第三章 函数的应用同步练习(29页,含答案)

文档属性

名称 第三章 函数的应用同步练习(29页,含答案)
格式 zip
文件大小 1.1MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2018-09-27 15:29:03

图片预览

文档简介

第三章 函数的应用
§3.1 函数与方程
3.1.1 方程的根与函数的零点
课时目标 1.能够结合二次函数的图象判断一元二次方程根的存在性及根的个数,理解二次函数的图象与x轴的交点和相应的一元二次方程根的关系.2.理解函数零点的概念以及函数零点与方程根的联系.3.掌握函数零点的存在性定理.
1.函数y=ax2+bx+c(a≠0)的图象与x轴的交点和相应的ax2+bx+c=0(a≠0)的根的关系
函数图象
判别式
Δ>0
Δ=0
Δ<0
与x轴交点个数
____个
____个
____个
方程的根
____个
____个
无解
2.函数的零点
对于函数y=f(x),我们把________________叫做函数y=f(x)的零点.
3.方程、函数、图象之间的关系
方程f(x)=0__________?函数y=f(x)的图象______________?函数y=f(x)__________.
4.函数零点的存在性定理
如果函数y=f(x)在区间[a,b]上的图象是________的一条曲线,并且有____________,那么,函数y=f(x)在区间(a,b)内________,即存在c∈(a,b),使得__________,这个c也就是方程f(x)=0的根.
一、选择题
1.二次函数y=ax2+bx+c中,a·c<0,则函数的零点个数是(  )
A.0个 B.1个 C.2个 D.无法确定
2.若函数y=f(x)在区间[a,b]上的图象为一条连续不断的曲线,则下列说法正确的是(  )
A.若f(a)f(b)>0,不存在实数c∈(a,b)使得f(c)=0
B.若f(a)f(b)<0,存在且只存在一个实数c∈(a,b)使得f(c)=0
C.若f(a)f(b)>0,有可能存在实数c∈(a,b)使得f(c)=0
D.若f(a)f(b)<0,有可能不存在实数c∈(a,b)使得f(c)=0
3.若函数f(x)=ax+b(a≠0)有一个零点为2,那么函数g(x)=bx2-ax的零点是(  )
A.0,- B.0, C.0,2 D.2,-
4.函数f(x)=ex+x-2的零点所在的一个区间是(  )
A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)
5.函数f(x)=零点的个数为(  )
A.0 B.1 C.2 D.3
6.已知函数y=ax3+bx2+cx+d的图象如图所示,则实数b的取值范围是(  )
A.(-∞,0) B.(0,1) C.(1,2) D.(2,+∞)
题 号
1
2
3
4
5
6
答 案
二、填空题
7.已知函数f(x)是定义域为R的奇函数,-2是它的一个零点,且在(0,+∞)上是增函数,则该函数有______个零点,这几个零点的和等于______.
8.函数f(x)=ln x-x+2的零点个数为________.
9.根据表格中的数据,可以判定方程ex-x-2=0的一个实根所在的区间为(k,k+1)(k∈N),则k的值为________.
x
-1
0
1
2
3
ex
0.37
1
2.72
7.39
20.09
x+2
1
2
3
4
5
三、解答题
10.证明:方程x4-4x-2=0在区间[-1,2]内至少有两个实数解.
11.关于x的方程mx2+2(m+3)x+2m+14=0有两实根,且一个大于4,一个小于4,求m的取值范围.
能力提升
12.设函数f(x)=若f(-4)=f(0),f(-2)=-2,则方程f(x)=x的
解的个数是(  )
A.1 B.2 C.3 D.4
13.若方程x2+(k-2)x+2k-1=0的两根中,一根在0和1之间,另一根在1和2之间,求k的取值范围.
1.方程的根与方程所对应函数的零点的关系
(1)函数的零点是一个实数,当自变量取该值时,其函数值等于零.
(2)根据函数零点定义可知,函数f(x)的零点就是方程f(x)=0的根,因此判断一个函数是否有零点,有几个零点,就是判断方程f(x)=0是否有实根,有几个实根.
(3)函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的实数根,也就是函数y=f(x)的图象与y=g(x)的图象交点的横坐标.
2.并不是所有的函数都有零点,如函数y=.
3.对于任意的一个函数,即使它的图象是连续不断的,当它通过零点时,函数值也不一定变号.如函数y=x2有零点x0=0,但显然当它通过零点时函数值没有变号.
第三章 函数的应用
§3.1 函数与方程
3.1.1 方程的根与函数的零点
知识梳理
1.2 1 0 2 1 2.使f(x)=0的实数x 3.有实数根 与x轴有交点 有零点 4.连续不断 f(a)·f(b)<0 有零点 f(c)=0
作业设计
1.C [方程ax2+bx+c=0中,∵ac<0,∴a≠0,
∴Δ=b2-4ac>0,
即方程ax2+bx+c=0有2个不同实数根,
则对应函数的零点个数为2个.]
2.C [对于选项A,可能存在根;
对于选项B,必存在但不一定唯一;
选项D显然不成立.]
3.A [∵a≠0,2a+b=0,
∴b≠0,=-.
令bx2-ax=0,得x=0或x==-.]
4.C [∵f(x)=ex+x-2,
f(0)=e0-2=-1<0,
f(1)=e1+1-2=e-1>0,
∴f(0)·f(1)<0,
∴f(x)在区间(0,1)上存在零点.]
5.C [x≤0时,令x2+2x-3=0,解得x=-3.
x>0时,f(x)=ln x-2在(0,+∞)上递增,
f(1)=-2<0,f(e3)=1>0,∵f(1)f(e3)<0
∴f(x)在(0,+∞)上有且只有一个零点.
总之,f(x)在R上有2个零点.]
6.A [设f(x)=ax3+bx2+cx+d,则由f(0)=0可得d=0,f(x)=x(ax2+bx+c)=ax(x-1)(x-2)?b=-3a,又由x∈(0,1)时f(x)>0,可得a>0,∴b<0.]
