭空消失,它只能众一种形式转化为另一种
形式,或者从一个物体转移到别的物体,在转化和转移的过程中其总量不变。
四.永动机不可能制成
指导学生阅读课本P81第七自然段,讨论:第一类永动机是否真的能永远运动下去?
分析课本图11-11提供的一种永动机的设计方案,指出它不可能持续运动的原因:虽然右边每个球的力矩大,但球的个数少,左边的每个球产生的力矩虽然小,但是球的个数多,于是轮子不会持续转动下去对外做功,只会摆动几下便停在图中所画的位置上。
通过课件 ( http: / / www.21cnjy.com / )展示历史上几种永动机的设计图,指出:不消耗能量的机器从来没有制成功过。
能量不能创生,工程技术的任务在于设法找出合理利用能源途径和减少能量损耗,而不是去研制永动机。
版权所有:高考资源网(www.k s 5 u.com)
高考资源网(www.)
www.
来源:高考资源网
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
4、气体热现象的微观意义
??
??一、教学目标
??1.在物理知识方面的要求:
??(1)能用气体分子动理论解释气体压强的微观意义,并能知道气体的压强、温度、体积与所对应的微观物理量间的相关联系。
??(2)能用气体分子动理论解释三个气体实验定律。
??2.通过让学生用气体分子动理论解释有关的宏观物理现象,培养学生的微观想像能力和逻辑推理能力,并渗透“统计物理”的思维方法。
??3.通过对宏观物理现象与微观粒子运动规律的分析,对学生渗透“透过现象看本质”的哲学思维方法。
??二、重点、难点分析21世纪教育网
??1.用气体分子动理论来解释气体实验定律是本节课的重点,它是本节课的核心内容。
??2.气体压强的微观意义是本节课的难点,因为它需要学生对微观粒子复杂的运动状态有丰富的想像力。
??三、教具
??计算机控制的大屏幕显示仪;自制的显示气体压强微观解释的计算机软件。
??四、主要教学过程
??(一)引入新课
??
21世纪教育网
21世纪教育网
21世纪教育网
设问:气体分子运动的特点有哪些?
??(1)气体间的距离较大,分子间的相互作用力十分微弱,可以认为气体分子除相互碰撞及与器壁碰撞外不受力作用,每个分子都可以在空间自由移动,一定质量的气体的分子可以充满整个容器空间。
??(2)分子间的碰撞频繁,这些碰撞及气体分子与器壁的碰撞都可看成是完全弹性碰撞。气体通过这种碰撞可传递能量,其中任何一个分子运动方向和速率大小都是不断变化的,这就是杂乱无章的气体分子热运动。
??(3)从总体上看气体分子沿各个方向运动的机会均等,因此对大量分子而言,在任一时刻向容器各个方向运动的分子数是均等的。
??(4)大量气体分子的速率是按一定规律分布,呈“中间多,两头少”的分布规律,且这个分布状态与温度有关,温度升高时,平均速率会增大。
??今天我们就是要从气体分子运动的这些特点和规律来解释气体实验定律。
??2、关于气体压强微观解释的教学
?首先通过设问和讨论建立反映气体宏观物理状态的温度(T)、体积(V)与反映气体分子运动的微观状态物理量间的联系:
?温度是分子热运动平均动能的标志,对确定的气体而言,温度与分子运动的平均速率有关,温度越高,反映气体分子热运动的平均速率
?? 体积影响到分子密度(即单位体积内的分子数),对确定的一定质量的理想气体而言,分子总数N是一定的,当体积为V时,单位体积内
??
??
n越小。
??然后再设问:气体压强大小反映了气体分子运动的哪些特征呢?
??这应从气体对容器器壁压强产生的机制来分析。
??先让学生看用计算机模拟气体分子运动撞击器壁产生压强的机制:
??显示出如图1所示的图形:
??
??
向同学介绍:如图所示是一个一端用活塞(此时表示活塞部分的线条闪烁3~5次)封闭的气缸,活塞用一弹簧与一固定物相连,活塞与气缸壁摩擦不计,当气缸内为真空时,弹簧长为原长。如果在气缸内密封了一定质量的理想气体。由于在任一时刻气体分子向各方向上运动的分子数相等,为简化问题,我们仅讨论向活塞方向运动的分子。大屏幕上显示图2,即图中显示的仅为总分子数的合,(图中显示的“分子”暂呈静态)先看其中一个(图2中涂黑的“分子”闪烁2~3次)分子与活塞碰撞情况,(图2中涂黑的“分子”与活塞碰撞且以原速率反弹回来,活塞也随之颤抖一下,这样反复演示3~5次)再看大量分子运动时与活塞的碰撞情况:
??大屏幕上显示“分子”都向活塞方向运动,对活塞连续不断地碰撞,碰后的“分子”反弹回来,有的返回途中与别的“分子”相撞后改变方向,有的与活塞对面器壁相碰改变方向,但都只显示垂直于活塞表面的运动状态,而活塞被挤后有一个小的位移,且相对稳定,如图3所示的一个动态画面。时间上要显示15~30秒定格一次,再动态显示15~30秒,再定格。
??得出结论:由此可见气体对容器壁的压强是大量分子对器壁连续不断地碰撞所产生的。
??进一步分析:若每个分子的质量为m,平均速率为v,分子与活塞的碰撞是完全弹性碰撞,则在这一分子与活塞碰撞中,该分子的动量变化为2mv,即受的冲量为2mv,根据牛顿第三定律,该分子对活塞的冲量也是2mv,那么在一段时间内大量分子与活塞碰撞多少次,活塞受到的总冲量就是2mv的多少倍,单位时间内受到的总冲量就是压力,而单位面积上受到的压力就是压强。由此可推出:气体压强一方面与每次碰撞的平均冲量2mv有关,另一方面与单位时间内单位面积受到的碰撞次数有关。对确定的一定质量的理想气体而言,每次碰撞的平均冲量,2mv由平均速率v有关,v越大则平均冲量就越大,而单位时间内单位面积上碰撞的次数既与分子密度n有关,又与分子的平均速率有关,分子密度n越大,v也越大,则碰撞次数就越多,因此从气体分子动理论的观点看,气体压强的大小由分子的平均速率v和分子密度n共同决定,n越大,v也越大,则压强就越大。
??3.用气体分子动理论解释实验三定律
??(1)教师引导、示范,以解释玻意耳定律为例教会学生用气体分子动理论解释实验定律的基本思维方法和简易符号表述形式。
??范例:用气体分子动理论解释玻意耳定律。
一定质量(m)的理想气体,其分子总数(N)是一个定值,当温度(T)保持不变时,则分子的平均速率(v)也保持不变,当其体积(V)增大几倍时,则单位体积内的分子数(n)变为原来的几分之一,因此气体的压强也减为原来的几分之一;反之若体积减小为原来的几分之一,则压强增大几倍,即压强与体积成反比。这就是玻意耳定律。
??书面符号简易表述方式:
??
?
21世纪教育网
?小结:基本思维方法(详细文字表述格式)是:依据描述气体状态的宏观物理量(m、p、V、T)与表示气体分子运动状态的微观物理量(N、n、v)间的相关关系,从气体实验定律成立的条件所述的宏观物理量(如m一定和T不变)推出相关不变的微观物理量(如N一定和v不变),再根据宏观自变量(如V)的变化推出有关的微观量(如n)的变化,再依据推出的有关微观量(如v和n)的变与不变的情况推出宏观因变量(如p)的变化情况,结论是否与实验定律的结论相吻合。若吻合则实验定律得到了微观解释。
??(2)让学生体验上述思维方法:每个人都独立地用书面详细文字叙述和用符号简易表述的方法来对查理定律进行微观解释,然后由平时物理成绩较好的学生口述,与下面正确答案核对。
书面或口头叙述为:一定质量(m)的气体的总分子数(N)是一定的,体积(V)保持不变时,其单位体积内的分子数(n)也保持不变,当温度(T)升高时,其分子运动的平均速率(v)也增大,则气体压强(p)也增大;反之当温度(T)降低时,气体压强(p)也减小。这与查理定律的结论一致。
??用符号简易表示为:
??(3)让学生再次练习,用气体分子动理论解释盖·吕萨克定律。再用更短的时间让学生练习详细表述和符号表示,然后让物理成绩为中等的或较差的学生口述自己的练习,与下面标准答案核对。
??一定质量(m)的理想气体的总分子数(N)是一定的,要保持压强(p)不变,当温度(T)升高时,全体分子运动的平均速率v会增加,那么单位体积内的分子数(n)一定要减小(否则压强不可能不变),因此气体体积(V)一定增大;反之当温度降低时,同理可推出气体体积一定减小。这与盖·吕萨克定律的结论是一致的。
??用符号简易表示为:
??
??(二)课堂小结
??1.本节课我们首先明确了气体状态参量与相关的气体分子运动的微观物理量间的关系着重从气体分子动理论的观点认识到气体对容器壁的压强是大量分子连续不断地对器壁碰撞产生的,且由分子的平均速率和分子密度共同决定其大小。
??2.本节课我们重点学习了用气体分子动理论的观点来解释气体三个实验定律的方法。
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
?8.3、 气体·理想气体的状态方程
教学目标
1.在物理知识方面的要求:[来源:21世纪教育网]
(1)初步理解“理想气体”的概念。
(2)掌握运用玻意耳定律和查理定律推导理想气体状态方程的过程,熟记理想气体状态方程的数学表达式,并能正确运用理想气体状态方程解答有关简单问题。
(3)熟记盖·吕萨克定律及数学表达式,并能正确用它来解答气体等压变化的有关问题。
2.通过推导理想气体状态方程及由理想气体状态方程推导盖·吕萨克定律的过程,培养学生严密的逻辑思维能力。
3.通过用实验验证盖·吕萨克定律的教学过程,使学生学会用实验来验证成正比关系的物理定律的一种方法,并对学生进行“实践是检验真理唯一的标准”的教育。
重点、难点分析
1.理想气体的状态方程是本节课的重点,因为它不仅是本节课的核心内容,还是中学阶段解答气体问题所遵循的最重要的规律之一。
2.对“理想气体”这一概念的理解是本节课的一个难点,因为这一概念对中学生来讲十分抽象,而且在本节只能从宏观现象对“理想气体”给出初步概念定义,只有到后两节从微观的气体分子动理论方面才能对“理想气体”给予进一步的论述。另外在推导气体状态方程的过程中用状态参量来表示气体状态的变化也很抽象,学生理解上也有一定难度。
教学过程
引入新课
玻意耳定律是一定质量的气体在温度不变时,压强与体积变化所遵循的规律,而查理定律是一定质量的气体在体积不变时,压强与温度变化时所遵循的规律,即这两个定律都是一定质量的气体的体积、压强、温度三个状态参量中都有一个参量不变,而另外两个参量变化所遵循的规律,若三个状态参量都发生变化时,应遵循什么样的规律呢?
教学过程设计
一.关于“理想气体”概念的教学
设问:(1)玻意耳定律和查理定律是如何得出的?即它们是物理理论推导出来的还是由实验总结归纳得出来的?答案是:由实验总结归纳得出的。
(2)这两个定律是在什么条件下通过实验得到的?老师引导学生知道是在温度不太低(与常温比较)和压强不太大(与大气压强相比)的条件得出的。
讲解:在初中学过使常温常压下呈气态的物质(如氧气、氢气等)液化的方法是降低温度和增大压强。这就是说,当温度足够低或压强足够大时,任何气体都被液化了,当然也不遵循反映气体状态变化的玻意耳定律和查理定律了。而且实验事实也证明:在较低温度或较大压强下,气体即使未被液化,它们的实验数据也与玻意耳定律或查理定律计算出的数据有较大的误差。
P21世纪教育网(×1.013×105Pa)21世纪教育网 pV值(×1.013×105PaL)
H2 N2 O2 空气
1 1.000 1.000 1.000 1.000
100 1.0690 0.9941 0.9265 0.9730
200 1.1380 1.0483 0.9140 1.0100
500 1.3565 1.3900 1.1560 1.3400
1000 1.7200 2.0685 1.7355 1.9920
出示表格(1):
(1)所示是在温度为0℃,压强为1.013×105Pa的条件下取1L几种常见实际气体保持温度不变时,在不同压强下用实验测出的pV乘积值。从表中可看出在压强为1.013×105Pa至1.013×107Pa之间时,实验结果与玻意耳定律计算值,近似相等,当压强为1.013×108Pa时,玻意耳定律就完全不适用了。
这说明实际气体只有在一定温度和一定压强范围内才能近似地遵循玻意耳定律和查理定律。而且不同的实际气体适用的温度范围和压强范围也是各不相同的。为了研究方便,我们假设这样一种气体,它在任何温度和任何压强下都能严格地遵循玻意耳定律和查理定律。我们把这样的气体叫做“理想气体”。
二.推导理想气体状态方程
对于一定质量的理想气体的状态可用三个状态参量p、V、T来描述,这三个状态参量中只有一个变而另外两个参量保持不变的情况是不会发生的。换句话说:若其中任意两个参量确定之后,第三个参量一定有唯一确定的值。它们共同表征一定质量理想气体的唯一确定的一个状态。根据这一思想,我们假定一定质量的理想气体在开始状态时各状态参量为(p1,V1,T1),经过某变化过程,到末状态时各状态参量变为(p2,V2,T2),这中间的变化过程可以是各种各样的,现假设有两种过程:
第一种:从(p1,V1,T1)先等温并使其体积变为V2,压强随之变为pc,此中间状态为(pc,V2,T1)再等容并使其温度变为T2,则其压强一定变为p2,则末状态(p2,V2,T2)。
第二种:从(p1;V1,T1)先等容并使其温度变为T2,则压强随之变为p′c,此中间状态为(p′c,V1,T2),再等温并使其体积变为V2,则压强也一定变为p2,也到末状态(p2,V2,T2)。
结论:一定质量的理想气体的压强、体积的乘积与热力学温度的比值是一个常数。
三.推导并验证盖·吕萨克定律(法国)
设问:(1)若上述理想气体状态方程中,p1=p2,方程形式变化成怎样的形式?
