第三章 函数的应用单元测试(含答案)

文档属性

名称 第三章 函数的应用单元测试(含答案)
格式 zip
文件大小 190.4KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2018-09-27 15:28:50

图片预览

文档简介

第三章 函数的应用(A)
(时间:120分钟 满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分)
1.函数y=1+的零点是(  )
A.(-1,0) B.-1 C.1 D.0
2.设函数y=x3与y=()x-2的图象的交点为(x0,y0),则x0所在的区间是(  )
A.(0,1) B.(1,2) C.(2,3) D.(3,4)
3.某企业2010年12月份的产值是这年1月份产值的P倍,则该企业2010年度产值的月平均增长率为(  )
A. B.-1 C. D.
4.如图所示的函数图象与x轴均有交点,其中不能用二分法求图中交点横坐标的是(  )
A.①③ B.②④ C.①② D.③④
5.如图1,直角梯形OABC中,AB∥OC,AB=1,OC=BC=2,直线l∶x=t截此梯形所得位于l左方图形面积为S,则函数S=f(t)的图象大致为图中的(  )
图1
6.已知在x克a%的盐水中,加入y克b%的盐水,浓度变为c%,将y表示成x的函数关系式为(  )
A.y=x B.y=x C.y=x D.y=x
7.某单位职工工资经过六年翻了三番,则每年比上一年平均增长的百分率是(  )
(下列数据仅供参考:=1.41,=1.73,=1.44, =1.38)
A.38% B.41% C.44% D.73%
8.某工厂生产某种产品的固定成本为200万元,并且生产量每增加一单位产品,成本增加1万元,又知总收入R是单位产量Q的函数:R(Q)=4Q-Q2,则总利润L(Q)的最大值是________万元,这时产品的生产数量为________.(总利润=总收入-成本)(  )
A.250 300 B.200 300
C.250 350 D.200 350
9.在一次数学实验中,运用图形计算器采集到如下一组数据:
x
-2.0
-1.0
0
1.00
2.00
3.00
y
0.24
0.51
1
2.02
3.98
8.02
则x、y的函数关系与下列哪类函数最接近?(其中a、b为待定系数)(  )
A.y=a+bx B.y=a+bx
C.y=ax2+b D.y=a+
10.根据统计资料,我国能源生产自1986年以来发展得很快,下面是我国能源生产总量(折合亿吨标准煤)的几个统计数据:1986年8.6亿吨,5年后的1991年10.4亿吨,10年后的1996年12.9亿吨,有关专家预测,到2001年我国能源生产总量将达到16.1亿吨,则专家是以哪种类型的函数模型进行预测的?(  )
A.一次函数 B.二次函数 C.指数函数 D.对数函数
11.用二分法判断方程2x3+3x-3=0在区间(0,1)内的根(精确度0.25)可以是(参考数据:0.753=0.421 875,0.6253=0.244 14)(  )
A.0.25 B.0.375 C.0.635 D.0.825
12.有浓度为90%的溶液100 g,从中倒出10 g后再倒入10 g水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg 2=0.301 0,lg 3=0.477 1)(  )
A.19 B.20 C.21 D.22
二、填空题(本大题共4小题,每小题5分,共20分)
13.用二分法研究函数f(x)=x3+2x-1的零点,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x0∈________,第二次计算的f(x)的值为f(________).
14.若函数f(x)=ax-x-a(a>0,且a≠1)有两个零点,则实数a的取值范围为________.
15.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,则n年后这批设备的价值为________________万元.
16.函数f(x)=x2-2x+b的零点均是正数,则实数b的取值范围是________.
三、解答题(本大题共6小题,共70分)
17.(10分)华侨公园停车场预计“十·一”国庆节这天停放大小汽车1 200辆次,该停车场的收费标准为:大车每辆次10元,小车每辆次5元.
(1)写出国庆这天停车场的收费金额y(元)与小车停放辆次x(辆)之间的函数关系式,并指出x的取值范围.
(2)如果国庆这天停放的小车占停车总辆数的65%~85%,请你估计国庆这天该停车场收费金额的范围.
18.(12分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a,通过x块玻璃后强度为y.
(1)写出y关于x的函数关系式;
(2)通过多少块玻璃后,光线强度减弱到原来的以下?(lg 3≈0.477 1)
19.(12分)某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用,服用药后每毫升中的含药量y(微克)与服药的时间t(小时)之间近似满足如图所示的曲线,其中OA是线段,曲线AB是函数y=kat(t≥1,a>0,且k,a是常数)的图象.
(1)写出服药后y关于t的函数关系式;
(2)据测定,每毫升血液中的含药量不少于2微克时治疗疾病有效.假设某人第一次服药为早上6∶00,为保持疗效,第二次服药最迟应当在当天几点钟?
(3)若按(2)中的最迟时间服用第二次药,则第二次服药后3小时,该病人每毫升血液中的含药量为多少微克(精确到0.1微克)?
20.(12分)已知一次函数f(x)满足:f(1)=2,f(2)=3,
(1)求f(x)的解析式;
(2)判断函数g(x)=-1+lg f2(x)在区间[0,9]上零点的个数.
21.(12分)截止到2009年底,我国人口约为13.56亿,若今后能将人口平均增长率控制在1%,经过x年后,我国人口为y亿.
(1)求y与x的函数关系式y=f(x);
(2)求函数y=f(x)的定义域;
(3)判断函数f(x)是增函数还是减函数?并指出函数增减的实际意义.
22.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.
(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?
(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数的表达式;
(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)
第三章 函数的应用(A)
1.B [由1+=0,得=-1,∴x=-1.]
2.B [由题意x0为方程x3=()x-2的根,
令f(x)=x3-22-x,
∵f(0)=-4<0,f(1)=-1<0,f(2)=7>0,
∴x0∈(1,2).]
3.B [设1月份产值为a,增长率为x,则aP=a(1+x)11,
∴x=-1.]
4.A [对于①③在函数零点两侧函数值的符号相同,故不能用二分法求.]
5.C [解析式为S=f(t)