7.3 0
解析 ∵f(x)是R上的奇函数,∴f(0)=0,又∵f(x)在(0,+∞)上是增函数,由奇函数的对称性可知,f(x)在(-∞,0)上也单调递增,由f(2)=-f(-2)=0.因此在(0,+∞)上只有一个零点,综上f(x)在R上共有3个零点,其和为-2+0+2=0.
8.2
解析 该函数零点的个数就是函数y=ln x与y=x-2图象的交点个数.在同一坐标系中作出y=ln x与y=x-2的图象如下图:
由图象可知,两个函数图象有2个交点,即函数f(x)=ln x-x+2有2个零点.
9.1
解析 设f(x)=e2-(x+2),由题意知f(-1)<0,f(0)<0,f(1)<0,f(2)>0,所以方程的一个实根在区间(1,2)内,即k=1.
10.证明 设f(x)=x4-4x-2,其图象是连续曲线.
因为f(-1)=3>0,f(0)=-2<0,f(2)=6>0.
所以在(-1,0),(0,2)内都有实数解.
从而证明该方程在给定的区间内至少有两个实数解.
11.解 令f(x)=mx2+2(m+3)x+2m+14.
依题意得或,
即或,解得-12.C [由已知得
∴f(x)=
当x≤0时,方程为x2+4x+2=x,
即x2+3x+2=0,
∴x=-1或x=-2;
当x>0时,方程为x=2,
∴方程f(x)=x有3个解.]
13.解 设f(x)=x2+(k-2)x+2k-1.
∵方程f(x)=0的两根中,一根在(0,1)内,一根在(1,2)内,
∴,即
∴3.1.2 用二分法求方程的近似解
课时目标 1.理解二分法求方程近似解的原理.2.能根据具体的函数,借助于学习工具,用二分法求出方程的近似解.3.知道二分法是求方程近似解的一种常用方法,体会“逐步逼近”的思想.
1.二分法的概念
对于在区间[a,b]上连续不断且____________的函数y=f(x),通过不断地把函数f(x)的零点所在的区间__________,使区间的两个端点______________,进而得到零点近似值的方法叫做二分法.由函数的零点与相应方程根的关系,可用二分法来求________________________________________________________________________.
2.用二分法求函数f(x)零点近似值的步骤:
(1)确定区间[a,b],验证____________,给定精确度ε;
(2)求区间(a,b)的中点____;
(3)计算f(c);
①若f(c)=0,则________________;
②若f(a)·f(c)<0,则令b=c(此时零点x0∈________);
③若f(c)·f(b)<0,则令a=c(此时零点x0∈________).
(4)判断是否达到精确度ε:即若|a-b|<ε,则得到零点近似值a(或b);否则重复(2)~(4).
一、选择题
1.用“二分法”可求近似解,对于精确度ε说法正确的是(  )
A.ε越大,零点的精确度越高 B.ε越大,零点的精确度越低
C.重复计算次数就是ε D.重复计算次数与ε无关
2.下列图象与x轴均有交点,其中不能用二分法求函数零点的是(  )
3.对于函数f(x)在定义域内用二分法的求解过程如下:f(2 007)<0,f(2 008)<0,f(2 009)>0,则下列叙述正确的是(  )
A.函数f(x)在(2 007,2 008)内不存在零点
B.函数f(x)在(2 008,2 009)内不存在零点
C.函数f(x)在(2 008,2 009)内存在零点,并且仅有一个
D.函数f(x)在(2 007,2 008)内可能存在零点
4.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间(  )
A.(1,1.25) B.(1.25,1.5) C.(1.5,2) D.不能确定
5.利用计算器,列出自变量和函数值的对应关系如下表:
x
0.2
0.6
1.0
1.4
1.8
2.2
2.6
3.0
3.4

y=2x
1.149
1.516
2.0
2.639
3.482
4.595
6.063
8.0
10.556

y=x2
0.04
0.36
1.0
1.96
3.24
4.84
6.76
9.0
11.56

那么方程2x=x2的一个根位于下列哪个区间内(  )
A.(0.6,1.0) B.(1.4,1.8) C.(1.8,2.2) D.(2.6,3.0)
6.已知x0是函数f(x)=2x+的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则(  )
A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0
C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>0
题 号
1
2
3
4
5
6
答 案
二、填空题
7.若函数f(x)的图象是连续不间断的,根据下面的表格,可以断定f(x)的零点所在的区间为________.(只填序号)
①(-∞,1] ②[1,2] ③[2,3] ④[3,4] ⑤[4,5] ⑥[5,6] ⑦[6,+∞)
x
1
2
3
4
5
6
f(x)
136.123
15.542
-3.930
10.678
-50.667
-305.678
8.用“二分法”求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点为x0=2.5,那么下一个有根的区间是________.
9.在用二分法求方程f(x)=0在[0,1]上的近似解时,经计算,f(0.625)<0,f(0.75)>0,f(0.687 5)<0,即可得出方程的一个近似解为____________(精确度为0.1).
三、解答题
10.确定函数f(x)=+x-4的零点所在的区间.
11.证明方程6-3x=2x在区间[1,2]内有唯一一个实数解,并求出这个实数解.(精确度0.1)
能力提升
12.下列是关于函数y=f(x),x∈[a,b]的命题:
①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;
②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;
③函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点;
④用二分法求方程的根时,得到的都是近似值.
那么以上叙述中,正确的个数为(  )
A.0 B.1 C.3 D.4
13.在26枚崭新的金币中,混入了一枚外表与它们完全相同的假币(重量稍轻),现在只有一台天平,请问:你最多称几次就可以发现这枚假币?
1.能使用二分法求方程近似解的方法仅对函数的变号零点适用,对函数的不变号零点不适用.
2.二分法实质是一种逼近思想的应用.区间长度为1时,使用“二分法”n次后,精确度为.
3.求函数零点的近似值时,所要求的精确度不同,得到的结果也不相同.精确度为ε,是指在计算过程中得到某个区间(a,b)后,若其长度小于ε,即认为已达到所要求的精确度,可停止计算,否则应继续计算,直到|a-b|<ε为止.