(2)p1=p2 本身说明气体状态变化有什么特点?
答案:说明等效地看作气体做等压变化。(即压强保持不变的变化)
由此可得出结论:当压强不变时,一定质量的理想气体的体积与热力学温度成正比。
演示实验:实验装置如图所示,此实验保持压强不变,只是利用改变烧杯中的水温来确定三个温度状态t1、t2、t3,这可从温度计上读出,再分别换算成热力学温度T1、T2、T3,再利用气体实验器上的刻度值作为达热平衡时,被封闭气体的体积值,分别为V1、V2、V3,填入下表:
出示投影幻灯片(3):
t1 t2 t3
T1 T2 T3
V1 V2 V3
这几个值会近似相等,从而证明了盖·吕萨克定律。
课堂练习
例题 一水银气压计中混进了空气,因而在27℃,外界大气压为758毫米汞柱时,这个水银气压计的读数为738毫米汞柱,此时管中水银面距管顶80毫米,当温度降至-3℃时,这个气压计的读数为743毫米汞柱,求此时的实际大气压值为多少毫米汞柱?
解:分别写出两个状态的状态参量:
p1=758-738=20mmHg V1=80Smm3(S是管的横截面积)。T1=273+27=300 K
p2=p-743mmHg V2=(738+80)S-743S=75Smm3
T2=273+(-3)=270K
解得 p=762.2 mmHg
版权所有:高考资源网(www.k s 5 u.com)
高考资源网(www.)
www.
来源:高考资源网
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
7.3、分子间的相互作用力
教学目标 :1、知道分子同时存在着相互作用的引力和斥力,表现出的分子力是引力和斥力的合力。2、知道分子力随分子间距离变化而变化的定性规律,知道分子间距离是时分子力为零,知道的数量级。3、了解在固体、液体、气体三种不同物质状态下,分子运动的特点。4、通过一些基本物理事实和实验推理得出分子之间有引力,同时有斥力。这种以事实和实验为依据求出新的结论的思维过程,就是逻辑推理。通过学习这部分知识,培养学生的推理能力。
重点、难点的分析
1. 重点内容有两个,一是通过分子之间存在间隙和分子之间有引力和斥力的一些演示实验和事实,推理论证出分子之间存在着引力和斥力;二是分子间的引力和斥力都随分子间距离的变化而变化,而分子力是引力和斥力的合力,能正确理解分子间作用力与距离关系的曲线的物理意义。
2. 难点是形象化理解分子间作用力跟分子间距离关系的曲线的物理意义。
教学过程
引入新课
分子动理论是在坚实的实验基础上建立起来的。我们通过单分子油膜实验、离子显微镜观察钨原子的分布等实验,知道物质是由很小的分子组成的,分子大小在m数量级。我们又通过扩散现象和布朗运动等实验知道了分子是永不停息地做无规则运动的。分子动理论还告诉我们分子之间有相互作用力,这结论的实验依据是什么 分子间相互作用力有什么特点 这是今天要学习的问题。
教学过程设计
一、哪些现象说明分子间有空隙?
扩散、布朗运动、石墨原子、酒精和水相混合1+1≠2
二 为什么分子不能紧贴在一起?分子间有斥力
三 为什么有空隙还能形成固体和液体?分子间有引力
四 分子间的引力和斥力如何变化?
1、 引力和斥力同时存在
2、 半径r增加,引力和斥力同时减小,斥力减小的快
3、 半径r减小,引力和斥力同时增加,斥力增加的快
五 分子力何时表现出引力、斥力?
对比弹簧振子的振动(类似)
六.分子间引力和斥力的大小跟分子间距离的关系。
(1)经过研究发现分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图中两条虚线所示。
(2)由于分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况(如果取斥力的方向为正)。当两个分子间距在图象横坐标距离时,分子间的引力与斥力平衡,分子间作用力为零,的数量级为m,相当于位置叫做平衡位置。
分子间距离当r<时,分子间引力和斥力都随距离减小而增大,但斥力增加得更快,因此分子间作用力表现为斥力。展示幻灯片图2。当r>时,引力和斥力都随距离的增大而减小,但是斥力减小的更快,因而分子间的作用力表现为引力,但它也随距离增大而迅速减小,当分子距离的数量级大于m时,分子间的作用力变得十分微弱,可以忽略不计了。
七.固体、液体和气体的分子运动情况。
分子动理论告诉我们物体中的分子永不停息地做无规则运动,它们之间又存在着相互作用力。分子力的作用要使分子聚集起来,而分子的无规则运动又要使它们分散开来。由于这两种相反因素的作用结果,有固体、液体和气体三种不同的物质状态。
(1)提问学生:固体与液体、气体比较有什么特征
总结学生回答的结果,说明固体为什么有一定的形状和体积呢 因为在固体中,分子间距离较近,数量级在m,分子之间作用很大,绝大部分分子只能在各自平衡位置附近做无规则的振动。
(2)液体分子运动情况。
固体受热温度升高,最终熔化为液体,对大多数物质来说,其体积增加10%,也就是说分子之间距离大约增加3%。因此,液体分子之间作用力很接近固体情况,分子间有较强的作用力,分子无规则运动主要表现为在平衡位置附近振动。但由于分子间距离有所增加,使分子也存在移动性,所以液体在宏观上有一定的体积,而又有流动性,没有固定的形状。
(3)液体汽化时体积扩大为原来的1000倍,说明分子间距离约增加为原来,即10倍。因此气体分子间距离数量级在m,分子间除碰撞时有相互作用力外,彼此之间一般几乎没有分子作用力,分子在两次碰撞之间是自由移动的。所以气体在宏观上表现出没有一定的体积形状,可以充满任何一种容器。
课堂练习:21世纪教育网21世纪教育网
1.用分子动理论的知识解释下列现象:
(1) 洒在屋里的一点香水,很快就会在屋里的其他地方被闻到。
(2)水和酒精混合后,总体积减小。
(3)高压下的油会透过钢壁渗出。
(4)温度升高,布朗运动及扩散现象加剧。
(5)固体不容易被压缩和拉伸。
2.把一块洗净的玻璃板吊在橡皮筋的下端,使玻璃板水平地接触水面(如图3)。如果你想使玻璃板离开水面,用手向上拉橡皮筋,拉动玻璃板的力是否大于玻璃板受的重力 动手试一试,并解释为什么
课堂上,表演后让学生回答。
正确答案是:拉力会大于玻璃板的重力。玻璃板离开水面时水会发生分裂,由于水分子之间有引力存在,外力要克服这些分子引力造成外界拉力大于玻璃板的重力。玻璃板离开水面后,可以看到玻璃板下表面上仍有水,说明玻璃板离开水时,水层发生断裂。
21世纪教育网
21世纪教育网
[来源:21世纪教育网]
版权所有:高考资源网(www.k s 5 u.com)
r0=10 -10m
r<r0
引力<斥力
表现斥力
r=r0
引力=斥力
合力=0
r>r0
引力>斥力
表现引力
r=10 r0
r=10 r0
引力=斥力=0
合力=0
斥力
引力
合力
r0
高考资源网(www.)
www.
来源:高考资源网
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
课题 9.1 固 体 课型21世纪教育网 新授
教学目标与知识点 (一)知识与技能 1.知道固体可分为晶体和非晶体两大类,2 .知道晶体和非晶体在外形与物理性质上的差别。3.知道晶体可分为单晶体和多晶体,通常说的晶体及性质是指单晶体,多晶体的性质与非晶体类似。4.能用晶体的空间点阵说明其物理性质的各向异性。(二)过程与方法通过观察实验现象加强学生对晶体和非晶体的性质了解(三)情感、态度与价值观扩展学生的眼界,引起对研究固体性质的兴趣和求知欲望
教学重点 晶体和非晶体在外形与物理性质上的差别。
教学难点21世纪教育网 能用晶体的空间点阵说明其物理性质的各向异性。
教学方法 教师演示实验、启发、引导,学生讨论、交流。
教学过程
教学内容 教师教学设计[来源:21世纪教育网]
(一)引入新课[来源:21世纪教育网]有两组常见的物质:一组是玻璃、蜂蜡、硬塑料等;另一组是盐粒、砂糖、石英。两类固体物质的外表各有什么特征?(二)进行新课 1.晶体和非晶体 固体可分为晶体和非晶体两大类例如各种金属、食盐、明矾、云母、硫酸铜、雪花、方解石、石英等都是晶体;玻璃、松香、沥青、蜂蜡、橡胶、塑料等都是非晶体。一、晶体与非晶体的区别主要表现在: (1)晶体具有天然的规则的几何形状,而非晶体无此特点。例如:食盐粒都是正方体,硫酸铜也是正方体,雪花都是六角形的、明矾外形的八面体,水晶石为六面棱柱。(2)晶体在不同方向上物理性质不同,而非晶体各方向上物理性质相同。例如,将石蜡均匀涂在云母片上和玻璃板上,用烧红的钢针接触没有涂蜡的另一面。会看到云母上的石蜡熔化后的部分为椭圆形,玻璃板的导热性各方向相同,参看课本P33上的图9.1-5。 又如,硫酸铜具有单向导电性,方解石发生双折射现象,也表明它们分别在电学性质、光学性质上各方向不同。又如,晶体有一定的熔点,而非晶体是缓慢变为液体的过程,无熔点。有无一定的熔点是宏观上区分晶体和非晶体的重要依据,当不能从外形及各向异性来鉴别是否是晶体时,只有根据有无一定熔点才能作出准确判断。 注意:并不是每种晶体在各种物理性质上都会表现出各向异性二、晶体又可分为单晶体和多晶体,上述的两条晶体的特点一般说是单晶体的特点,多晶体中小晶粒的排列无规则、杂乱无章,各向异性的物理性质无从显示出来。三、多晶体与非晶体的区别:多晶体与非晶体相同点:无规则的几何外形同,物理性质各向同性多晶体与非晶体不相同点:(1)组成晶体的晶粒却有规则的几何形状,这是多晶体与非晶体在内部结构上的区别。(2)多晶体具有一定的熔点,而非晶体没有 2、晶体的微观结构单晶体和非晶体性质上的不同,可以从它们的微观结构不同做出说明。组成单晶体的微粒(分子、原子或离子)在空间是按照一定的规律排列的。彼此相隔一定的距离排列成整齐的行列。通常把这样的微观结构称为空间点阵。例如食盐的空间点阵如下图所示,这正是盐粒不管大小都是正方体的原因所在。方解石对光产生双折射现象的原因,是因为它在各个方向上的折射率不同所致。云母片各方向上导热性质不同,是由其空间点阵决定的。晶体的宏观性质是由晶体的微观结构决定的,可以通过晶体的微体结构初步解释晶体外形的规则性和物理性质的各向异性[来源:21世纪教育网]教学中几个注意的问题:(1)同一物质的微粒能够形成不同的空间结构,即物质的同分异构体,对碳的不同空间结构来说明这一点看课本P34上图9.1-7 的图片:石墨和金刚石的微观结构。(2)晶体的微观结构模型并不代表晶体的真实情况,它只是组成晶体的物质微粒有规则排列的示意图。(3)要认识到物质是晶体还是非晶体并不是绝对的,以便扩大学生的眼界,避免出现片面的绝对化的错误认识。(三)课堂小结(1)本节课讲解了晶体、非晶体、多晶体的之间的区别。(2)我们从微观的结构模型解释晶体的各向异性的属性。(四)作业: 教学案
教后感
www.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
第八章
8.1、气体的等温变化 玻意耳定律
教学目标
1.在物理知识方面要求:(1)知道什么是等温变化;(2)知道玻意耳定律是实验定律;掌握玻意耳定律的内容和公式;知道定律的适用条件。(3)理解气体等温变化的 p-V 图象的物理意义;(4)知道用分子动理论对玻意耳定律的定性解释;(5)会用玻意耳定律计算有关的问题。
2.通过对演示实验的研究,培养学生的观察、分析能力和从实验得出物理规律的能力。
3.渗透物理学研究方法的教育:当需要研究两个以上物理量间的关系时,先保持某个或某几个物理量不变,从最简单的情况开始研究,得出某些规律,然后再进一步研究所涉及的各个物理量间的关系。
重点、难点分析:1.重点是通过实验使学生知道并掌握一定质量的气体在等温变化时压强与体积的关系,理解 p-V 图象的物理意义,知道玻意耳定律的适用条件。2.学生往往由于“状态”和“过程”分不清,造成抓不住头绪,不同过程间混淆不清的毛病,这是难点。在目前这个阶段,有相当多学生尚不能正确确定密闭气体的压强。
教具:1.定性演示一定质量的气体在温度保持不变时压强与体积的关系
橡皮膜(或气球皮)、直径为5cm左右两端开口的透明塑料筒(长约25cm左右)、与筒径匹配的自制活塞、20cm×6cm薄木板一块。
2.较精确地演示一定质量的气体在温度保持不变时压强与体积的关系实验仪器。
教学过程
(一)引入新课
对照牛顿第二定律的研究过程先m一定,a∝F;再F一定,a∝,现在我们利用这种控制条件的研究方法,研究气体状态参量之间的关系。
(二)教学过程设计
一.一定质量的气体保持温度不变,压强与体积的关系
实验前,请同学们思考以下问题:
①怎样保证气体的质量是一定的?