∴在[0,1]上为抛物线的一段,在(1,2]上为线段.]
6.B [根据配制前后溶质不变,有等式a%x+b%y=c%(x+y),即ax+by=cx+cy,故y=x.]
7.B [设职工原工资为p,平均增长率为x,
则p(1+x)6=8p,x=-1=-1=41%.]
8.A [L(Q)=4Q-Q2-Q-200=-(Q-300)2+250,故总利润L(Q)的最大值是250万元,
这时产品的生产数量为300.]
9.B [∵x=0时,无意义,∴D不成立.
由对应数据显示该函数是增函数,且增幅越来越快,
∴A不成立.
∵C是偶函数,
∴x=±1的值应该相等,故C不成立.
对于B,当x=0时,y=1,
∴a+1=1,a=0;
当x=1时,y=b=2.02,经验证它与各数据比较接近.]
10.B [可把每5年段的时间视为一个整体,将点(1,8.6),(2,10.4),(3,12.9)描出,通过拟合易知它符合二次函数模型.]
11.C [令f(x)=2x3+3x-3,f(0)<0,f(1)>0,f(0.5)<0,f(0.75)>0,f(0.625)<0,
∴方程2x3+3x-3=0的根在区间(0.625,0.75)内,
∵0.75-0.625=0.125<0.25,
∴区间(0.625,0.75)内的任意一个值作为方程的近似根都满足题意.]
12.C [操作次数为n时的浓度为()n+1,由()n+1<10%,得n+1>=≈21.8,
∴n≥21.]
13.(0,0.5) 0.25
解析 根据函数零点的存在性定理.
∵f(0)<0,f(0.5)>0,
∴在(0,0.5)存在一个零点,第二次计算找中点,
即=0.25.
14.(1,+∞)
解析 函数f(x)的零点的个数就是函数y=ax与函数y=x+a交点的个数,如下图,由函数的图象可知a>1时两函数图象有两个交点,01.
15.a(1-b%)n
解析 第一年后这批设备的价值为a(1-b%);
第二年后这批设备的价值为a(1-b%)-a(1-b%)·b%=a(1-b%)2;
故第n年后这批设备的价值为a(1-b%)n.
16.(0,1]
解析 设x1,x2是函数f(x)的零点,则x1,x2为方程x2-2x+b=0的两正根,
则有,即.
解得017.解 (1)依题意得y=5x+10(1 200-x)
=-5x+12 000,0≤x≤1 200.
(2)∵1 200×65%≤x≤1 200×85%,
解得780≤x≤1 020,
而y=-5x+12 000在[780,1 020]上为减函数,
∴-5×1 020+12 000≤y≤-5×780+12 000.
即6 900≤y≤8 100,
∴国庆这天停车场收费的金额范围为[6 900,8 100].
18.解 (1)依题意:y=a·0.9x,x∈N*.
(2)依题意:y≤a,
即:a·0.9x≤,0.9x≤=,
得x≥log0.9=≈-≈10.42.
答 通过至少11块玻璃后,光线强度减弱到原来的以下.
19.解 (1)当0≤t<1时,y=8t;
当t≥1时,∴
∴y=
(2)令8·()t≥2,解得t≤5.
∴第一次服药5小时后,即第二次服药最迟应当在当天上午11时服药.
(3)第二次服药后3小时,每毫升血液中含第一次所服药的药量为y1=8×()8=(微克);含第二次服药后药量为y2=8×()3=4(微克),y1+y2=+4≈4.7(微克).
故第二次服药再过3小时,
该病人每毫升血液中含药量为4.7微克.
20.解 (1)令f(x)=ax+b,由已知条件得
,解得a=b=1,
所以f(x)=x+1(x∈R).
(2)∵g(x)=-1+lg f2(x)=-1+lg (x+1)2在区间[0,9]上为增函数,且g(0)=-1<0,
g(9)=-1+lg 102=1>0,
∴函数g(x)在区间[0,9]上零点的个数为1个.
21.解 (1)2009年底人口数:13.56亿.
经过1年,2010年底人口数:
13.56+13.56×1%=13.56×(1+1%)(亿).
经过2年,2011年底人口数:
13.56×(1+1%)+13.56×(1+1%)×1%
=13.56×(1+1%)2(亿).
经过3年,2012年底人口数:
13.56×(1+1%)2+13.56×(1+1%)2×1%
=13.56×(1+1%)3(亿).
∴经过的年数与(1+1%)的指数相同.
∴经过x年后人口数为13.56×(1+1%)x(亿).
∴y=f(x)=13.56×(1+1%)x.
(2)理论上指数函数定义域为R.
∵此问题以年作为时间单位.
∴此函数的定义域是{x|x∈N*}.
(3)y=f(x)=13.56×(1+1%)x.
∵1+1%>1,13.56>0,
∴y=f(x)=13.56×(1+1%)x是增函数,
即只要递增率为正数,随着时间的推移,人口的总数总在增长.
22.解 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x0个,则x0=100+=550.
因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.
(2)当0当100当x≥550时,P=51.
所以P=f(x)=(x∈N).
(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,
则L=(P-40)x=(x∈N).
当x=500时,L=6 000;
当x=1 000时,L=11 000.
因此,当销售商一次订购500个零件时,
该厂获得的利润是6 000元;