3.1.2 用二分法求方程的近似解
知识梳理
1.f(a)·f(b)<0 一分为二 逐步逼近零点 方程的近似解
2.(1)f(a)·f(b)<0 (2)c (3)①c就是函数的零点 ②(a,c)
③(c,b)
作业设计
1.B [依“二分法”的具体步骤可知,ε越大,零点的精确度越低.]
2.A [由选项A中的图象可知,不存在一个区间(a,b),使f(a)·f(b)<0,即A选项中的零点不是变号零点,不符合二分法的定义.]
3.D
4.B [∵f(1)·f(1.5)<0,x1==1.25.
又∵f(1.25)<0,∴f(1.25)·f(1.5)<0,
则方程的根落在区间(1.25,1.5)内.]
5.C [设f(x)=2x-x2,根据列表有f(0.2)=1.149-0.04>0,
f(0.6)>0,f(1.0)>0,f(1.4)>0,f(1.8)>0,f(2.2)<0,f(2.6)<0,f(3.0)<0,f(3.4)<0.因此方程的一个根在区间(1.8,2.2)内.]
6.B [∵f(x)=2x-,f(x)由两部分组成,2x在(1,+∞)上单调递增,-在(1,+∞)上单调递增,∴f(x)在(1,+∞)上单调递增.∵x1又∵x2>x0,∴f(x2)>f(x0)=0.]
7.③④⑤
8.[2,2.5)
解析 令f(x)=x3-2x-5,则f(2)=-1<0,f(3)=16>0,
f(2.5)=15.625-10=5.625>0.
∵f(2)·f(2.5)<0,∴下一个有根的区间为[2,2.5).
9.0.75或0.687 5
解析 因为|0.75-0.687 5|=0.062 5<0.1,
所以0.75或0.687 5都可作为方程的近似解.
10.解 (答案不唯一)
设y1=,y2=4-x,则f(x)的零点个数即y1与y2的交点个数,作出两函数图象,如图.
由图知,y1与y2在区间(0,1)内有一个交点,
当x=4时,y1=-2,y2=0,f(4)<0,
当x=8时,y1=-3,y2=-4,f(8)=1>0,
∴在(4,8)内两曲线又有一个交点.
故函数f(x)的两零点所在的区间为(0,1),(4,8).
11.证明 设函数f(x)=2x+3x-6,
∵f(1)=-1<0,f(2)=4>0,
又∵f(x)是增函数,
∴函数f(x)=2x+3x-6在区间[1,2]内有唯一的零点,
则方程6-3x=2x在区间[1,2]内有唯一一个实数解.
设该解为x0,则x0∈[1,2],
取x1=1.5,f(1.5)≈1.33>0,f(1)·f(1.5)<0,
∴x0∈(1,1.5),
取x2=1.25,f(1.25)≈0.128>0,
f(1)·f(1.25)<0,∴x0∈(1,1.25),
取x3=1.125,f(1.125)≈-0.444<0,
f(1.125)·f(1.25)<0,∴x0∈(1.125,1.25),
取x4=1.187 5,f(1.187 5)≈-0.16<0,
f(1.187 5)·f(1.25)<0,
∴x0∈(1.187 5,1.25).
∵|1.25-1.187 5|=0.062 5<0.1,
∴1.187 5可作为这个方程的实数解.
12.A [∵①中x0∈[a,b]且f(x0)=0,∴x0是f(x)的一个零点,而不是(x0,0),∴①错误;②∵函数f(x)不一定连续,∴②错误;③方程f(x)=0的根一定是函数f(x)的零点,∴③错误;④用二分法求方程的根时,得到的根也可能是精确值,∴④也错误.]
13.解 第一次各13枚称重,选出较轻一端的13枚,继续称;
第二次两端各6枚,若平衡,则剩下的一枚为假币,否则选出较轻的6枚继续称;
第三次两端各3枚,选出较轻的3枚继续称;
第四次两端各1枚,若不平衡,可找出假币;若平衡,则剩余的是假币.
∴最多称四次.
§3.1 习题课
课时目标 1.进一步了解函数的零点与方程根的联系.2.进一步熟悉用“二分法”求方程的近似解.3.初步建立用函数与方程思想解决问题的思维方式.
1.函数f(x)在区间(0,2)内有零点,则(  )
A.f(0)>0,f(2)<0 B.f(0)·f(2)<0
C.在区间(0,2)内,存在x1,x2使f(x1)·f(x2)<0 D.以上说法都不正确
2.函数f(x)=x2+2x+b的图象与两条坐标轴共有两个交点,那么函数y=f(x)的零点个数是(  )
A.0 B.1 C.2 D.1或2
3.设函数f(x)=log3-a在区间(1,2)内有零点,则实数a的取值范围是(  )
A.(-1,-log32) B.(0,log32) C.(log32,1) D.(1,log34)
4.方程2x-x-2=0在实数范围内的解的个数是________________________________.
5.函数y=()x与函数y=lg x的图象的交点的横坐标是________.(精确到0.1)
6.方程4x2-6x-1=0位于区间(-1,2)内的解有__________个.
一、选择题
1.已知某函数f(x)的图象如图所示,则函数f(x)有零点的区间大致是(  )
A.(0,0.5) B.(0.5,1) C.(1,1.5) D.(1.5,2)
2.函数f(x)=x5-x-1的一个零点所在的区间可能是(  )
A.[0,1] B.[1,2] C.[2,3] D.[3,4]
3.若x0是方程lg x+x=2的解,则x0属于区间(  )
A.(0,1) B.(1,1.25) C.(1.25,1.75) D.(1.75,2)
4.用二分法求函数f(x)=x3+5的零点可以取的初始区间是(  )
A.[-2,1] B.[-1,0] C.[0,1] D.[1,2]
5.已知函数f(x)=(x-a)(x-b)+2(aA.a<α<β题 号
1
2
3
4
5
答 案
二、填空题
6.用二分法求方程x2-5=0在区间(2,3)的近似解经过________次二分后精确度能达到0.01.
7.已知偶函数y=f(x)有四个零点,则方程f(x)=0的所有实数根之和为________.