??②怎样保证气体的温度是一定的? (密封好;缓慢移活塞,筒不与手接触。)
二.较精确的研究一定质量的气体温度保持不变,压强与体积的关系
(1)介绍实验装置
??①研究哪部分气体?
??② A管中气体体积怎样表示?(l·S)
??③ 阀门a打开时,A管中气体压强多大?阀门a闭合时A管中气体压强多大?(p0)21世纪教育网
??④欲使A管中气体体积减小,压强增大,B管应怎样操作?写出A管中气体压强的表达式(p=p0+h)。
??⑤ 欲使A管中气体体积增大,压强减小,B管应怎样操作?写出A管中气体压强的表达式(p=p0-h)。
??⑥ 实验过程中的恒温是什么温度?为保证A管中气体的温度恒定,在操作B管时应注意什么?(缓慢)
(2)实验数据采集
??压强单位:mmHg;体积表示:倍率法 环境温度:室温 大气压强:p0= mmHg21世纪教育网
① A管中气体体积减小时(基准体积为V)
顺序 1 2 321世纪教育网 4 5
体积 V … …
压强
② A管中气体体积增大时(基准体积为V′)
顺序 1 2 3 4 5
体积 V′ 2V′ 3V′ … …
压强
(3)实验结论
??实验数据表明:
??一定质量的气体,在温度不变的条件下,体积缩小到原来的几分之一,它的压强就增大到原来的几倍;
??一定质量的气体,在温度不变的条件下,体积增大到原来的几倍,它的压强就减小为原来的几分之一。
??改用其他气体做这个实验,结果相同。
三.玻意耳定律
??(1)定律内容表述之一
??一定质量的气体,在温度不变的情况下,它的压强跟体积成反比。[来源:21世纪教育网]
??数学表达式
??设初态体积为V1,压强为p1;末态体积为V2,压强为p2。有 p1V1=p2V2
??(2)定律内容表述之二
??一定质量的气体,在温度不变的情况下,它的压强跟体积的乘积是不变的。
??数学表达式 pV=恒量
??(3)用图象表述玻意耳定律
??纵轴代表气体的压强;横轴代表气体的体积;选取恰当的分度和单位。
??讨论图线该是什么形状,并尝试把它画出来。(等温线)
??(4)关于玻意耳定律的讨论
??① 图象平面上的一个点代表什么?曲线AB代表什么?线段AB代表什么?
??② pV=恒量一式中的恒量是普适恒量吗?
??引导作出一定质量的气体,在不同温度下的几条等温线,比较后得出结论:恒量随温度升高而增大。
??③下面的数据说明什么?
??一定质量的氦气
压强 1atm 500atm 1000 atm
实测体积 1m3 1.36/500m3 2.068 5/1 000m3
计算体积 1/500m3 1/1 000m3
玻意耳定律的适用条件:压强不太大(和大气压比较)、温度不太低(和室温比较)的任何气体。
??④ 你能推导出用密度形式表达的玻意耳定律吗?
??⑤ 你能用分子动理论对玻意耳定律作出解释吗?[21世纪教育网
??例题 某个容器的容积是10L,所装气体的压强是20×105Pa。如果温度保持不变,把容器的开关打开以后,容器里剩下的气体是原来的百分之几?设大气压是1.0×105Pa。
?解 设容器原装气体为研究对象。
??初态 p1=20×105Pa V1=10L ?T1=T
??末态 p2=1.0×105Pa V2=?L T2=T
??由玻意耳定律 p1V1=p2V2得
??
??即剩下的气体为原来的5%。
版权所有:高考资源网(www.k s 5 u.com)
版权所有:高考资源网(www.)
高考资源网(www.)
www.
来源:高考资源网
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
热和内能 教案
一、教学目标
1.在物理知识方面要求:
(1)知道分子的动能,分子的平均动能,知道物体的温度是分子平均动能大小的标志。
(2)知道分子的势能跟物体的体积有关,知道分子势能随分子间距离变化而变化的定性规律。
(3)知道什么是物体的内能,物体的内能与哪个宏观量有关,能区别物体的内能和机械能。
(4)知道做功和热传递在改变物体内能上是等效的,知道两者的区别,了解热功参量的意义。21世纪教育网
2.在培养学生能力方面,这节课中要让学生建立:分子动能、分子平均动能、分子势能、物体内能、热量等五个以上物理概念,又要让学生初步知道三个物理规律:温度与分子
平均动能关系,分子势能与分子间距离关系,做功与热传递在改变物体内能上的关系。因此,
教学中着重培养学生对物理概念和规律的理解能力。
3.渗透物理学方法的教育:在分子平均动能与温度关系的讲授中,渗透统计的方法。在分子间势能与分子间距离的关系上和做功与热传递关系上都要渗透归纳推理方法。
二、重点、难点分析
1.教学重点是使学生掌握三个概念(分子平均动能、分子势能、物体内能),掌握三个物理规律(温度与分子平均动能关系、分子势能与分子之间距离关系、热传递与功的关系)。
2.区分温度、内能、热量三个物理量是教学上的一个难点;分子势能随分子间距离变化的势能曲线是教学上的另一难点。
三、教具
1.压缩气体做功,气体内能增加的演示实验:
圆形玻璃筒、活塞、硝化棉。
2.幻灯及幻灯片,展示分子间势能随分子间距离变化而变化的曲线。
四、主要教学过程21世纪教育网
(一)引入新课
我们知道做机械运动的物体具有机械能,那么热现象发生过程中,也有相应的能量变化。另一方面,我们又知道热现象是大量分子做无规律热运动产生的。那么热运动的能量与大量的无规律运动有什么关系呢?这是今天学习的问题。
(二)教学过程的设计
1.分子的动能、温度
物体内大量分子不停息地做无规则热运动,对于每个分子来说都有无规则运动的动能。由于物体内各个分子的速率大小不同,因此,各个分子的动能大小不同。由于热现象是大量分子无规则运动的结果,所以研究个别分子运动的动能是没有意义的。而研究大量分子热运动的动能,需要将所有分子热运动动能的平均值求出来,这个平均值叫做分子热运动的平均动能。
学习布朗运动和扩散现象时,我们知道布朗运动和扩散现象都与温度有关系,温度越高,布朗运动越激烈,扩散也加快。依照分子动理论,这说明温度升高后分子无规则运动加剧。用上述分子热运动的平均动能来说明,就是温度升高,分子热运动的平均动能增大。如果温度降低,说明分子热运动的平均动能减小。因此从分子动理论观点来看,温度是物体分子热运动的平均动能的标志。“标志”的含义是指物体温度升高或降低,表示了物体内部大量分子热运动的平均动能增大或减小。温度不变,就表示了分子热运动的平均动能不变。其他宏观物理量如时间、质量、物质种类都不是分子热运动平均动能的标志。但是,温度不是直接等于分子的平均动能。
另一方面,温度只与物体内大量分子热运动的统计意义上的平均动能相对应,对于个别分子或几十个、几百个分子热运动的动能大小与温度是没有关系的。
我们知道,温度这个物理量在宏观上的意义是表示物体冷热程度,而它又是大量分子热运动平均动能大小的标志,这是温度的微观含义。
2.分子势能
分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。
如果分子间距离约为10-10m数量级时,分子的作用力的合力为零,此距离为r0。
当分子距离小于r0时,分子间的作用力表现为斥力,要减小分子间的距离必须克服斥力做功,因此,分子势能随分子间距离的减小而增大。这种情形与弹簧被压缩时弹性势能增大是相似的。如图1中弹簧压缩,弹性势能Ep增大。
如果分子间距离大于r0时,分子间的相互作用表现为引力,要增大分子间的距离必须克服引力做功,因此,分子势能随分子间的距离增大而增大。这种情况与弹簧被拉伸时弹性势能增大是相似的。如图1中弹簧拉伸,Ep增大。
从以上两种情况综合分析,分子间距离以r0为数值基准,r不论减小或增大,分子势能都增大。所以说,分子在平衡位置处是分子势能最低点。如果分子间距离是无限远时,取分子势能为零值,分子间距离从无限远逐渐减少至r0以前过程,分子间的作用力表现为引力,而且距离减少,分子引力做正功,分子势能不断减小,其数值将比零还小为负值。当分子间距离到达r0以后再减小,分子作用力表现为斥力,在分子间距离减小过程中,克服斥力做功,使分子势能增大。其数值将从负值逐渐变大至零,甚至为正值。分子势能随分子间距离r的变化情况可以在图2的图象中表现出来。从图中看到分子间距离在r0处,分子势能最小。
既然分子势能的大小与分子间距离有关,那么在宏观上什么物理量能反映分子势能的大小变化情况呢?如果对于确定的物体,它的体积变化,直接反映了分子间的距离,也就反映了分子间的势能变化。所以分子势能的大小变化可通过宏观量体积来反映。
3.物体的内能
(1)物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。
提问学生:宏观量中哪些物理量是分子热运动的平均动能和分子势能的标志?
根据学生的回答,引导到一个确定的物体,分子总数是固定的,那么这物体的内能大小是由宏观量——温度和体积决定的。如果不是确定的物体,那么物体的内能大小是由质量、温度、体积和物态来决定。
课堂讨论题:下列各个实例中,比较物体的内能大小,并说明理由。
①一块铁由15℃升高到55℃,比较内能。
②质量是1kg50℃的铁块与质量是0.1kg50℃的铁块,比较内能。
③质量是1kg100℃的水与质量是1kg100℃的水蒸气,比较内能。
(2)物体机械运动对应着机械能,热运动对应着内能。任何物体都具有内能,同时还可以具有机械能。例如在空中飞行的炮弹,除了具有内能,还具有机械能——动能和重力势能。
提问学生:一辆汽车的车厢内有一气瓶氧气,当汽车以 60km/h行驶起来后,气瓶内氧气的内能是否增加?
通过此问题,让学生认识内能是所有分子热运动动能和分子势能之总和,而不是分子定向移动的动能。另一方面,物体机械能增加,内能不一定增加。
4.物体的内能改变的两种方式
(1)列举锯木头和用砂轮磨刀具,锯条、木头和刀具温度升高,说明克服摩擦力做功,可以使物体的内能增加。如果外力对物体做功全部用于物体内能改变的情况下,外力做多少功,物体的内能就改变多少。如果用W表示外界对物体做的功,用ΔE表示物体内能的变化,那么有W=ΔE。功的单位是焦耳,内能的单位也是焦耳。
演示压缩空气,硝化棉燃烧。说明外力压缩空气过程,对气体做功,使气体的内能增加,温度升高到棉花的燃点而使其燃烧。
以上实例说明做功可以改变物体的内能。
(2)在炉灶上烧热水,火炉烤热周围物体,这些物体温度升高内能增加。这些实例说明依靠热传递方式也可以使物体的内能改变。物体吸收热量,内能增加。物体放出热量,物体的内能减少。如果传递给物体的热量用Q表示,物体内能的变化量是ΔE,那么,Q=ΔE。
热量的计算公式有:Q=mcΔt,Q=ML,Q=mλ(后面的两个公式分别是物质熔解和汽化时热量的计算式)。热量的单位是焦耳,过去的单位是卡。
所以做功和热传递是改变物体内能的两种方式。
(3)做功和热传递对改变物体的内能是等效的。
一杯水可以用加热的方法(即热传递方式)传递给它一定的热量,使它从某一温度升高到另一温度。这过程中这杯水的内能有一定量的变化。也可以采取做功的方式,比如用搅拌器在水中不断搅拌,也可以使这杯水从相同的初温度升高到同一高温度,这样,水的内能会有相同的变化量。两种方式不同,得到的结果是相同的。除非事先知道,否则我们无法区别是哪种方式使这杯水的内能增加的。
因此,做功和热传递对改变物体的内能是等效的。
(4)虽然做功和热传递对改变物体的内能是等效的,但是这两种方式的物理过程有本质的区别。做功使物体内能改变的过程是机械能转化为内能的过程。而热传递的过程只是物体之间内能的转移,没有能量形式的转化。21世纪教育网
课上练习:[来源:21世纪教育网]
1.判断下面各结论是否正确?
(1)温度高的物体,内能不一定大。
(2)同样质量的水在100℃时的内能比60℃时的内能大。
(3)内能大的物体,温度一定高。
(4)内能相同的物体,温度一定相同。
(5)热传递过程一定是从内能大的物体向内能小的物体传递热量。
(6)温度高的物体,含有的热量多,或者说内能大的物体含有的热量多。
(7)摩擦铁丝发热,说明功可以转化为热量。
参考答案:(1)、(2)是对的。
2.在标准大气压下,100℃的水吸收热量变成同温度的水蒸气的过程,下面的说法是否正确?