如果订购1 000个,利润是11 000元.
第三章 函数的应用(B)
(时间:120分钟 满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分)
1.设方程|x2-3|=a的解的个数为m,则m不可能等于(  )
A.1 B.2 C.3 D.4
2.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知该商品每个涨价1元,其销售量就减少20个,为了赚得最大利润,售价应定为(  )
A.每个110元 B.每个105元 C.每个100元 D.每个95元
3.今有一组实验数据如下表,现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是(  )
t
1.99
3.0
4.0
5.1
6.12
y
1.5
4.04
7.5
12
18.01
A.y=log2t B.y= C.y= D.y=2t-2
4.某商场对顾客实行购物优惠活动,规定一次购物付款总额:
(1)如果不超过200元,则不给予优惠;
(2)如果超过200元但不超过500元,则按标价给予9折优惠;
(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.
某人两次去购物,分别付款168元和423元,假设他去一次购买上述同样的商品,则应付款是(  )
A.413.7元 B.513.7元 C.548.7元 D.546.6元
5.方程x2+ax-2=0在区间[1,5]上有解,则实数a的取值范围为(  )
A.(-,+∞) B.(1,+∞) C.[-,1] D.(-∞,-]
6.设f(x)是区间[a,b]上的单调函数,且f(a)f(b)<0,则方程f(x)=0在区间[a,b](  )
A.至少有一实根 B.至多有一实根
C.没有实根 D.必有唯一实根
7.方程x2-(2-a)x+5-a=0的两根都大于2,则实数a的取值范围是(  )
A.a<-2 B.-5C.-54或a<-4
8.四人赛跑,其跑过的路程f(x)和时间x的关系分别是:f1(x)=,f2(x)=x,f3(x)=log2(x+1),f4(x)=log8(x+1),如果他们一直跑下去,最终跑到最前面的人所具有的函数关系是(  )
A.f1(x)= B.f2(x)=x
C.f3(x)=log2(x+1) D.f4(x)=log8(x+1)
9.函数f(x)=ln x-的零点所在的大致区间是(  )
A.(1,2) B.(2,3) C.(e,3) D.(e,+∞)
10.已知f(x)=(x-a)(x-b)-2的两个零点分别为α,β,则(  )
A.a<αC.a<α<β11.设f(x)是连续的偶函数,且当x>0时是单调函数,则满足f(2x)=f()的所有x之和为(  )
A.- B.- C.-8 D.8
12.在某种金属材料的耐高温实验中,温度随着时间变化的情况由微机记录后再显示的图象如图所示.现给出下面说法:
①前5分钟温度增加的速度越来越快; ②前5分钟温度增加的速度越来越慢;
③5分钟以后温度保持匀速增加; ④5分钟以后温度保持不变.
其中正确的说法是(  )
A.①④ B.②④ C.②③ D.①③
二、填空题(本大题共4小题,每小题5分,共20分)
13.已知函数f(x)=,且关于x的方程f(x)+x-a=0有且只有一个实根,则实数a的取值范围是______________.
14.要建造一个长方体形状的仓库,其内部的高为3 m,长与宽的和为20 m,则仓库容积的最大值为________.
15.已知函数f(x)=若函数g(x)=f(x)-m有3个零点,则实数m的取值范围为________.
16.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.
三、解答题(本大题共6小题,共70分)
17.(10分)讨论方程4x3+x-15=0在[1,2]内实数解的存在性,并说明理由.
18.(12分)(1)已知f(x)=+m是奇函数,求常数m的值;
(2)画出函数y=|3x-1|的图象,并利用图象回答:k为何值时,方程|3x-1|=k无解?有一解?有两解?
19.(12分)某出版公司为一本畅销书定价如下:
C(n)=这里n表示定购书的数量,C(n)是定购n本书所付的钱数(单位:元).
若一本书的成本价是5元,现有甲、乙两人来买书,每人至少买1本,两人共买60本,问出版公司最少能赚多少钱?最多能赚多少钱?
20.(12分)是否存在这样的实数a,使函数f(x)=x2+(3a-2)x+a-1在区间[-1,3]上与x轴恒有一个交点,且只有一个交点?若存在,求出范围;若不存在,请说明理由.
21.(12分)已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求实数a的取值范围.
22.(12分)我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定:
①若每月用水量不超过最低限量m立方米时,只付基本费9元和每户每月定额损耗费a元;
②若每月用水量超过m立方米时,除了付基本费和定额损耗费外,超过部分每立方米付n元的超额费;
③每户每月的定额损耗费a不超过5元.
(1)求每户每月水费y(元)与月用水量x(立方米)的函数关系式;
(2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:
月份
用水量(立方米)
水费(元)