8.若关于x的二次方程x2-2x+p+1=0的两根α,β满足0<α<1<β<2,则实数p的取值范围为___________________.
9.已知函数f(x)=ax2+2x+1(a∈R),若方程f(x)=0至少有一正根,则a的取值范围为________.
三、解答题
10.若函数f(x)=x3+x2-2x-2的一个零点附近的函数值的参考数据如下表:
f(1)=-2
f(1.5)=0.625
f(1.25)≈-0.984
f(1.375)≈-0.260
f(1.437 5)≈0.162
f(1.406 25)≈-0.054
求方程x3+x2-2x-2=0的一个近似根(精确度0.1).
11.分别求实数m的范围,使关于x的方程x2+2x+m+1=0,
(1)有两个负根;
(2)有两个实根,且一根比2大,另一根比2小;
(3)有两个实根,且都比1大.
能力提升
12.已知函数f(x)=x|x-4|.
(1)画出函数f(x)=x|x-4|的图象;
(2)求函数f(x)在区间[1,5]上的最大值和最小值;
(3)当实数a为何值时,方程f(x)=a有三个解?
13.当a取何值时,方程ax2-2x+1=0的一个根在(0,1)上,另一个根在(1,2)上.
1.函数与方程存在着内在的联系,如函数y=f(x)的图象与x轴的交点的横坐标就是方程f(x)=0的解;两个函数y=f(x)与y=g(x)的图象交点的横坐标就是方程f(x)=g(x)的解等.根据这些联系,一方面,可通过构造函数来研究方程的解的情况;另一方面,也可通过构造方程来研究函数的相关问题.利用函数与方程的相互转化去解决问题,这是一种重要的数学思想方法.
2.对于二次方程f(x)=ax2+bx+c=0根的问题,从函数角度解决有时比较简洁.一般地,这类问题可从四个方面考虑:①开口方向;②判别式;③对称轴x=-与区间端点的关系;④区间端点函数值的正负.
§3.1 习题课
双基演练
1.D [函数y=f(x)在区间(a,b)内存在零点,我们并不一定能找到x1,x2∈(a,b),满足f(x1)·f(x2)<0,故A、B、C都是错误的,正确的为D.]
2.D [当f(x)的图象和x轴相切与y轴相交时,函数f(x)的零点个数为1,当f(x)的图象与y轴交于原点与x轴的另一交点在x轴负半轴上时,函数f(x)有2个零点.]
3.C [f(x)=log3(1+)-a在(1,2)上是减函数,由题设有f(1)>0,f(2)<0,解得a∈(log32,1).]
4.2
解析 作出函数y=2x及y=x+2的图象,它们有两个不同的交点,因此原方程有两个不同的根.
5.1.9(答案不唯一)
解析 令f(x)=()x-lg x,则f(1)=>0,f(3)=-lg 3<0,∴f(x)=0在(1,3)内有一解,利用二分法借助计算器可得近似解为1.9.
6.2
解析 设f(x)=4x2-6x-1,由f(-1)>0,f(2)>0,且f(0)<0,知方程4x2-6x-1=0在
(-1,0)和(0,2)内各有一解,因此在区间(-1,2)内有两个解.
作业设计
1.B
2.B [因为f(0)<0,f(1)<0,f(2)>0,
所以存在一个零点x∈[1,2].]
3.D [构造函数f(x)=lg x+x-2,由f(1.75)=f()=lg-<0,f(2)=lg 2>0,知x0属于区间(1.75,2).]
4.A [由于f(-2)=-3<0,f(1)=6>0,故可以取区间[-2,1]作为计算的初始区间,用二分法逐次计算.]
5.A [函数g(x)=(x-a)(x-b)的两个零点是a,b.
由于y=f(x)的图象可看作是由y=g(x)的图象向上平移2个单位而得到的,所以a<α<β6.7
解析 区间(2,3)的长度为1,当7次二分后区间长度为
=<=0.01.
7.0
解析 不妨设它的两个正零点分别为x1,x2.
由f(-x)=f(x)可知它的两个负零点分别是-x1,-x2,
于是x1+x2-x1-x2=0.
8.(-1,0)
解析 设f(x)=x2-2x+p+1,根据题意得f(0)=p+1>0,
且f(1)=p<0,f(2)=p+1>0,解得-19.a<0
解析 对ax2+2x+1=0,当a=0时,x=-,不符题意;
当a≠0,Δ=4-4a=0时,得x=-1(舍去).
当a≠0时,由Δ=4-4a>0,得a<1,
又当x=0时,f(0)=1,即f(x)的图象过(0,1)点,
f(x)图象的对称轴方程为x=-=-,
当->0,即a<0时,
方程f(x)=0有一正根(结合f(x)的图象);
当-<0,即a>0时,由f(x)的图象知f(x)=0有两负根,
不符题意.故a<0.
10.解 ∵f(1.375)·f(1.437 5)<0,
且|1.437 5-1.375|=0.062 5<0.1,
∴方程x3+x2-2x-2=0的一个近似根可取为区间(1.375,1.437 5)中任意一个值,通常我们取区间端点值,比如1.437 5.
11.解 (1)方法一 (方程思想)
设方程的两个根为x1,x2,
则有两个负根的条件是
解得-1方法二 (函数思想)
设函数f(x)=x2+2x+m+1,则原问题转化为函数f(x)与x轴的两个交点均在y轴左侧,结合函数的图象,有

解得-1(2)方法一 (方程思想)
设方程的两个根为x1,x2,则令y1=x1-2>0,y2=x2-2<0,问题转化为求方程(y+2)2+2(y+2)+m+1=0,即方程y2+6y+m+9=0有两个异号实根的条件,故有y1y2=m+9<0,解得m<-9.
方法二 (函数思想)
设函数f(x)=x2+2x+m+1,则原问题转化为函数f(x)与x轴的两个交点分别在2的两侧,结合函数的图象,
有f(2)=m+9<0,解得m<-9.
(3)由题意知,(方程思想),
或(函数思想),
因为两方程组无解,故解集为空集.
12.解 (1)f(x)=x|x-4|=
图象如右图所示.