(1)分子热运动的平均动能不变,因而物体的内能不变。
(2)分子的平均动能增加,因而物体的内能增加。
(3)所吸收的热量等于物体内能的增加量。
(4)分子的内能不变。
参考答案:以上四个结论都不对。
(三)课堂小结21世纪教育网
(1)这节课上新建立了三个物理概念:分子热运动的平均动能、分子势能、内能。要知道这三个概念的确切含义,更为重要的是能够区分温度、内能、热量,知道内能与机械能的区别和联系。
(2)要掌握三个物理规律:分子热运动的平均动能与温度的关系、分子间的相互作用力与分子间距离的关系、做功与热传递在使物体内能改变上的关系。
(四)说明
这节课是概念性很强的课,又不是从物理实验或物理现象直接得出结论的课。对于概念要知道引入的目的、确切含义、与其他概念的区别和联系。所以课上要讲分子热运动平均动能、内能、热量等概念的意义,并且要通过实际例题,让学生通过判断、推理来加深对这些概念的认识
w.w.w.k.s.5.u.c.o.m
www.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
8.2 气体的等容变化和等压变化
[学习目标]
1、 掌握查理定律及其应用,理解P—T图象的意义
2、 掌握盖 吕萨克定律及其应用,理解V—T图象的意义
[自主学习]
1、 气体的等容变化
1、法国科学家查理在分析了实验事实后发现,一定质量的气体在体积不变时,各种气体的压强与温度之间都有线性关系, 从图8—11甲可以看出,在等容过程中,压强P与摄氏温度t是一次函数关系,不是简单的 关系。但是,如果把图8—11甲直线AB延长至与横轴相交,把交点当做坐标原点。建立新的坐标系(如图8—11乙所示),那么这时的压强与温度的关系就是正比例关系了。图乙坐标原点的意义为 。可以证明,当气体的压强不太大,温度不太低时,坐标原点代表的温度就是 。
21世纪教育网
2、查理定律的内容:一定质量的某种气体,在体积不变的情况下,压强P与热力学温度T成 比。
3、公式: 、 、 。
4、气体在体积不变的情况下,发生的状态变化过程,
叫做 过程。表示该过程的P—T图象称为
。一定质量的气体的等容线是 线。
一定质量的某种气体在不同体积下的几条等容线如
图8—12所示,其体积的大小关系是 。
二、气体的等压变化
1、盖 吕萨克定律内容:一定质量的某种气体,在压强不变的情况下,体积V与热力学温度T成 比。
2、公式: 、 、 。
3、气体在压强不变的情况下发生的状态变化的过程,
叫做 过程,表示变化过程的V—T图象称为 。
一定质量的某种气体的等压线是 线。图8—13
中是一定质量的某种气体在不同压强下的几条等压线,其压强的大小关系是 。
[典型例题]
1、 水平放置,粗细均匀,两侧都封闭的细长玻璃管中,有一段水银柱将管中气体分为两部分如图8—14所示,将玻璃管温度均匀升高的过程中,水银柱将( )
A、 向右移动 B、向左移动
B、 始终不动 D、以上三种情况都有可能
如果左边气体温度比右边温度高,在此基础上两边升高相同的温度哪?
2、 灯泡内充有氮氩混合气体,如果要使灯泡内的混合气体在500℃时的压强不超过1atm,在20℃下充气,灯泡内气体的压强至多能充到多少?
3、 如图8—15所示,气缸A中封闭有一定质量的气体,活塞B与A的接触是光滑的且不漏气,B上放一重物C,B与C的总量为G,大气压为P0。当气缸内气体温度是20℃时,活塞与气缸底部距离为h1;当气缸内气体温度是100℃时活塞与气缸底部的距离是多少?
21世纪教育网
4、 如图8—16甲所示,是一定质量的气体由状态A经过状态B变为状态C的V—T图象。已知气体在状态A时的压强是1.5×105Pa
(1) 说出从A到B过程中压强变化的情形,并根据图象提供的信息,计算图中TA的温度值。
(2) 请在图乙坐标系中,作出由状态A经过状态B变为状态C的P—T图象,并在图线相应位置上标出字母A、B、C。如果需要计算才能确定有关坐标值,请写出计算过程。
[当堂达标]
1、 如图8—17所示,竖直放置,粗细均匀,两端封闭的玻璃管中有一段水银,将空气隔成A、B两部分,若使管内两部分气体的温度同时升高相同的温度,则管内的水银柱将向哪个方向移动?
[来源:21世纪教育网]
2、 一定质量的气体,在体积不变的情况下,温度由00C升高到100C时,其压强的增量为△P1,当它由1000C升高到1100C时,其压强的增量为△P2,则△P1与△P2之比是
。
3、设大气压强保持不变,当室温由60C升高到270C时,室内的空气将减少 %。
4、使一定质量的理想气体按图中箭头所示的顺序变化,图线BC是一段以纵、横轴为渐近线的双曲线。
(1)已知气体在状态A的温度TA=300K,求气体在状态B、C、D的温度各是多少?
(2)将上述状态变化过程在图8—18乙中画出,图中要标明A、B、C、D四点,并且要画箭头表示变化的方向,说明每段图线各表示什么过程?
[来源:21世纪教育网]
[能力训练]
1、 下面图中描述一定质量的气体做等容变化的过程的图线是( )
2、 一个密闭的钢管内装有空气,在温度为200C时,压强为1atm,若温度上升到800C,管内空气的压强为( )
A、4atm B、1atm/4 C、1.2atm D、5atm/6
3、一定质量的理想气体在等压变化中体积增大了1/2,若气体原来温度为270C,则温度的变化是( )
A、升高450K B、升高了1500C C、升高了40.50C D、升高了4500C
4、如图8—19所示,是一定质量的气体从状态A经B到状态C的V—T图象,由图象可知( )
A、PA>PB
B、PC<PB
C、PA>PC
D、PC>PB
5、如图8—20所示,是一定质量的气体从状态A经B到状态C的P—T图象,由图象可知( )
A、VA=VB B、VB=VC C、VB<VC D、VA>VC
6、一定质量的气体在体积不变时,下列有关气体的状态变化说法正确的是( )
A、温度每升高10C,压强的增加是原来压强的1/273
B、温度每升高10C,压强的增加是00C时压强的1/273
C、气体压强和热力学温度成正比
D、气体压强与摄氏温度成正比
7、在密闭容器中,当气体的温度升高1K时,气体的压强比原来增加了0.4%,则容器中气体原来的温度为
8、体积V=100cm3的空球带有一根有刻度的均匀长管,管上共有
N=101个刻度(长管与球连接处为第一个刻度,向上顺序排列)
相邻两刻度间管的容积为0.2cm3,管中有水银滴将球内空气与
大气隔开,如图8—21所示。当温度t=50C时,水银液滴在刻度
N=21的地方,若外界大气压不变,用这个装置测量温度的范围
是 。
[学后反思]
[来源:21世纪教育网]
参考答案
[自主学习]
1、 气体的等容变化
1、 正比,气体的压强为零时其温度为零,热力学温度的0 K
2、 正
3、 P/T=C,P1/T1=P2/T2,P1/P2=T1/T2
4、 等容,等容图象,过原点的直,V3>V2>V1
2、 气体的等压变化
1、 正 2、V/T=C,V1/T1=V2/T2 ,V1/V2=T1/T2
2、 等压,等压图象,P3>P2>P1
[典型例题]
1、B 向左移动 2、0.38atm 3、1.3h1 4、(1)200K (2)略
[当堂达标]
1、由A向B 2、1∶1 3、7 4、(1)TB=TC=600K TD=300K (2)图略 AB等压膨胀 BC等温膨胀 CD等压压缩
[能力训练]
1、C、D 2、C 3、B 4、D 5、B 6、B、C 7、250K 8、-6.3℃到47.8℃
P
O
P
T/K
O
A
A
B
B
t/0c
273.15
图8—11
甲
乙
O
P
T
V1
V2
V3
图8—12
O
V
T
P1
P2
P3
图8—13
图8—14
A
C
B
图8—15
TA
B
V/m3
0.4
0.6
O
300
400
T/K
A
C
0.5
P/105Pa
T/K
100
200
300
400
O
1.5
1.0
2.0
甲
乙
图8—16
A
B
h
图8—17
20
P/atm
V/L
2
4
40
10
30
0
A
B
C
D
10
40
V/L
T/K
300
600
0
20
30
50
甲
乙
图8—18
P
T
O
P
T
O
P
T
O
P
O
t/0C
-273
A B C D
P
O
T
A
B
图8—20
C
V
O
T
A
B
C
图8—19
图8—21
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
课题:§7.2 分子的热运动
学习目标: 1、了解扩散现象是由于分子的热运动产生的
2、知道什么是布朗运动,理解布朗运动产生的原因。
3、知道什么是热运动及决定热运动激烈程度的因素
重点难点: 扩散现象和分子永不停息地做无规则运动时本节的重点
学习方法: 自主学习,小组讨论
学习过程:【生活点滴】
1、 妈妈在厨房炒菜,我们在书房学习,但还是闻到了诱人的饭菜香味;
2、 吃面条时,我们山西人常常喜欢在碗里加点醋,不一会整个碗里的面和汤都变酸了;
3、 吃过或者见过酱油腌制的鸡蛋吧,这又是怎们回事?
【导读】仔细研读教材,完成下列任务21世纪教育网
1、扩散现象是指
2、举例说面扩散现象在科技中的应用
3、扩散现象说明了
4、教材第6页实验图7.2-4是在用 观察
5、图7.2-5反映的是在 (显微镜还是肉眼)下看到的 ,
从这个结果看出
6、关于这种运动的原因,布朗起初的猜想是 ,后来呢?
7、布朗运动与温度的关系是
8、什么是布朗运动?
9、布朗运动时怎样产生的?
10、我们虽然无法直接看见分子的无规则运动,悬浮微粒的无规则运动并不是 ,但微粒运动的无规则性, 的无规则性。[来源:21世纪教育网]
【议论与思考】教材图7.2-5是法国物理学家佩兰在1908年研究布朗运动时对三个运动微粒位置变化的真实记录。根据这个事实,你能否定布朗运动时由外界因素(例如振动、对流)引起的说法吗11、什么是分子的热运动?
12、分子的热运动与温度的关系是
【典例1】关于布朗运动的正确说法是( )[来源:21世纪教育网]
A、因为布朗运动的激烈程度跟温度有关,所以布朗运动也可以叫做热运动
B、布朗运动反映了分子的热运动.
C、在室内看到的尘埃不停地运动是布朗运动
D、用显微镜观察悬浮在水中的小碳粒,小碳粒在不停地做无规则运动.
【导练1】做布朗运动实验,得到某个观测记录如图。图中记录的是( )
A、分子无规则运动的情况21世纪教育网
B、某个微粒做布朗运动的轨迹
C、某个微粒做布朗运动的速度-时间图线
D、按等时间间隔依次记录的某个运动微粒位置的连线.
【典例2】下列有关布朗运动与扩散现象的叙述中,正确的是( )
A、扩散现象与布朗运动都是分子的运动
B、扩散现象与布朗运动没有本质的区别
C、扩散现象突出说明了物质的迁移规律,布朗运动突出说明了分子运动的无规则性规律.
D、扩散现象与布朗运动都与温度有关.
【导练2】对以下物理现象的正确分析是( )
①从射来的阳光中,可以看到空气中的微粒在上下飞舞②上升的水蒸气的运动
③用显微镜观察悬浮在水中的小碳粒,小碳粒不停地做无规则
④向一杯清水中滴入几滴红墨水,红墨水向周围运动21世纪教育网
A、①②③属于布朗运动 B、④属于扩散现象. C、只有③属于布朗运动. D、以上结论均不正确
【导练3】下列现象中叙述正确的是( )
A、用手捏面包,面包体积会缩小,这是因为分子间有间隙
B、在一杯热水中放几粒盐,整杯水很快就变咸,这是食盐分子的扩散现象.
C、把一块铅和一块金表面磨光后紧压在一起在常温下放置四五年,结果铅和金就互相渗入而连在一起,这是两种金属分别做布朗运动的结果
D、把碳素墨水滴入清水中,稀释后,借助显微镜能够观察到布朗运动现象,这是碳分子无规则运动引起的
【小结】:
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
8.4、气体实验定律的微观解释
教学目标
??1.在物理知识方面的要求:21世纪教育网
??(1)能用气体分子动理论解释气体压强的微观意义,并能知道气体的压强、温度、体积与所对应的微观物理量间的相关联系。
??(2)能用气体分子动理论解释三个气体实验定律。
??2.通过让学生用气体分子动理论解释有关的宏观物理现象,培养学生的微观想像能力和逻辑推理能力,并渗透“统计物理”的思维方法。21世纪教育网
??3.通过对宏观物理现象与微观粒子运动规律的分析,对学生渗透“透过现象看本质”的哲学思维方法。
重点、难点分析
??1.用气体分子动理论来解释气体实验定律是重点,它是本节课的核心内容。
??2.气体压强的微观意义是本节课的难点,因为它需要学生对微观粒子复杂的运动状态有丰富的想像力。
教学过程
引入新课
??先设问:气体分子运动的特点有哪些?
