五年级上册数学课件- 《牛吃草问题》 (共22张PPT)

文档属性

名称 五年级上册数学课件- 《牛吃草问题》 (共22张PPT)
格式 zip
文件大小 27.1KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2018-09-25 22:57:08

图片预览

文档简介

课件22张PPT。牛吃草问题  牛吃草问题又称为消长问题或牛顿牧场 。 牛吃草问题的 历史起源英国数学家牛顿(1642—1727)说过:“在学习科学的时候,题目比规则还有用些”因此在他的著作中,每当阐述理论时,总是把许多实例放在一起
在牛顿的《普遍的算术》一书中,有一个关于求牛和头数的题目,人们称之为牛顿的牛吃草问题。,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。 牛吃草问题的公式 解决牛吃草问题常用到四个基本公式,分别是︰
  假设定一头牛一天吃草量为“1”
  1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数); 2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`
3)吃的天数=原有草量÷(牛头数-草的生长速度);
4)牛头数=原有草量÷吃的天数+草的生长速度。
这四个公式是解决消长问题的基础。 由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。正是由于这个不变量,才能够导出上面的四个基本公式。  牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。
  解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。 这类问题的基本数量关系是:
  1.(牛的头数×吃草较多的天数-牛头数×吃较少的天数)÷(吃的较多的天数-吃的较草少的天数)=草地每天新长草的量。
  2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草量。 解多块草地的方法
  多块草地的“牛吃草”问题,一般情况下找多块草地的最小公倍数,这样可以减少运算难度,但如果数据较大时,我们一般把面积统一为“1”相对简单些。 “牛吃草”问题分析【例1】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天?
  A.3 B.4 C.5 D.6 【答案】C
【解析】设该牧场每天长草量恰可供X头牛吃一天,这片草场可供25头牛吃Y天
  根据核心公式 代入
  (200-150)/(20-10)=5
10*20-5*20=100
100/(25-5)=5(天)
【例2】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天?

 A.20 B.25 C.30 D.35 【答案】C
 【解析】设该牧场每天长草量恰可供X头牛吃一天,
 根据核心公式代入
 (20×10-15×10)=5
10×20-5×20=100
100÷4+5=30(头) 下面我们来看一下上述“牛吃草问题”解题方法,在真题中的应用。 【例4】有一个灌溉用的中转水池,一直开着进水管往里灌水,一段时间后,用2台抽水机排水,则用40分钟能排完;如果用4台同样的抽水机排水,则用16分钟排完。问如果计划用10分钟将水排完,需要多少台抽水机?【广东2006上】
A.5台 B.6台 C.7台 D.8台 【答案】B
【解析】设每分钟流入的水量相当于X台抽水机的排水量,共需Y台抽水机
 有恒等式:
 解 ,得 ,代入恒等式 【例6】林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果有33只猴子一起吃,则需要几周吃光?(假定野果生长的速度不变)【浙江2007】
 A.2周 B.3周 C.4周 D.5周
【答案】C
【解析】设每天新生长的野果足够X只猴子吃,33只猴子共需Y周吃完
 有恒等式:
解 ,得 ,代入恒等式 有三块草地,面积分别是5,15,24亩。草地上的草一样厚,而且长得一样快。第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天? 这是一道牛吃草问题,是比较复杂的牛吃草问题。
  把每头牛每天吃的草看作1份。
  因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份
  所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份
  因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份
  所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份
  所以45-30=15天,每亩面积长84-60=24份
  所以,每亩面积每天长24÷15=1.6份
  所以,每亩原有草量60-30×1.6=12份
  第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份
  新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛
  所以,一共需要38.4+3.6=42头牛来吃。 两种解法:
解法一:
设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)
解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15亩,可以推出15亩每天新长草量 (28×45-30×30)/(45-30)=24;15亩原有草量:1260-24×45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头BAYBAY