(2)当x∈[1,5]时,f(x)≥0且当x=4时f(x)=0,故f(x)min=0;
又f(2)=4,f(5)=5,故f(x)max=5.
(3)由图象可知,当0方程f(x)=a有三个解.
13.解 ①当a=0时,方程即为-2x+1=0,只有一根,不符合题意.
②当a>0时,设f(x)=ax2-2x+1,
∵方程的根分别在区间(0,1),(1,2)上,
∴,即,解得③当a<0时,设方程的两根为x1,x2,
则x1x2=<0,x1,x2一正一负不符合题意.
综上,a的取值范围为§3.2 函数模型及其应用
3.2.1 几类不同增长的函数模型
课时目标 1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异.结合实例体会直线上升、指数爆炸、对数增长等不同函数模型增长的含义.2.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用.3.初步学会分析具体的实际问题,建模解决实际问题.
1.三种函数模型的性质
函数
性质
y=ax(a>1)
y=logax(a>1)
y=xn(n>0)
在(0,+∞)上
的增减性
________
________
________
图象的变化
随x的增大逐渐
变“________”
随x的增大逐渐
趋于______
随n值而不同
2.三种函数模型的增长速度比较
(1)对于指数函数y=ax(a>1)和幂函数y=xn(n>0)在区间(0,+∞)上,无论n比a大多少,尽管在x的一定范围内,ax会小于xn,但由于________的增长快于________的增长,因此总存在一个x0,当x>x0时,就会有__________.
(2)对于对数函数y=logax(a>1)和幂函数y=xn(n>0),在区间(0,+∞)上,尽管在x的一定范围内,logax可能会大于xn,但由于____________的增长慢于________的增长,因此总存在一个x0,当x>x0时,就会有______________.
一、选择题
1.今有一组数据如下:
t
1.99
3.0
4.0
5.1
6.12
v
1.5
4.40
7.5
12
18.01
现准备了如下四个答案,哪个函数最接近这组数据(  )
A.v=log2t B.v= C.v= D.v=2t-2
2.从山顶到山下的招待所的距离为20千米.某人从山顶以4千米/时的速度到山下的招待所,他与招待所的距离s(千米)与时间t(小时)的函数关系用图象表示为(  )
3.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用(  )
A.一次函数 B.二次函数 C.指数型函数 D.对数型函数
4.某自行车存车处在某天的存车量为4 000辆次,存车费为:变速车0.3元/辆次,普通车0.2元/辆次.若当天普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式为(  )
A.y=0.2x(0≤x≤4 000) B.y=0.5x(0≤x≤4 000)
C.y=-0.1x+1 200(0≤x≤4 000) D.y=0.1x+1 200(0≤x≤4 000)
5.已知f(x)=x2-bx+c且f(0)=3,f(1+x)=f(1-x),则有(  )
A.f(bx)≥f(cx) B.f(bx)≤f(cx)
C.f(bx)6.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为l1=5.06x-0.15x2和l2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则可能获得的最大利润是________元.(  )
A.45.606 B.45.6 C.45.56 D.45.51
题 号
1
2
3
4
5
6
答 案
二、填空题
7.一种专门侵占内存的计算机病毒,开机时占据内存2KB,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机后经过________分钟,该病毒占据64MB内存(1MB=210KB).
8.近几年由于北京房价的上涨,引起了二手房市场交易的火爆.房子几乎没有变化,但价格却上涨了,小张在2010年以80万元的价格购得一套新房子,假设这10年来价格年膨胀率不变,那么到2020年,这所房子的价格y(万元)与价格年膨胀率x之间的函数关系式是____________.
三、解答题
9.用模型f(x)=ax+b来描述某企业每季度的利润f(x)(亿元)和生产成本投入x(亿元)的关系.统计表明,当每季度投入1(亿元)时利润y1=1(亿元),当每季度投入2(亿元)时利润y2=2(亿元),当每季度投入3(亿元)时利润y3=2(亿元).又定义:当f(x)使[f(1)-y1]2+[f(2)-y2]2+[f(3)-y3]2的数值最小时为最佳模型.
(1)当b=,求相应的a使f(x)=ax+b成为最佳模型;
(2)根据题(1)得到的最佳模型,请预测每季度投入4(亿元)时利润y4(亿元)的值.
10.根据市场调查,某种商品在最近的40天内的价格f(t)与时间t满足关系f(t)= (t∈N),销售量g(t)与时间t满足关系g(t)=-t+(0≤t≤40,t∈N).求这种商品的日销售额(销售量与价格之积)的最大值.
能力提升
11.某种商品进价每个80元,零售价每个100元,为了促销拟采取买一个这种商品,赠送一个小礼品的办法,实践表明:礼品价值为1元时,销售量增加10%,且在一定范围内,礼品价值为(n+1)元时,比礼品价值为n元(n∈N*)时的销售量增加10%.
(1)写出礼品价值为n元时,利润yn(元)与n的函数关系式;
(2)请你设计礼品价值,以使商店获得最大利润.
12.已知桶1与桶2通过水管相连如图所示,开始时桶1中有a L水,t min后剩余的水符合指数衰减函数y1=ae-nt,那么桶2中的水就是y2=a-ae-nt,假定5 min后,桶1中的水与桶2中的水相等,那么再过多长时间桶1中的水只有L?
1.根据实际问题提供的两个变量的数量关系可构建和选择正确的函数模型.同时,要注意利用函数图象的直观性,来确定适合题意的函数模型.
2.常见的函数模型及增长特点
(1)直线y=kx+b (k>0)模型,其增长特点是直线上升;
(2)对数y=logax (a>1)模型,其增长缓慢;
(3)指数y=ax (a>1)模型,其增长迅速.
§3.2 函数模型及其应用
3.2.1 几类不同增长的函数模型
知识梳理
1.增函数 增函数 增函数 陡 稳定 2.(1)y=ax y=xn ax>xn (2)y=logax y=xn logax作业设计
1.C [将t的5个数值代入这四个函数,大体估算一下,很容易发现v=的函数比较接近表中v的5个数值.]