??答案:特点是:
(1)气体间的距离较大,分子间的相互作用力十分微弱,可以认为气体分子除相互碰撞及与器壁碰撞外不受力作用,每个分子都可以在空间自由移动,一定质量的气体的分子可以充满整个容器空间。
??(2)分子间的碰撞频繁,这些碰撞及气体分子与器壁的碰撞都可看成是完全弹性碰撞。气体通过这种碰撞可传递能量,其中任何一个分子运动方向和速率大小都是不断变化的,这就是杂乱无章的气体分子热运动。
??(3)从总体上看气体分子沿各个方向运动的机会均等,因此对大量分子而言,在任一时刻向容器各个方向运动的分子数是均等的。21世纪教育网
??(4)大量气体分子的速率是按一定规律分布,呈“中间多,两头少”的分布规律,且这个分布状态与温度有关,温度升高时,平均速率会增大。
??今天我们就是要从气体分子运动的这些特点和规律来解释气体实验定律。
教学过程
一.关于气体压强微观解释的教学
?首先通过设问和讨论建立反映气体宏观物理状态的温度(T)、体积(V)与反映气体分子运动的微观状态物理量间的联系:
?温度是分子热运动平均动能的标志,对确定的气体而言,温度与分子运动的平均速率有关,温度越高,反映气体分子热运动的平均速率
?? 体积影响到分子密度(即单位体积内的分子数),对确定的一定质量的理想气体而言,分子总数N是一定的,当体积为V时,单位体积内
??
??
n越小。
??然后再设问:气体压强大小反映了气体分子运动的哪些特征呢?
??这应从气体对容器器壁压强产生的机制来分析。
??看用计算机模拟气体分子运动撞击器壁产生压强的机制:
??显示出如图1所示的图形:
?? 介绍:如图所示是一个一端用活塞(此时表示活塞部分的线条闪烁3~5次)封闭的气缸,活塞用一弹簧与一固定物相连,活塞与气缸壁摩擦不计,当气缸内为真空时,弹簧长为原长。如果在气缸内密封了一定质量的理想气体。由于在任一时刻气体分子向各方向上运动的分子数相等,为简化问题,我们仅讨论向活塞方向运动的分子。大屏幕上显示图2,即图中显示的仅为总分子数的合,(图中显示的“分子”暂呈静态)先看其中一个(图2中涂黑的“分子”闪烁2~3次)分子与活塞碰撞情况,(图2中涂黑的“分子”与活塞碰撞且以原速率反弹回来,活塞也随之颤抖一下,这样反复演示3~5次)再看大量分子运动时与活塞的碰撞情况:21世纪教育网
??大屏幕显示“分子”都向活塞方向运动,对活塞连续不断地碰撞,碰后的“分子”反弹回来,有的返回途中与别的“分子”相撞后改变方向,有的与活塞对面器壁相碰改变方向,但都只显示垂直于活塞表面的运动状态,而活塞被挤后有一个小的位移,且相对稳定,如图3所示的一个动态画面。时间上要显示15~30秒定格一次,再动态显示15~30秒,再定格。
??结论:由此可见气体对容器壁的压强是大量分子对器壁连续不断地碰撞所产生的。
??进一步分析:若每个分子的质量为m,平均速率为v,分子与活塞的碰撞是完全弹性碰撞,则在这一分子与活塞碰撞中,该分子的动量变化为2mv,即受的冲量为2mv,根据牛顿第三定律,该分子对活塞的冲量也是2mv,那么在一段时间内大量分子与活塞碰撞多少次,活塞受到的总冲量就是2mv的多少倍,单位时间内受到的总冲量就是压力,而单位面积上受到的压力就是压强。由此可推出:气体压强一方面与每次碰撞的平均冲量2mv有关,另一方面与单位时间内单位面积受到的碰撞次数有关。对确定的一定质量的理想气体而言,每次碰撞的平均冲量,2mv由平均速率v有关,v越大则平均冲量就越大,而单位时间内单位面积上碰撞的次数既与分子密度n有关,又与分子的平均速率有关,分子密度n越大,v也越大,则碰撞次数就越多,因此从气体分子动理论的观点看,气体压强的大小由分子的平均速率v和分子密度n共同决定,n越大,v也越大,则压强就越大。
二.用气体分子动理论解释实验三定律
??(1)引导、示范,以解释玻意耳定律为例教会学生用气体分子动理论解释实验定律的基本思维方法和简易符号表述形式。
??范例:用气体分子动理论解释玻意耳定律。
一定质量(m)的理想气体,其分子总数(N)是一个定值,当温度(T)保持不变时,则分子的平均速率(v)也保持不变,当其体积(V)增大几倍时,则单位体积内的分子数(n)变为原来的几分之一,因此气体的压强也减为原来的几分之一;反之若体积减小为原来的几分之一,则压强增大几倍,即压强与体积成反比。这就是玻意耳定律。
??书面符号简易表述方式:
??小结:基本思维方法(详细文字表述格式)是:依据描述气体状态的宏观物理量(m、p、V、T)与表示气体分子运动状态的微观物理量(N、n、v)间的相关关系,从气体实验定律成立的条件所述的宏观物理量(如m一定和T不变)推出相关不变的微观物理量(如N一定和v不变),再根据宏观自变量(如V)的变化推出有关的微观量(如n)的变化,再依据推出的有关微观量(如v和n)的变与不变的情况推出宏观因变量(如p)的变化情况,结论是否与实验定律的结论相吻合。若吻合则实验定律得到了微观解释。
??(2)叙述:一定质量(m)的气体的总分子数(N)是一定的,体积(V)保持不变时,其单位体积内的分子数(n)也保持不变,当温度(T)升高时,其分子运动的平均速率(v)也增大,则气体压强(p)也增大;反之当温度(T)降低时,气体压强(p)也减小。这与查理定律的结论一致。
??用符号简易表示为:
??(3)再次练习,用气体分子动理论解释盖·吕萨克定律。再用更短的时间让学生练习详细表述和符号表示,然后让物理成绩为中等的或较差的学生口述自己的练习,与下面标准答案核对。
一定质量(m)的理想气体的总分子数(N)是一定的,要保持压强(p)不变,当温度(T)升高时,全体分子运动的平均速率v会增加,那么单位体积内的分子数(n)一定要减小(否则压强不可能不变),因此气体体积(V)一定增大;反之当温度降低时,同理可推出气体体积一定减小。这与盖·吕萨克定律的结论是一致的。
??用符号简易表示为:
??
21世纪教育网
版权所有:高考资源网(www.k s 5 u.com)
版权所有:高考资源网(www.)
高考资源网(www.)
www.
来源:高考资源网
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
课题 9.4 物态变化中的能量交换 课型 新授
教学目标与知识点 (一)知识与技能1.知道熔化和熔化热、汽化和汽化热的概念。 2.会用熔化热和汽化热处理有关问题。21世纪教育网 3.体会能的转化与守恒在物态变化中的应用。(二)过程与方法1.通过实验增加感性知识2.通过大量的生活中的实例,帮助学生理解(三)情感、态度与价值观[来源:21世纪教育网]运用所学的物理知识尝试思考一些与生产和生活相关的问题,体会所学的知识的实用性,加强以生活的热爱。
教学重点 知道熔化和熔化热、汽化和汽化热的概念会用熔化热和汽化热处理有关问题。
教学难点 熔化热、汽化热吸收的热量从克服分子力做功来解释
教学方法 教师演示实验、启发、引导,学生讨论、交流。
教学过程
教学内容 教师教学设计
(一)引入新课物质的气态、液态、固态在一定的条件下可以相互转变。在转变的过程中会发生能量的交换,在初中学过的“蒸发吸热”“液化放热”“熔化吸热”“凝固吸热”指的就是能量交换。(二)进行新课一、熔化热(1)熔化:物质从固态变成液态的过程叫熔化;而从液态变成固态的过程叫凝固。(2)熔化热:某种晶体熔化过程中所需的能量(Q)与其质量(m)之比叫做这种晶体的熔化热。用λ表示晶体的熔化热,则λ=Q/m ,在国际单位中熔化热的单位是焦尔/千克(J/Kg)。①晶体在熔化过程中吸收热量增大分子势能,破坏晶体结构,变为液态。所以熔化热与晶体的质量无关,只取决于晶体的种类。②一定质量的晶体,熔化时吸收的热量与凝固时放出的热量相等。③非晶体在熔化过程中温度不断变化,所以非晶体没有确定的熔化热。2.汽化热(1)汽化:物质从液态变成气态的过程叫汽化;而从气态变成液态的过程叫液化。21世纪教育网(2)汽化热:某种液体汽化成同温度的气体时所需要的能量(Q)与其质量(m)之比叫这种物质在这一温度下的汽化热。用L表示汽化热,则L=Q/m ,在国际单位制中汽化热的单位是焦尔/千克(J/Kg)。①液体的汽化热与液体的物质种类、液体的温度、外界压强均有关。②一定质量的物质,在一定的温度和压强下,汽化时吸收的热量与液化时放出的热量相等。特别提示:①液体的汽化热与液体的物质种类、液体的温度、外界压强均有关。②一定质量的物质,在一定的温度和压强下,汽化时吸收的热量与液化时放出的热量相等。21世纪教育网(三)课堂小结本节课从要物态变化过程中,物质分子间相互作用力做功的情况,来分析物态就化的的能量的交换。具体分析了晶体与非晶体的熔化、液体的汽化过程中的能量交换情况,定性的掌握从分子动理论的角度分析物态变化中的能量交换(四)作业: 教学案
教后感
www.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
10.4 热力学第二定律
【教学目的】
1、了解某些热学过程的方向性 2、了解什么是第二类永动机,为什么第二类永动机不可能制成 3、了解热力学第二定律的两种表述,理解热力学第二定律的物理实质 4、知道什么是能量耗散 5、知道什么是热力学第三定律
【教学重点】
1、热力学第二定律的实质,定律的两种不同表述[来源:21世纪教育网]
2、知道什么是第二类永动机,以及它不能制成的原因
【教学难点】
热力学第二定律的物理实质
【教具】
扩散装置
【教学过程】
○、引入
学生答问:1、热力学第一定律的形式若何,符号法则怎样?[来源:21世纪教育网]
2、什么是第一类永动机?21世纪教育网
热力学第一定律和能量守恒定律具有相同的实质,表征的是能量转移或转化过程中总量不变。既然能量只是在不停地转移或转化,而不会消失,我们为什么还在面临能源危机,还在不停地呼吁节约能源呢?我们今天来探讨一下这个问题——
一、某些热学过程的方向性
人们认识问题,总是先有素材,再有思索,然后才有理论的总结与上升。我们先看这样的事实:
根据初中学过的物理常识,我们知道热传导会在两个有温差的物体间产生,会自发的从高温物体传至低温物体,那么,热传导会不会从低温物体传至高温物体呢?不会。我们把这种现象称之为——
热传导的方向性
在看另一个事实:表述教材P85图11-12的物理情形…(人们也做过理论上的预测:扩散既然是分子无规则运动引起,那么,原来A容器中的气体分子恰好全部回到A容器是可能的,只是这种几率非常非常小,以至于在现实中还从来没有发生过)这说明——
扩散现象有方向性
事实三:有初速度的物体,在水平面上运动,总要停下来,因为摩擦生热,机械能转化成了内能;但是,由于内能的增量一部分转移到物体和地面,另一部分转移到了空中(通常称之为耗散),我们要把这部分内能收集起来,然后通过某种机器或装置让它转化成物体重新运动的机械能,这可能吗?答案必然是否定的。甚至人们还尝试过,即便能够把这部分内能完全收集(不散失),要使它完全转化成机械能,也是绝对不可能的。所以,我们说,涉及到热现象的——
能量转化有方向性
怎样表征这种热学过程的方向性呢?——
二、热力学第二定律21世纪教育网
在介绍热力学第二定律之前,先介绍相关概念——
热机:将内能转化成机械能的装置。它们的主要工作原理都是利用高温高压的气体或蒸汽膨胀做功。如蒸汽机、汽轮机、燃气轮机、内燃机和喷气发动机等。内能的来源有燃料燃烧所放出的内能、地热以及原子能(转化)、太阳能(转化)等。热机的组成必须具备三个组成部分。其一是发热器,它是使燃料所释放出的能量转变为工作物质(简称工质)内能的装置;其二是工作部分,它是使工质消耗内能来做机械功的装置;其三是冷凝器,这部分是容纳工作部分排出的废工质的装置。热机工作时,工质从发热器得到的热量,只有一部分转变为机械功,其余部分都传给了冷凝器。
由于内能往机械能的转化不会自发的进行,所以热机事实上人为造就的、一种逆自然过程的能量转化装置。
科学家们对热机的工作进行了定量的研究,令工质从发热器得到的热量为Q1,最后被冷凝器带走的热量为Q2(最终耗散到大气、循环水中),转变成机械功的只是W = Q1—Q2 。可不可以不设置冷凝器(不带走Q2),令Q1 = W呢(物理语言叫热机的效率η= = 100%)?科学家们经过了种种努力,发现这是不可能的。
也就是说:不可能从单一热源吸收热量并把它全部用来作功,而不引起其它变化。21世纪教育网
这就是热力学第二定律。
对热机的定量研究事实映射出这样的信息:要将自发的热学过程人为地逆转,虽然是可能的,但必须付出代价(也就是所谓的“其它变化”——手段的代价、能量的代价)。
所以,我们也可以把热学过程的方向性就看成是是热力学第二定律的的一种体现。于是,热力学第二定律的一种更朴实的表述是:
不可能使热量从低温物体传至高温物体,而引起其它变化。我们通常把这种表述方式称为克劳修斯表述。与之对应的,先前的一种表述被称为开尔文表述。毫无疑问,这是为了纪念这两位科学家在该领域研究的突出贡献与成就。
关于克劳修斯表述,我们可以通过这样一个事实理解:通过人为的努力,电冰箱和空调实现了热量从低温物体往高温物体的传递,但是,我们付出了手段方面的代价:购置冰箱的经济代价、能量方面的代价(持续地缴纳电费),甚至付出了环境方面的代价——定量研究表明,冰箱释放给环境的热量必然要多于从冷藏室吸收热量——和空调一样,它能使环境升温,是一种“损人利己”的发明(这就是所谓的“其它变化”)。
关于开尔文表述,一个反面的素材是:要制成效率为100%的热机是不可能的。
人们也把效率为100%的热机称为第二类永动机。
前面我们已经知道,第一类永动机违背的是热力学第一定律。那么,与之对应的,第二类永动机则是违背了热力学第二定律。
(*热力学第二定律所展示的热学过程的方向性,在大学里面有一种定量的描述:那就是热学过程总是往熵H增大的方向发展,熵H的物理定义,我们这里不便介绍,一个通俗理解是:熵是事物发展的混乱程度。)
除了在物理学方面具有重要意义之外,目前人们已经发现,热力学第二定律在社会学、哲学方面的正确性,十年前,就有一本美国人的书给我的印象特别深,叫做《熵,一种新的世界观》,它用热力学第二定律论证全球化经济和社会问题,得到了人们广泛的认同。
下面我们介绍其它的相关知识——
三、热力学第三定律及其它
前面已经介绍了:绝对零度不可达到,我们把它成为热力学第三定律。
有第一、第二、第三定律,其实还有第零定律…
在热学过程中,有一些能量被环境吸收,无法继续回收,我们成为能量的耗散。
关于能量耗散现象、结合热学过程的方向性,怎样解释能源与环境的问题,会在下一节详细介绍。
四、小结
本节我们知道了热学过程的方向性,并知道了由此总结出来的热力学第二定律,最后介绍了一些相关概念。热力学第二定律有两种表述,它们都是等效的,定律的实质怎样、精髓何在,需要仔细领会。希望大家在课外尽可能的寻求相关的现实素材,定性地照应、理解这一定律。
五、作业布置
阅读教材;教材P87第(2)(3);《同步双测》 “练习”部分,做在书上。
【板书设计】
注意“教学过程”的行楷部分,即是板书计划。
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
热力学第二定律 教案
w.w.w.k.s.5.u.c.o.m要 点:了解热传导过程的方向性
理解第二类永动机不可能的原因
了解热力学第二定律的不同表达以及实质
教学难点:用热传导过程的方向性解释第二类永动机的不可能
考试要求:高考Ⅰ(热力学第二定律、永动机不可能、绝对零度不可达到),会考
课堂设计:从学生比较熟悉热传导过程的方向性入手,从平时很少关注的方向性方式入手研究,调动学生的思维并为热力学第二定律作准备。第二类永动机由于没有违背能量的转化和守恒定律更具有欺骗性,应立足热传导过程的方向性来帮助学生理解。能量的耗散应从能量(守恒)的角度来考察,并保证对生活实例有指导性。
解决难点:先引导关注热传导过程的方向性,用来解决第二类永动机的失败原因,体会尽管没有违背能量守恒定律但还受到其他因素的制约。
学生现状:不知道遵守能量守恒定律的机器为什么还是不可能制成;
知道热传导的方向性但没有联系实际;
第二类永动机(并不违背能量守恒定律)的欺骗性认识不足。
培养能力:分析综合能力,理解推理能力
思想教育:唯物主义世界观,尊重事实
考试说明:新增“热力学第二定律、永动机不可能、绝对零度不可达到”
一、引入
有这样有趣的问题:地球上有大量的海水,它的质量约为1.4×1018t,只要这些海水的温度降低0.1OC,就能放出5.8×1023J的热量,这相当于1800万个功率为100万千万的核电站一年的电量,为什么不去研究这种新能源呢?学了本节课你就可以知道答案了。
二、热传导的方向性 [来源:21世纪教育网]
问:生活经验肯定告诉过我们,两个温度不同的物体互相接触后,会发生什么现象?