4
17

5
23

2.5
11
试分析该家庭今年一、二、三各月份的用水量是否超过最低限量,并求m,n,a的值.
第三章 函数的应用(B)
1.A [在同一坐标系中分别画出函数y1=|x2-3|和y2=a的图象,如图所示.
可知方程解的个数为0,2,3或4,不可能有1个解.]
2.D [设售价为x元,则利润
y=[400-20(x-90)](x-80)=20(110-x)(x-80)
=-20(x2-190x+8 800)
=-20(x-95)2+4 500.
∴当x=95时,y最大为4 500元.]
3.C [当t=4时,y=log24=2,y==-2,y==7.5,y=2×4-2=6.
所以y=适合,
当t=1.99代入A、B、C、D4个选项,y=的值与表中的1.5接近,故选C.]
4.D [购物超过200元,至少付款200×0.9=180(元),超过500元,至少付款500×0.9=450(元),可知此人第一次购物不超过200元,第二次购物不超过500元,则此人两次购物总金额是168+=168+470=638(元).若一次购物,应付500×0.9+138×0.7=546.6(元).]
5.C [令f(x)=x2+ax-2,则f(0)=-2<0,
∴要使f(x)在[1,5]上与x轴有交点,则需要
,即,解得-≤a≤1.]
6.D [∵f(a)·f(b)<0,∴f(x)在区间[a,b]上存在零点,
又∵f(x)在[a,b]上是单调函数,∴f(x)在区间[a,b]上的零点唯一,即f(x)=0在[a,b]上必有唯一实根.]
7.C [由题意知,解得-58.B [在同一坐标系下画出四个函数的图象,由图象可知f2(x)=x增长的最快.]
9.B [f(2)=ln 2-=ln 2-1<1-1=0,
f(3)=ln 3->1-=>0.故零点所在区间为(2,3).]
10.B [设g(x)=(x-a)(x-b),则f(x)是由g(x)的图象向下平移2个单位得到的,而g(x)的两个零点为a,b,f(x)的两个零点为α,β,结合图象可得α11.C [∵x>0时f(x)单调且为偶函数,
∴|2x|=||,即2x(x+4)=±(x+1).
∴2x2+9x+1=0或2x2+7x-1=0.
∴共有四根.
∵x1+x2=-,x3+x4=-,
∴所有x之和为-+(-)=-8.]
12.B [因为温度y关于时间t的图象是先凸后平行直线,即5分钟前每当t增加一个单位增量Δt,则y随相应的增量Δy越来越小,而5分钟后y关于t的增量保持为0.故选B.]
13.(1,+∞)
解析 由f(x)+x-a=0,
得f(x)=a-x,
令y=f(x),y=a-x,如图,
当a>1时,y=f(x)与y=a-x有且只有一个交点,
∴a>1.
14.300 m3
解析 设长为x m,则宽为(20-x)m,仓库的容积为V,
则V=x(20-x)·3=-3x2+60x,0由二次函数的图象知,顶点的纵坐标为V的最大值.
∴x=10时,V最大=300(m3).
15.(0,1)
解析 函数f(x)=的图象如图所示,
该函数的图象与直线y=m有三个交点时m∈(0,1),此时函数g(x)=f(x)-m有3个零点.
16.[-1,1]
解析 分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y|=2x+1与直线y=b的图象如图所示,由图象可得:如果|y|=2x+1与直线y=b没有公共点,则b应满足的条件为b∈[-1,1].