2.C [由题意知s与t的函数关系为s=20-4t,t∈[0,5],所以函数的图象是下降的一段线段,故选C.]
3.D [由于一次函数、二次函数、指数函数的增长不会后来增长越来越慢,只有对数函数的增长符合.]
4.C [由题意得:y=0.2x+0.3(4 000-x)
=-0.1x+1 200(0≤x≤4 000).]
5.B [由f(1+x)=f(1-x),知对称轴=1,b=2.
由f(0)=3,知c=3.
此时f(x)=x2-2x+3.
当x<0时,3x<2x<1,
函数y=f(x)在x∈(-∞,1)上是减函数,
f(bx)当x=0时,f(bx)=f(cx);
当x>0时,3x>2x>1,
函数y=f(x)在x∈(1,+∞)上是增函数,
f(bx)综上,f(bx)≤f(cx).]
6.B [设该公司在甲地销售x辆,
则在乙地销售(15-x)辆.
由题意可知所获利润l=5.06x-0.15x2+2(15-x)
=-0.15(x-10.2)2+45.606.
当x=10时,lmax≈45.6(万元).]
7.45
解析 设过n个3分钟后,该病毒占据64MB内存,则2×2n=64×210=216?n=15,故时间为15×3=45(分钟).
8.80(1+x)10
解析 一年后的价格为80+80·x=80(1+x).
二年后的价格为80(1+x)+80(1+x)·x
=80(1+x)(1+x)=80(1+x)2,
由此可推得10年后的价格为80(1+x)10.
9.解 (1)b=时,[f(1)-y1]2+[f(2)-y2]2+[f(3)-y3]2
=14(a-)2+,
∴a=时,f(x)=x+为最佳模型.
(2)f(x)=+,则y4=f(4)=.
10.解 据题意,商品的价格随时间t变化,且在不同的区间0≤t<20与20≤t≤40上,价格随时间t的变化的关系式也不同,故应分类讨论.设日销售额为F(t).
①当0≤t<20,t∈N时,
F(t)=(t+11)(-t+)
=-(t-)2+(+946),
故当t=10或11时,F(t)max=176.
②当20≤t≤40时,t∈N时,
F(t)=(-t+41)(-t+)=(t-42)2-,
故当t=20时,F(t)max=161.
综合①、②知当t=10或11时,日销售额最大,最大值为176.
11.解 (1)设未赠礼品时的销售量为m,
则当礼品价值为n元时,销售量为m(1+10%)n.
利润yn=(100-80-n)·m·(1+10%)n
=(20-n)m×1.1n (0(2)令yn+1-yn≥0,
即(19-n)m×1.1n+1-(20-n)m×1.1n≥0.
解得n≤9,
所以y1令yn+1-yn+2≥0,
即(19-n)m×1.1n+1-(18-n)m×1.1n+2≥0,
解得n≥8.
所以y9=y10>y11>…>y19.
所以礼品价值为9元或10元时,商店获得最大利润.
12.解 由题意得ae-5n=a-a·e-5n,
即e-5n=.①
设再过t min后桶1中的水有L,
则ae-n(t+5)=,e-n(t+5)=.②
将①式平方得e-10n=.③
比较②、③得-n(t+5)=-10n,∴t=5.
即再过5 min后桶1中的水只有L.
3.2.2 函数模型的应用实例
课时目标 1.能够找出简单实际问题中的函数关系式.2.初步体会应用一次函数、二次函数、指数函数、对数函数、幂函数模型解决实际问题.3.体会运用函数思想处理现实生活中的简单问题,培养对数学模型的应用意识.
1.几种常见的函数模型
(1)一次函数:y=______________________
(2)二次函数:y=______________________
(3)指数函数:y=______________________
(4)对数函数:y=______________________
(5)幂函数:y=________________________
(6)指数型函数:y=pqx+r
(7)分段函数
2.面临实际问题,自己建立函数模型的步骤:
(1)________________;
(2)________________;
(3)________________;
(4)________________;
(5)______;
(6)__________________________.
一、选择题
1.细菌繁殖时,细菌数随时间成倍增长.若实验开始时有300个细菌,以后的细菌数如下表所示:
x(h)
0
1
2
3
细菌数
300
600
1 200
2 400
据此表可推测实验开始前2 h的细菌数为(  )
A.75 B.100 C.150 D.200
2.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其图象如右图所示,由图中给出的信息可知,营销人员没有销售量时的收入是(  )
A.310元 B.300元 C.290元 D.280元
3.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是(  )
A.减少7.84% B.增加7.84% C.减少9.5% D.不增不减
4.某工厂6年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是(  )
5.把长为12 cm的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是(  )
A.cm2 B.4 cm2 C.3 cm2 D.2 cm2
6.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y应为(  )
A.x=15,y=12 B.x=12,y=15
C.x=14,y=10 D.x=10,y=14
题 号
1
2
3
4
5
6
答 案
二、填空题
7.某不法商人将彩电先按原价提高40%,然后在广告上写上“大酬宾,八折优惠”,结果是每台彩电比原价多赚了270元,那么每台彩电原价是________元.
8.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区,成立于1985年,最初一年年底只有麋鹿100头,由于科学的人工培育,这种当初快要濒临灭绝的动物的数量y(头)与时间x(年)的关系可以近似地由关系式y=alog2(x+1)给出,则2000年年底它们的数量约为________头.
9.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y=ekt(其中k为常数,t表示时间,单位:小时,y表示病毒个数),则k=________,经过5小时,1个病毒能繁殖为________个.
三、解答题
10.东方旅社有100张普通客床,若每床每夜收租费10元时,客床可以全部租出;若每床每夜收费提高2元,便减少10张客床租出;若再提高2元,便再减少10张客床租出;依此情况继续下去.为了获得租金最多,每床每夜租金选择多少?