分析:热量会自发的从高温物体传给低温物体,结果使温度低的物体温度升高,温度高的物体温度降低。
问:有没有见过,温度自发的从低温物体传给高温物体?
分析:学生可能说“有”,比如说空调、冰箱。
解释什么是“自发地”?
“自发地”:是没有任何外界的影响或帮助。空调、冰箱需借助外界条件电源,才能够使热量从低温物体传到高温物体,它们是“不自发地”而是“被迫地”
——一旦停电,就又是自发地由高温传向低温
类似:水(自发地)往低处流,也可以在有帮助的条件下(被迫地)向高处流。
总结:热传导的过程是有方向行,这个过程可以自发的从一个方向自发地进行;但是向相反的方向却不能自发地进行,必须借助外界的帮助。自然界中所涉及热现象的宏观过程都具有方向性。
三、第二类永动机
大家都已经知道,机械能和内能之间可以发生相互转化,比如说一个在水平面上的物体,由于克服摩擦力做功,最后总要停下来。在这个过程中物体的动能转化为内能,使物体的温度升高。而把内能转化为机械能,在这转化中能量守恒。依据理论,内能同样可以转化机械能(动能),所以我们很愿意将汽车的温度降低来获得汽车的动能(在夏天那可是一举两得的事)。而不引起其他的变化。我们没有见过这类情况,并不是人们没想到,而是有困难。回答这个问题之前我们先介绍热机。
热机,是将热(内)能转化为机械能的装置。如内燃机、蒸汽机、燃气轮机(热电厂)、燃气涡轮(喷气飞机)。21世纪教育网
以内燃机为例:气体燃烧时产生的热量Q1,推动活塞做功W,然后放出热气,同时把热量Q2散发到大气中。根据能量守恒Q1=W+Q2,如果我们把热机做的功W和它从热源吸收的热量
w.w.w.k.s.5.u.c.o.m Q1的比值叫做热机的效率,用η表示效率,则有
问:我们也都知道W>Q1,也就是η不可能达到100%,那是为什么?
分析:热机构造必须有热源和冷凝器,工作时,总要向冷凝器散热,因此要损失热量。
能不能制造出没有冷凝器的热机,只有单一的热源,它从这个单一热源中吸收热量,可以全不用来做功,第二类永动机就是指这类遵守能量守恒定律,从单一热源不断获得能量的机器。
第二类永动机的失败,说明机械能和内能之间的转化有着方向性:机械能可以全部转化为内能,但内能不能全部转化为机械能(肯定引起其他变化)。
所以我们在没有冷凝器的条件下,无法通过降低海水温度来获取我们所需要的能量[来源:21世纪教育网]
四、热力学第二定律
生活中很多物理过程的具有方向性。比如图11-2中气体的扩散,物理学家通过分析自然现象,又总结了第二类永动机不可制成的经验,得出了热力学第二定律。常见两种表述:
表述一:不可能使热量由低温物体传递到高温物体,而不引起其他变化。
表述二:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。
两种表述的实质是统一的:自然界中进行的涉及的热现象有关的宏观过程具有方向性,都是不可逆的。
五、能量耗散
问:既然有能量守恒定律,为什么还要节约能源呢?
分析:其实通过前面的学习,我们都可以找到答案了,因为能量的转化具有方向性,某些自发进行的能量转化后不能再以原值的大小重新转化回来,尽管总量是不变的但可利用的能在减少——能量的耗散(避免说成是损失)。
能量的耗散也从能量转化的角度表明其原因是:从能量转化的角度反映出自然界中的宏观过程是具有方向性的。
六、绝对零度不可达到(8’)
0K=-273.15℃,T=t+273.15K
值不同但(温差)度的大小相同
阅表:可通过与摄氏度的换算来体会
温度高分子运动快,温度低分子运动慢;到0K(-273.15℃)时分子不再运动,依据辩证唯物主义观点,物质总是运动的,绝对零度只能接近不能到达——热力学第三定律
[来源:21世纪教育网]
[来源:21世纪教育网]
www.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
7.2、分子的热运动
教学目标
1.物理知识方面的要求:(1)知道并记住什么是布朗运动,知道影响布朗运动激烈程度的因素,知道布朗运动产生的原因。(2)知道布朗运动是分子无规则运动的反映。(3)知道什么是分子的热运动,知道分子热运动的激烈程度与温度的关系。
2.通过对布朗运动的观察,发现其特征,分析概括出布朗运动的原因;培养学生概括、分析能力和推理判断能力。从对悬浮颗粒无规则运动的原因分析,使学生初步接触到用概率统计的观点分析大量偶然事件的必然结果。
重点、难点分析
1.通过学生对布朗运动的观察,引导学生思考、分析出布朗运动不是外界影响产生的,是液体分子撞击微粒不平衡性产生的。布朗运动是永不停息的无规则运动,反映了液体分子的永不停息的无规则运动。这一连串结论的得出是这堂课的教学重点。
2.学生观察到的布朗运动不是分子运动,但它又间接反映液体分子无规则运动的特点。这是课堂上的难点。这个难点要从开始分析显微镜下看不到分子运动这个问题逐渐分散解疑。[21世纪教育网]
主要教学过程
引入新课
让学生观察两个演示实验:
1.把盛有二氧化氮的玻璃瓶与另一个玻璃瓶竖直方向对口相接触,看到二氧化氮气体从下面的瓶内逐渐扩展到上面瓶内。
2.在一烧杯的净水中,滴入一二滴红墨水后,红墨水在水中逐渐扩展开来。
上述实验是气体、液体的扩散现象(不同物质相互接触时彼此进入对方的现象),扩散现象是一种热现象。它说明分子在做永不停息的无规则运动。而且扩散现象的快慢直接与温度有关,温度高,扩散现象加快。
[21世纪教育网]
新课教学过程
一.介绍布朗运动现象
1827年英国植物学家布朗用显微镜观察悬浮在水中的花粉,发现花粉颗粒在水中不停地做无规则运动,后来把颗粒的这种无规则运动叫做布朗运动。不只是花粉,其他的物质如藤黄、墨汁中的炭粒,这些小微粒悬浮在水中都有布朗运动存在。21世纪教育网
让学生看教科书上图,图上画的几个布朗颗粒运动的路线,指出这不是布朗微粒运动的轨迹,它只是每隔30s观察到的位置的一些连线。实际上在这短短的30s内微粒运动也极不规则,绝不是直线运动。
二.介绍布朗运动的几个特点
(1)连续观察布朗运动,发现在多天甚至几个月时间内,只要液体不干涸,就看不到这种运动停下来。这种布朗运动不分白天和黑夜,不分夏天和冬天(只要悬浮液不冰冻),永远在运动着。所以说,这种布朗运动是永不停息的。
(2)换不同种类悬浮颗粒,如花粉、藤黄、墨汁中的炭粒等都存在布朗运动,说明布朗运动不取决于颗粒本身。更换不同种类液体,都不存在布朗运动。
(3)悬浮的颗粒越小,布朗运动越明显。颗粒大了,布朗运动不明显,甚至观察不到运动。
(4)布朗运动随着温度的升高而愈加激烈。
三.分析、解释布朗运动的原因
(1)布朗运动不是由外界因素影响产生的,所谓外界因素的影响,是指存在温度差、压强差、液体振动等等。
问:若液体两端有温度差,液体是怎样传递热量的?液体中的悬浮颗粒将做定向移动,还是无规则运动?温度差这样的外界因素能产生布朗运动吗?
答:液体存在着温度差时,液体依靠对流传递热量,这样悬浮颗粒将随液体有定向移动。但布朗运动对不同颗粒运动情况不相同,因此液体的温度差不可能产生布朗运动。又如液体的压强差或振动等都只能使液体具有定向运动,悬浮在液体中的小颗粒的定向移动不是布朗运动。因此,推理得出外界因素的影响不是产生布朗运动的原因,只能是液体内部造成的。
(2)布朗运动是悬浮在液体中的微小颗粒受到液体各个方向液体分子撞击作用不平衡造成的。
显微镜下看到的是固体的微小悬浮颗粒,液体分子是看不到的,因为液体分子太小。但液体中许许多多做无规则运动的分子不断地撞击微小悬浮颗粒,当微小颗粒足够小时,它受到来自各个方向的液体分子的撞击作用是不平衡的。
在某一瞬间,微小颗粒在某个方向受到撞击作用强,它就沿着这个方向运动。在下一瞬间,微小颗粒在另一方向受到的撞击作用强,它又向着另一个方向运动。任一时刻微小颗粒所受的撞击在某一方向上占优势只能是偶然的,这样就引起了微粒的无规则的布朗运动。
悬浮在液体中的颗粒越小,在某一瞬间跟它相撞击的分子数越少。布朗运动微粒大小在10-6m数量级,液体分子大小在10-10m数量级,撞击作用的不平衡性就表现得越明显,因此,布朗运动越明显。悬浮在液体中的微粒越大,在某一瞬间跟它相撞击的分子越多,撞击作用的不平衡性就表现得越不明显,以至可以认为撞击作用互相平衡,因此布朗运动不明显,甚至观察不到。
液体温度越高,分子做无规则运动越激烈,撞击微小颗粒的作用就越激烈,而且撞击次数也加大,造成布朗运动越激烈。
四.布朗运动的发现及原因分析的重要意义
(1)布朗运动是悬浮在液体中的固体微粒分子的运动吗?是液体分子无规则运动吗?布朗微粒是被谁无规则撞击而造成的?布朗运动间接地反映了谁的无规则运动?