17.解 令f(x)=4x3+x-15,
∵y=4x3和y=x在[1,2]上都为增函数.
∴f(x)=4x3+x-15在[1,2]上为增函数,
∵f(1)=4+1-15=-10<0,f(2)=4×8+2-15=19>0,
∴f(x)=4x3+x-15在[1,2]上存在一个零点,
∴方程4x3+x-15=0在[1,2]内有一个实数解.
18.解 (1)∵f(x)=+m是奇函数,
∴f(-x)=-f(x),∴+m=--m.
∴+m=-m,
∴+2m=0.
∴-2+2m=0,∴m=1.
(2)作出直线y=k与函数y=|3x-1|的图象,如图.
①当k<0时,直线y=k与函数y=|3x-1|的图象无交点,即方程无解;
②当k=0或k≥1时,直线y=k与函数y=|3x-1|的图象有唯一的交点,所以方程有一解;
③当019.解 设甲买n本书,则乙买(60-n)本(不妨设甲买的书少于或等于乙买的书),则n≤30,n∈N*.
①当1≤n≤11且n∈N*时,49≤60-n≤59,
出版公司赚的钱数f(n)=12n+10(60-n)-5×60=2n+300;
②当12≤n≤24且n∈N*时,36≤60-n≤48,
出版公司赚的钱数
f(n)=12n+11(60-n)-5×60=n+360;
③当25≤n≤30且n∈N*时,30≤60-n≤35,
出版公司赚的钱数f(n)=11×60-5×60=360.
∴f(n)=
∴当1≤n≤11时,302≤f(n)≤322;
当12≤n≤24时,372≤f(n)≤384;
当25≤n≤30时,f(n)=360.
故出版公司最少能赚302元,最多能赚384元.
20.解 若实数a满足条件,
则只需f(-1)f(3)≤0即可.
f(-1)f(3)=(1-3a+2+a-1)(9+9a-6+a-1)=4(1-a)(5a+1)≤0,
所以a≤-或a≥1.
检验:(1)当f(-1)=0时a=1,
所以f(x)=x2+x.
令f(x)=0,即x2+x=0,得x=0或x=-1.
方程在[-1,3]上有两根,不合题意,故a≠1.
(2)当f(3)=0时a=-,
此时f(x)=x2-x-.
令f(x)=0,即x2-x-=0,
解得,x=-或x=3.
方程在[-1,3]上有两根,不合题意,故a≠-.
综上所述,a∈(-∞,-)∪(1,+∞).
21.解 当a=0时,函数为f(x)=2x-3,其零点x=不在区间[-1,1]上.
当a≠0时,函数f(x)在区间[-1,1]分为两种情况:
①函数在区间[-1,1]上只有一个零点,此时:
或,
解得1≤a≤5或a=.
②函数在区间[-1,1]上有两个零点,此时
,即.
解得a≥5或a<.
综上所述,如果函数在区间[-1,1]上有零点,那么实数a的取值范围为(-∞,]∪[1,+∞).
22.解 (1)依题意,得y=
其中0(2)∵0由于该家庭今年一、二月份的水费均大于14元,故用水量4立方米,5立方米都大于最低限量m立方米.
将和分别代入②,

③-④,得n=6.
代入17=9+n(4-m)+a,得a=6m-16.
又三月份用水量为2.5立方米,
若m<2.5,将代入②,得a=6m-13,
这与a=6m-16矛盾.
∴m≥2.5,即该家庭三月份用水量2.5立方米没有超过最低限量.
将代入①,得11=9+a,
由解得
∴该家庭今年一、二月份用水量超过最低限量,三月份用水量没有超过最低限量,且m=3,n=6,a=2.