11.芦荟是一种经济价值很高的观赏、食用植物,不仅可美化居室、净化空气,又可美容保健,因此深受人们欢迎,在国内占有很大的市场.某人准备进军芦荟市场,栽培芦荟,为了了解行情,进行市场调研,从4月1日起,芦荟的种植成本Q(单位为:元/10 kg)与上市时间t(单位:天)的数据情况如下表:
t
50
110
250
Q
150
108
150
(1)根据上表数据,从下列函数中选取一个最能反映芦荟种植成本Q与上市时间t的变化关系:Q=at+b,Q=at2+bt+c,Q=a·bt,Q=alogbt;
(2)利用你选择的函数,求芦荟种植成本最低时的上市天数及最低种植成本.
能力提升
12.某工厂生产一种电脑元件,每月的生产数据如表:
月份
1
2
3
产量(千件)
50
52
53.9
为估计以后每月对该电脑元件的产量,以这三个月的产量为依据,用函数y=ax+b或y=ax+b(a,b为常数,且a>0)来模拟这种电脑元件的月产量y千件与月份的关系.请问:用以上哪个模拟函数较好?说明理由.
13.一片森林原来的面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的,(1)求每年砍伐面积的百分比;
(2)到今年为止,该森林已砍伐了多少年?
(3)今后最多还能砍伐多少年?
1.函数模型的应用实例主要包括三个方面:
(1)利用给定的函数模型解决实际问题;
(2)建立确定性的函数模型解决问题;
(3)建立拟合函数模型解决实际问题.
2.函数拟合与预测的一般步骤:
(1)能够根据原始数据、表格,绘出散点图.
(2)通过考察散点图,画出“最贴近”的直线或曲线,即拟合直线或拟合曲线.如果所有实际点都落到了拟合直线或曲线上,滴“点”不漏,那么这将是个十分完美的事情,但在实际应用中,这种情况是一般不会发生的.因此,使实际点尽可能均匀分布在直线或曲线两侧,使两侧的点大体相等,得出的拟合直线或拟合曲线就是“最贴近”的了.
(3)根据所学函数知识,求出拟合直线或拟合曲线的函数关系式.
(4)利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.
3.2.2 函数模型的应用实例
知识梳理
1.(1)kx+b(k≠0) (2)ax2+bx+c(a≠0) (3)ax(a>0且a≠1)
(4)logax(a>0且a≠1) (5)xα(α∈R) 2.(1)收集数据 (2)画散点图 (3)选择函数模型 
(4)求函数模型 (5)检验 (6)用函数模型解释实际问题
作业设计
1.A [由表中数据观察可得细菌数y与时间x的关系式为
y=300·2x(x∈Z).
当x=-2时,y=300×2-2==75.]
2.B [由题意可知,收入y是销售量x的一次函数,设y=ax+b,将(1,800),(2,1 300)代入得a=500,b=300.
当销售量为x=0时,y=300.]
3.A [设某商品价格为a,依题意得:a(1+0.2)2(1-0.2)2=a×1.22×0.82=0.921 6a,所以四年后的价格与原来价格比较(0.921 6-1)a=-0.078 4a,即减少7.84%.]
4.A [由于前三年年产量的增长速度越来越快,可用指数函数刻画,后三年年产量保持不变,可用一次函数刻画,故选A.]
5.D [设一段长为x cm,则另一段长为(12-x)cm.
∴S=()2+(4-)2=(x-6)2+2≥2.]
6.A [由三角形相似得=,得x=(24-y),
∴S=xy=-(y-12)2+180.
∴当y=12时,S有最大值,此时x=15.]
7.2 250
解析 设每台彩电的原价为x元,则x(1+40%)×0.8-x=270,解得x=2 250(元).
8.400
解析 由题意,x=1时y=100,代入求得a=100,2000年年底时,x=15,代入得y=400.
9.2ln 2 1 024
解析 当t=0.5时,y=2,
∴2=,
∴k=2ln 2,
∴y=e2tln 2,当t=5时,
∴y=e10ln 2=210=1 024.
10.解 设每床每夜租金为10+2n(n∈N),则租出的床位为
100-10n(n∈N且n<10)
租金f(n)=(10+2n)(100-10n)
=20[-(n-)2+],
其中n∈N且n<10.
所以,当n=2或n=3时,租金最多,
若n=2,则租出床位100-20=80(张);
若n=3,则租出床位100-30=70(张);
综合考虑,n应当取3,
即每床每夜租金选择10+2×3=16(元).
11.解 (1)由所提供的数据可知,刻画芦荟种植成本Q与上市时间t的变化关系的函数不可能是常值函数,若用函数Q=at+b,Q=a·bt,Q=alogbt中的任意一个来反映时都应有a≠0,且上述三个函数均为单调函数,这与表格所提供的数据不符合,所以应选用二次函数Q=at2+bt+c进行描述.将表格所提供的三组数据分别代入函数Q=at2+bt+c,可得:
解得a=,b=-,c=.
所以,刻画芦荟种植成本Q与上市时间t的变化关系的函数为
Q=t2-t+.
(2)当t=-=150(天)时,芦荟种植成本最低为
Q=×1502-×150+=100(元/10 kg).
12.解 将(1,50)、(2,52)分别代入两解析式得:
或(a>0)
解得(两方程组的解相同).
∴两函数分别为y=2x+48或y=2x+48.
当x=3时,对于y=2x+48有y=54;
当x=3时,对于y=2x+48有y=56.
由于56与53.9的误差较大,
∴选y=ax+b较好.
13.解 (1)设每年砍伐面积的百分比为x(0a(1-x)10=a,即(1-x)10=,
解得x=1-.
(2)设经过m年剩余面积为原来的,则
a(1-x)m=a,即,=,解得m=5,
故到今年为止,已砍伐了5年.
(3)设从今年开始,以后砍了n年,
则n年后剩余面积为a(1-x)n.
令a(1-x)n≥a,即(1-x)n≥,
,≤,解得n≤15.
故今后最多还能砍伐15年.
§3.2 习题课
课时目标 1.进一步体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性.2.掌握几种初等函数的应用.3.理解用拟合函数的方法解决实际问题的方法.