固体颗粒是由大量分子组成的,是宏观物体;显微镜下看到的只是固体微小颗粒,光学显微镜是看不到分子的;布朗运动不是固体颗粒中分子的运动,也不是液体分子的无规则运动,而是悬浮在液体中的固体颗粒的无规则运动。无规则运动的原因是液体分子对它无规则撞击的不平衡性。因此,布朗运动间接地证实了液体分子的无规则运动。[来源:21世纪教育网]
(2)布朗运动随温度升高而愈激烈,在扩散现象中,也是温度越高,扩散进行的越快,而这两种现象都是分子无规则运动的反映。这说明分子的无规则运动与温度有关,温度越高,分子无规则运动越激烈。所以通常把分子的这种无规则运动叫做热运动。
21世纪教育网
多维链接
1. 布朗(Robert Brown,1773—1858)
英国植物学家。1773年12月21日诞生于苏格兰的蒙特罗斯。
布朗从小就很聪明,性格倔强。他先在阿巴丁的马里歇尔学院学习,毕业后进入爱丁堡大学攻读医学。1795年应征入伍,前往爱尔兰服役,在英军中任助理外科医师。服役期间,他边为军队工作,边进行自修。他利用业余时间收集各种植物,制作标本。1789年布朗来到伦敦,一个偶然的机会,拜见了英国伦敦皇家学会公长尤素福 彭克斯,并跟随他作了一段研究工作。1800年布朗取得博士学位,后由彭克斯介绍参加澳大利亚远洋考察船“调查者号”,负责研究植物。1801年开始远行,在大洋洲进行了为期五年的考察活动,收集近3900种的标本,系统地整理写入《澳洲植物志》一书中,对植物分类学作出贡献。
布朗在物理学中的贡献是发现了著名的布朗运动。1827年6月,布朗用显微镜观察克拉花花粉,发现悬浮在液面上的花粉微粒在杂乱无章地、不断地运动。布朗对这个现象进行了反复研究。开始,他错误地认为,花粉虽然死了,但是好像有一种具有生命潜力的东西遗留下来,促使花粉微粒不断地运动。他这样写道:“它们(花粉微粒)的运动既不是由液体的流动引起的,也不是液体渐渐蒸发引起的、而是由于微粒本身的原因引起的。”接着,他把这个研究推广到各种各样的植物,观察了他收集到的所有新鲜花粉,都看到了类似现象。后来布朗又对煤粉、玻璃粉、各种岩石粉、金属粉等无生命物质的微粒进行了观察,也都看到了类似花粉的不停地运动的现象,各种粉末都存在着某种活性。布朗感到问题不那么简单,一时无法正确解释这个现象。1828年6月到8月,布朗接连发表了《论植物花粉中的微粒》、《论有机物和无机物中活性分子的普遍存在》两篇文章,宣布了他的重大发现。以后人们就把这种现象叫做“布朗运动”。对于布朗运动,直到1860年才由英国物理学家麦克斯韦根据他自己建立的分子运动论作出初步的解释,他认为这种杂乱无章的运动是水分子对悬浮微粒不断撞击引起的。布朗运动的发现,给物质是由分子组成的理论提供了第一个直接的证据。
1811年布朗当选为英国伦敦皇家学会会员。1820年,任大英博物馆馆长。1822年当选为柯尼斯学会会员,1849到1853年任会长。布朗还兼任几个国家的科学院院士。
2.能否说“某个分子的热运动”?
提示:某个分子的热运动这种说法是不正确的。
因为单个分子的运动,从原则上讲是遵循力学规律的。设想我们追踪气体中某个分子的运动,那会看到这个分子忽左、忽右、忽前、忽后。有时速度快,有时速度慢.其动能也时大时小。其轨迹是一条极不规则的折线.总之,对个别分子来说,速度、能量以及运动路程都是偶然的量值。
我们讲的热运动是指大量分子的无规则运动。随着分子数量的增加,它们的运动就逐渐偏离力学规律。它们的运动呈现出混乱状态,不再遵循力学规律,而遵从统计规律.这时,对个别分子的运动来说,是完全偶然的。大量分子的运动虽然是无序的,但并不是无规律的,它们也能表现出一些必然的规律。
版权所有:高考资源网(www.k s 5 u.com)
高考资源网(www.)
www.
来源:高考资源网
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
第七章
7.1、物质是由大量分子组成的
教学目标:(1)知道一般分子直径和质量的数量级;(2)知道阿伏伽德罗常数的含义,记住这个常数的数值和单位;(3)知道用单分子油膜方法估算分子的直径。
重点、难点分析
1.使学生理解和学会用单分子油膜法估算分子大小(直径)的方法;
2.运用阿伏伽德罗常数估算微观量(分子的体积、直径、分子数等)的方法。
主要教学过程
自古以来,人们就不断的研究物质的组成
1、 2500年前,古希腊德谟克利特认为,物质是由不可再分的“原子”构成。
2、 我国古代学者认为,“语小,天下莫能破焉”
从本章开始学习热学,研究与热现象有关的事物,研究热现象的规律,从宏观的内能和微观的分子运动论两个方面讨论热现象,两种方法相辅相成,使人们对热现象的研究越来越深入。
初中讲过的分子运动论的内容
1、 物质是由大量分子构成的――大小、质量、动能???
2、 分子永不停息的做无规则的运动――根据什么???
3、 分子间存在着相互作用的引力和斥力。――怎样变化???21世纪教育网21世纪教育网
分子是具有各种物质的化学性质的最小微粒,在热学中,原子、离子、分子这些微粒做热运动时,遵从相同的规律,所以,统称为“分子”
热学内容简介
1.热现象:与温度有关的物理现象。如热胀冷缩、摩擦生热、水结冰、湿衣服晾干等都是热现象。
2.热学的主要内容:热传递、热膨胀、物态变化、固体、液体、气体的性质等。
3.热学的基本理论:由于热现象的本质是大量分子的无规则运动,因此研究热学的基本理论是分子动理论、量守恒规律。
新课教学过程
一.分子的大小。分子是看不见的,怎样能知道分子的大小呢?
(1)单分子油膜法是最粗略地说明分子大小的一种方法。
介绍并定性地演示:如果油在水面上尽可能地散开,可认为在水面上形成单分子油膜,可以通过幻灯观察到,并且利用已制好的方格透明胶片盖在水面上,用于测定油膜面积。如图1所示。
粗测:(单层、球形、空隙 1+1≠2根据估算得出分子直径的数量级为10-10m。)
(2)利用离子显微镜测定分子的直径。
看物理课本上彩色插图,钨针的尖端原子分布的图样:插图的中心部分亮点直接反映钨原子排列情况。经过计算得出钨原子之间的距离是2×10-10m。如果设想钨原子是一个挨着一个排列的话,那么钨原子之间的距离L就等于钨原子的直径d,如图2所示。
(3)扫描隧道显微镜 (几亿倍)
注意:(1)用不同方法测量出分子的大小并不完全相同,但是数量级是相同的。测量结果表明,一般分子直径的数量级是10-10m。例如水分子直径是4×10-10m,氢分子直径是2.3×10-10m。
(2)指出认为分子是小球形是一种近似模型,是简化地处理问题,实际分子结构很复杂,但通过估算分子大小的数量级,对分子的大小有了较深入的认识。
二.阿伏伽德罗常数
提问:在化学课上学过的阿伏伽德罗常数是什么意义?数值是多少?明确1mol物质中含有的微粒数(包括原子数、分子数、离子数……)都相同。此数叫阿伏伽德罗常数,可用符号NA表示此常数, NA=6.02×1023个/mol,粗略计算可用NA=6×1023个/mol。(阿伏伽德罗常数是一个基本常数,科学工作者不断用各种方法测量它,以期得到它精确的数值。)
再问学生,摩尔质量、摩尔体积的意义。
如果已经知道分子的大小,不难粗略算出阿伏伽德罗常数。例如,1mol水的质量是0.018kg,体积是1.8×10-5m3。每个水分子的直径是4×10-10m,它的体积是(4×10-10)m3=3×10-29m3。如果设想水分子是一个挨着一个排列的。
提问:如何算出1mol水中所含的水分子数?
三.微观物理量的估算
1、分子的质量 = 摩尔质量 / 阿伏加德罗常数
练习:估测水分子的质量估测水分子的质量
解:
练习:估测氢气分子的质量
2 分子的体积 = 摩尔体积 / 阿伏加德罗常数
练习:估算水分子的体积
3、几个常用的等式
(1)[21世纪教育网]
(2)分子的个数 = 摩尔数 ×阿伏加德罗常数
练习:若已知阿伏伽德罗常数,可对液体、固体的分子大小进行估算。事先我们假定近似地认为液体和固体的分子是一个挨一个排列的(气体不能这样假设)。21世纪教育网
提问学生:1mol水的质量是M=18g,那么每个水分子质量如何求?
问:若已知铁的相对原子质量是56,铁的密度是7.8×103kg/m3,试求质量是1g的铁块中铁原子的数目(取1位有效数字)。又问:是否可以计算出铁原子的直径是多少来?
例题一、将1摩尔的油酸溶于酒精,制成200毫升的溶液。已知1毫升的溶液有50滴,取1滴滴在水面上,在水面上形成0.2平方米的油膜,估算油酸分子的直径
解:1 cm3的溶液中,酒精溶于水后,油酸的体积
V0 =1/200 cm3 =1/200×10-6m3
1滴溶液中,油酸的体积v=Vo/50
得到油酸分子的直径为d = v / s=5×10-10米
注:酒精的作用 (1)、提高扩散速度
(2)、油膜面积不致于很大,易于测量
例题二、10克的氧气,在标准状况下(0 ℃,1 atm)
(1)、含有多少个氧气分子? [来源:21世纪教育网]
(2)、占有多大体积?
例题三、估算标准状况下,气体分子和水分子的间距
1、气体分子间距
1、同理,水的摩尔体积v=18×10-3,
注:1、比较间距的大小
2、边长=间距
1、 还可以看成球形模型v=4 π r 3 / 3
例题四、空气的摩尔质量m=29×10 -3 kg / mol, 当V=45 m3时,
求:气体的质量M=?
解:
例题五、水的质量为m,密度为ρ,变成蒸气后体积为V,求:
解:
课堂练习
1.体积是10-4cm3的油滴滴于水中,若展开成一单分子油膜,则油膜面积的数量级是(B)
A.102cm2 B.104cm2 C.106cm2 D. 108cm2
2.已知铜的密度是8.9×103kg/m3,铜的摩尔质量是63.5×10-3kg/mol。体积是4.5cm3的铜块中,含有多少原子?并估算铜分子的大小。
答案:3.8×1023, 3×10-10m
阅读材料
纳米时代科技
互联网的来临,带给人类的是沟通的无限;基因工程研究的突破,使人类看到了再造自身的希望;现在人类的脚步迈进了纳米时代,各领域、行业、行为都充满了太多的未知和希望。
纳米技术是继互联网、基因之后人们关注的又一大热点。纳米是一个什么样的概念呢?纳米是一个几何尺寸的量度单位,同我们常用“米”一样,只不过它仅为一米的十亿分之一,略等于45个原子排列起来的长度,而纳米技术则是指制造体积不超过数百个纳米的物体,其宽度只有几十个原子聚集在一起的宽度。
在纳米的世界里,物质的我发生了神奇的变化。如导电性能良好的铜在纳米级就不导电了,而绝缘的二氧化硅在纳米级就开始导电了;二氧化硅陶瓷在通常情况下是很脆的,但当二氧化硅陶瓷颗粒缩小到纳米级时,脆性的陶瓷竟然具有了韧性。
新的制高点
可以说,互联网是美国人发明的,所以美国人靠着互联网不断地掠夺着世界上的大部分资源和财富,因为它是互联网的统治者。
在纳米时代还未达到全盛之际,一切规则还没有确定,谁占有了制高点谁就有了一切。因此在过去的五年中,集中于纳米方面的研究项目几乎在所有的工业化国家就已经开始了。目前的现状是,美国在全成、化学、生物方面领先,但在纳米设备的研究、纳米器械的生产和超精机械、陶瓷等材料上是落后的;日本在纳米器械的加固结构上领先;欧洲则在分散和涂层新型的仪器方面实力非常强大。
我国对纳米技术也并不落后,在某些方面还居领先地位。
90年代初起,中国科技部、国家自然科学基金委员会、中国科学院等部门设立了攀登计划项目和相关的重大、重点项目。去年,科技部又启动了有关纳米材料的国家重点基础研究项目,投入数千万元人民币资金支持基础研究。目前,中国已经建成了几个纳米研究基地。中科院、清华大学、北京大学等单位已经形成了一支从事纳米研究的队伍,在国际上取得了一系列令人瞩目的成果。
中国重大基础研究纳米材料科学专家组首席专家张立德日前在接受采访时说,中国纳米基础研究实力总体上已经跻身世界前列,“超级纤维”、碳纳米管等个别工作甚至走在了世界最前沿。
改变生活
与基因技术不同,纳米技术对人体本身的改造是后天的。对于那些有先天不足的人们来说,高精密和超微型技术已经成功地提高了残疾人的生活质量和老年人的寿命。帮助不能用双手打字的人用眼睛就可以完成工作,帮助失明者探索前途,纳米技术因为其“微小”而在听觉移植、骨髓移植等医学领域获得了极大的成功。
在全球日益关注的环保问题上,纳米技术同样可以一展身手。大规模的纳米技术生产,使得产品越来越小,每件产品所消耗的原材料也越来越少,这样就减少了能源和其他资源的消耗。另外,在对太阳能的利用和新能源的开发方面,纳米技术同样会功不可没。
当纳米机器人出现以后,我们的生活会更加精彩。在一本1986年出版的《有创造力的发动机》一书中,作者对未来纳米技术的潜在用途作了一番引人入胜的描述:当成群的肉眼看不见的微型机器人在地毯上或书架上爬行时,大量的灰尘被分解成为原子,使这些原子复原成餐巾、肥皂或是纳米计算机等等诸如此类的东西。
版权所有:高考资源网(www.k s 5 u.com)
版权所有:高考资源网(www.)
r
r
高考资源网(www.)
www.
来源:高考资源网
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
能源 环境和可持续发展
教学目的:
1、了解什么是能源,了解什么是常规能源,了解常规能源的储备与人类需求间的矛盾
2、了解常规能源的使用与环境污染的关系
3、了解哪些能源是清洁能源,哪些能源可再生。
4、要求就能源与环境问题开展研究性学习。
教学重点与难点:
常规能源与新能源,能源与环境。研究性学习的课题选择及材料的收集
教学方法:学生课堂自学结合讨论归纳
教学过程:
一、能源
1、常规能源与新能源;
常规能源有:煤、石油、天然气等
新能源有:风能、潮汐能、太阳能、原子能、沼气等。
2、常规能源的储备与利用间的关系:
3、常规能源的利用与环境污染
环境污染的种类:大气污染、水污染、噪声污染具体有:温室效应、酸雨、光化学污染
4、环境污染的防止
二、研究性学习课题
总课题:能源与环境
子课题:
1、研究“温室效应”的形成(起因、结果)与防止。
2、简易太阳灶的制作。
3、家用太阳能热水器的工作原理。
4、煤和石油中的化学 ( http: / / www.21cnjy.com / )能从何而来?
三、能源与环境保护教育
能源与环境
人类的生活离不开能源。如果没有能源,人就得吃生米、生菜、生肉,这对原始人来说,可以,对现代人来说,那不可想像。要把饭菜烧熟,就得能源。照明需要能源,坐汽车、火车、轮船、飞机也需要能源,炼钢炼铁、开动机器都得有能源。
人类能源的总来源是太阳。这就是说,不仅风能、水力能、海浪能、生物质能、太阳能等自然能源来自太阳,就是矿物燃料煤、石油、天然气也来自太阳。以上这些属于一次能源,由一次能源生产的电力属于二次能源。
目前在人类能源当中挑大梁的一次能源是煤、石油、天然气这些矿物燃料。矿物燃料的大量使用,给环境带来十分广泛的影响:
矿物燃料的开采要毁掉一些土地,有时不可避免地要占用一部分农田。矿物燃料的运输也会带来环境问题,如海上石油运输,经常发生事故,泄漏的原油污染大片海域;就是不发生事故,压舱水的排放也常常在小范围内使海域受到污染。矿物燃料的燃烧,对环境产生的影响最大。其中硫氧化物、氮氧化物等各种有害气体污染空气,已经使人们难以忍受,因为矿物燃料的燃烧总是要排放出非常多的二氧化碳,甚至达到改变空气成分的比例的程度,使地球的气温升高,这已经成了全世界格外关注、十分头疼的一个环境问题。
怎样才能减少因能源使用而带来的环境影响呢
首先,要节约能源。减少全人类的能源消耗,才能减少二氧化碳的排放。这是从环境保护的角度说,节约能源势在必行。另一方面,能源本身也存在着危机。据勘察,地球上可供开采的石油有816亿吨,天然气495亿吨,煤10万亿吨。现在全世界每年的能源总消耗量大体上是95亿吨标准煤,其中主要的是石油、天然气和煤,分别占45%、19%、25%,此外,还有7%的水电,3%的核能。按照目前的消费状况,石油将在三四十年内采完,煤炭虽多,也只能开采250年左右。以后,随着科技水平的提高,这些矿物能源的储量也可能提高,但是,不管怎么说,地壳运动给我们预备下的矿物燃料总是有数的,我们用一点就少一点,不悠着点儿用,恐怕是要被动的。
其次,要利用高科技,开发新能源。目前原子能发电已进入实用阶段,受控热核聚变的探索也在步步前进,有望加入人类能源的行列。
再次,要积极利用自然能。其中包括,直接利用太阳能,太阳能发电、风力发电、海浪,潮汐发电、水力发电等。这些能源的使用,基本上对环境没有污染,因此被人们称作“清洁能源”。
还有,还必须治理矿物能源燃烧产生的污染物。
最后一点必须说明的是,要注意解决广大农村的能源问题。全世界的广大农村,能源相当缺乏。全球大约有15亿农村人口用不上煤、石油、天然气这些矿物燃料,他们只能砍柴烧,或烧牛羊粪或烧作物秸秆。有的农民要花费很大精力去剥树皮、砍灌木、铲草根、拣牛粪。这样做的结果,毁掉了很多树木,破坏了绿色植被,对生态环境也是一种巨大的破坏。由于全世界每年要烧掉4亿吨以上的牛粪和秸秆,使越来越贫瘠的土壤丧失了很多有机物还田的机会。不解决这些农民的能源问题,他们的生存环境就会更加恶化,他们也难以摆脱贫困的境地。21世纪教育网
[来源:21世纪教育网]21世纪教育网
人类优先开发的五种新能源
在即将过去的20世纪中,人类使用的能源主要有三种,就是原油、天然气和煤炭。而根据国际能源机构的统计,假使按目前的势头发展下去,不加节制,那么,地球上这三种能源能供人类开采的年限,分别只有40年、50年和240年了。四五十年。从人类历史 ( http: / / www.21cnjy.com / )的角度来看,实在是非常非常的短促;试想一下,对于今于20来岁的年轻人来说,到他们六七十岁的时候,如果地球上已经没有原油和天然气可用,我们能不为此感到惊愕吗?所以,开发新能源,替代上述三种传统能源,迅速地逐年降低它们的消耗量,已经成为人类发展中的紧迫课题,核能在今后一段时期内还将有所发展,但是核电站的最大使用期只有25-30年,核电站的建造、拆除和安全防护费用也相对不低,过多地建设核电站是否明智可取,还有待今后实践和历史来检验。那么,人类将向何处寻找新能源呢?先进国家的能源专家认为,太阳能、风能、地热能、波浪能和氢能这五种新能源,在今后将肯定会优先获得开发利用。
太阳能 太阳能利用的形式很多,例如太阳能集热为建筑供暖、供热水,用太阳能电池驱动交通工具和其它动力装置,等等,这些都属于太阳能小型、分散的利用形式。太阳能大型、集中和利用形式,则是太空发电。在距地面三万多公里高空的同步卫星上,太阳能电池每天24小时均可发电,而且效率高达地面的10倍。太空电能可以通知过对人体无害的微波向地面输送。
风能 风能利用技术的不断革新,使这种丰富的无污染能源正重放异彩。据估计,二三十年内,风力发电量将要占欧共体电占全国总电力的30%左右。
地热能 目前世界上已有近二百座地热发电站投入了运行,装机容量数百万千瓦。研究表明,地热能的蕴藏量相当于地球煤炭储量热能的1.7亿倍,可供人类消耗几百亿年,真可谓取之不尽、用之不竭,今后将优先利用开发。21世纪教育网
波浪能 主要的开发形式是海洋潮汐发电。80年代中期挪威成功地建成一座小型潮汐发电站,让涨潮的海小冲进有一定高度的贮水池,池水下溢即可发电。已经在设计的单座潮汐电站,其它发电量可供一个30万人口的城市使用。[来源:21世纪教育网]
氢能 氢是宇宙中含量最丰富的元素之一,就可经提取出无穷无尽的氢。氢运输方便,用作燃料不会污染环境,重量又轻,优点很多。前苏联试用氢为“图-155”型飞机的燃料已经初步得成功,各国正积极试验用氢作为汽车的燃料。氢无疑也是人类未来要优先利用的能源之一。
版权所有:高考资源网(www.k s 5 u.com)
高考资源网(www.)
www.
来源:高考资源网
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
第3节 饱和汽与饱和汽压
教学目标:
1.知道汽化及汽化的两种方式和其特点。
2.理解饱和汽与饱和汽压,能从分子动理论的角度解释有关现象。
3.理解空气的绝对湿度和相对湿度,并能进行简单计算。
4.了解湿度计的原理。
重点、难点:
1、理解饱和汽与饱和汽压,能从分子动理论的角度解释有关现象。21世纪教育网
2、理解空气的绝对湿度和相对湿度,并能进行简单计算。
教学过程:
1.汽化:物质从液态变成气态的过程叫做汽化。
汽化有两种方式:蒸发和沸腾。其比较如下表:
2.饱和汽与饱和汽压21世纪教育网
(1)饱和汽:与液体处于动态平衡的蒸汽叫做饱和汽。没有达到饱和状态的蒸汽叫做未饱和汽。
(2)饱和汽压:在一定温度下,饱和汽的压强一定,叫做饱和汽压。未饱和汽的压强小于饱和汽压。
提示:
A:饱和汽压只是指空气中这种液体蒸汽的分气压,与其他气体的压强无关。21世纪教育网
B:饱和汽压与温度和物质种类有关。
3.空气的湿度21世纪教育网21世纪教育网
(1)空气的绝对湿度:用空气中所含水蒸气的压强来表示的湿度叫做空气的绝对湿度。
(2)空气的相对湿度:空气中水蒸气的压强(P1)与同一温度时水的饱和汽压(PS)的比值叫做空气的相对湿度。即空气的相对湿度(B)为: B=(P1/PS)×100%
友情提示:空气的湿度是表示空气潮湿程度的物理量,但影响蒸发快慢以及影响人们对干爽与潮湿感受的因素,不是空气中水蒸气的绝对数量,而是空气中水蒸气的压强与同一温度下水的饱和汽压的差距。所以与绝对湿度相比,相对湿度能更有效的描述空气的潮湿程度。
4.湿度计
过去常用的湿度计有干湿泡湿度计和毛发湿度计,现代湿度计多使用传感器测量湿度。
5、作业:阅读“说一说”。完成课后题。
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
10.1功和内能 10.2、热和内能
教学目标
1.了解内能改变的两种方式:做功、热传递.21世纪教育网21世纪教育网
2.理解内能的变化可以分别由功和热量来量度.
3.知道做功和热传递对改变物体内能是等效的.
重点、难点分析
1、改变内能两种方式及内能改变量度.
2、对做功和热传递对改变内能是等效的理解.
教具21世纪教育网
细铁棒、铁锤、洒精灯、木块、厚壁玻璃筒(带活塞)、硝化棉、乙醚、学生每人准备一小段钢丝等.
教学过程
复习引入
1. 内能:物体内所有分子热运动的动能和分子势能的总和,叫做物体的内能.
2. 动能:由于分子在不停地做着无规则热运动而具有的动能.它与物体的温度有关(温度是分子平均动能的标志).
3. 势能: 分子间存在相互作用力,分子间具有由它们的相对位置决定的势能,这就是分子势能.它和物体的体积有关.
4. 内能:与物体的温度和体积有关.
根据讨论结果,小结:通常情况下,对固体或液体,由于体积变化不明显,主要是通过温度的变化来判断内能是否改变.
21世纪教育网
新课教学
1. 提出问题2.问题讨论
问:如何改变物体的内能呢?(可以改变物体的温度或体积.)
问:物体内能的变化可以通过什么表现出来呢?或者说怎样判断一个物体(如一杯水、一块铁块)的内能是否改变呢?
把准备好的钢丝拿出来,想办法让你手中的钢丝的内能增加。
2.寻找解决问题的办法
讨论:有的想到“摩擦”,有的想到“折”,有的想到“敲打”,有的想到用“钢锯锯”,有的想到“烧”,有的想到“晒”,有的想到“烤”,有的想到“烫”、“冰”等等.一边想办法,一边体验内能是不是已经增加了.(把“摩擦”、“折”、“敲打”、“锯”写在一起,把“烧”、“晒”、“烤”、“烫”、“冻”或者“冰”写在一起.
3.知识的提练
问:比较一下,本质上有什么相同或不同点.(阅读课本38~39页倒数第四段.)刚才所想到的办法,它们之间有何不同?能不能把这些办法分分类?
答:可以分为做功和热传递两类。其中,“摩擦”、“折”、“敲打”、“锯”是属于做功,“烧”、“晒”、“烤”、“烫”、“冰”属于热传递.
演示课本38页的实验.(慢慢地压缩看能不能使棉花燃烧起来.)
问:刚才两次实验,为什么会出现结果的不同?
答:动作快,时间短,气体没有来得及与外界进行热交换,其温度会突然升高,至乙醚的着火点,它便燃烧起来.而动作慢时,时间较长,气体与外界有较长的时间进行热交换,它的温度就不会升高太多,达不到乙醚的着火点,则不燃烧.
阅读课本39页实验,分析气体对外做功的情况.
问:同学们还能不能从生活中找出一些通过做功改变物体内能的例子呢?
答:柴油机工作中的压缩冲程;给自行车打气时,气筒壁会发热;锯木头,锯条会很烫;冬天,手冷时,两手互相搓一搓;古人钻木取火等等.
再来体验一下,热传递改变内能的情况.给大家一段细铁棒和酒精灯,演示.
学生上台做实验.把用热传递改变内能的方法和体会告诉其他同学.
引导学生从生活中再找出一些通过热传递改变内能的例子.
板书:改变物体内能的物理过程有两种:做功和热传递.
4.新知识的深入探讨
21世纪教育网
内能改变的量度
师:如何量度物体内能的改变多少呢?请大家带着问题阅读课本39页5、6两段,然后归纳出来.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网