1.在我国大西北,某地区荒漠化土地面积每年平均比上年增长10.4%,专家预测经过x年可能增长到原来的y倍,则函数y=f(x)的图象大致为(  )
2.能使不等式log2xA.(0,+∞) B.(2,+∞)
C.(-∞,2) D.(0,2)∪(4,+∞)
3.四人赛跑,假设其跑过的路程fi(x)(其中i∈{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是(  )
A.f1(x)=x2 B.f2(x)=4x C.f3(x)=log2x D.f4(x)=2x
4.某城市客运公司确定客票价格的方法是:如果行程不超过100 km,票价是0.5元/km,如果超过100 km,超过100 km的部分按0.4元/km定价,则客运票价y(元)与行驶千米数x(km)之间的函数关系式是______________________.
5.如图所示,要在一个边长为150 m的正方形草坪上,修建两条宽相等且相互垂直的十字形道路,如果要使绿化面积达到70%,则道路的宽为____________________m(精确到0.01 m).
一、选择题
1.下面对函数f(x)=与g(x)=()x在区间(0,+∞)上的衰减情况说法正确的是(  )
A.f(x)的衰减速度越来越慢,g(x)的衰减速度越来越快
B.f(x)的衰减速度越来越快,g(x)的衰减速度越来越慢
C.f(x)的衰减速度越来越慢,g(x)的衰减速度越来越慢
D.f(x)的衰减速度越来越快,g(x)的衰减速度越来越快
2.下列函数中随x的增大而增长速度最快的是(  )
A.y=ex B.y=100ln x C.y=x100 D.y=100·2x
3.一等腰三角形的周长是20,底边y是关于腰长x的函数,它的解析式为(  )
A.y=20-2x(x≤10) B.y=20-2x(x<10)
C.y=20-2x(5≤x≤10) D.y=20-2x(54.已知每生产100克饼干的原材料加工费为1.8元.某食品加工厂对饼干采用两种包装,其包装费用、销售价格如下表所示:
型号
小包装
大包装
重量
100克
300克
包装费
0.5元
0.7元
销售价格
3.00元
8.4元
则下列说法中正确的是(  )
①买小包装实惠 ②买大包装实惠 ③卖3小包比卖1大包盈利多 ④卖1大包比卖3小包盈利多
A.①③ B.①④ C.②③ D.②④
5.某商店出售A、B两种价格不同的商品,由于商品A连续两次提价20%,同时商品B连续两次降价20%,结果都以每件23元售出,若商店同时售出这两种商品各一件,则与价格不升不降时的情况比较,商店盈利情况是(  )
A.多赚约6元 B.少赚约6元 C.多赚约2元 D.盈利相同
6.某地区植被破坏、土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则下列函数中与沙漠增加数y万公顷关于年数x的函数关系较为相似的是(  )
A.y=0.2x B.y=(x2+2x) C.y= D.y=0.2+log16x
题 号
1
2
3
4
5
6
答 案
二、填空题
7.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供________人洗澡.
8.若镭经过100年后剩留原来质量的95.76%,设质量为1的镭经过x年后剩留量为y,则x,y的函数关系是__________________.
9.已知甲、乙两地相距150 km,某人开汽车以60 km/h的速度从甲地到达乙地,在乙地停留一小时后再以50 km/h的速度返回甲地,把汽车离开甲地的距离s表示为时间t的函数,则此函数表达式为________.
三、解答题
10.某种放射性元素的原子数N随时间t的变化规律是N=N0e-λt,其中N0,λ是正常数.
(1)说明该函数是增函数还是减函数;
(2)把t表示成原子数N的函数;
(3)求当N=时,t的值.
11.我县某企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系;
(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元).
能力提升
12.某乡镇现在人均一年占有粮食360 kg,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x年后若人均一年占有y kg粮食,求出函数y关于x的解析式.
13.如图,有一块矩形空地,要在这块空地上开辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,设AE=x,绿地面积为y.
(1)写出y关于x的函数关系式,并指出这个函数的定义域.
(2)当AE为何值时,绿地面积y最大?
解决实际问题的解题过程:
(1)对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量;
(2)建立函数模型:将变量y表示为x的函数,在中学数学中,我们建立的函数模型一般都是基本初等函数;
(3)求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点,正确选择函数知识求得函数模
型的解,并还原为实际问题的解.
这些步骤用框图表示:

§3.2 习题课
双基演练
1.D [设某地区的原有荒漠化土地面积为a,则x年后的面积为a(1+10.4%)x,由题意y==1.104x,故选D.]
2.D [由题意知x的范围为x>0,由y=log2x,y=x2,y=2x的图象可知,当x>0时,log2x3.D [由于指数函数的增长特点是越来越大,故选D.]
4.y=
5.24.50
解析 设道路宽为x,则×100%=30%,
解得x1≈24.50,x2≈275.50(舍去).
作业设计
1.C
2.A [对于指数函数,当底数大于1时,函数值随x的增大而增大的速度快,又∵e>2,故选A.]
3.D [∵20=y+2x,∴y=20-2x,
又y=20-2x>0且2x>y=20-2x,
∴54.D [买小包装时每克费用为元,买大包装每克费用为=元,而>,所以买大包装实惠,卖3小包的利润为3×(3-1.8-0.5)=2.1(元),卖1大包的利润是8.4-1.8×3-0.7=2.3(元).而2.3>2.1,卖1大包盈利多,故选D.]
5.B [设A、B两种商品的原价为a、b,
则a(1+20%)2=b(1-20%)2=23?a=,b=,a+b-46≈6(元).]
6.C [将(1,0.2),(2,0.4),(3,0.76)与x=1,2,3时,选项A、B、C、D中得到的y值做比较,y=的y值比较接近,
故选C.]
7.4
解析 设最多用t分钟,则水箱内水量y=200+2t2-34t,当t=时y有最小值,此时共放水34×=289(升),可供4人洗澡.
8.y=
解析 设每经过1年,剩留量为原来的a倍,则y=ax,
且0.957 6=a100,从而a=0.957 6,因此y=0.957 6.
9.s=
解析 当0≤t≤2.5时s=60t,
当2.5当3.5≤t≤6.5时s=150-50(t-3.5)=325-50t,
综上所述,s=
10.解 (1)由于N0>0,λ>0,函数N=N0e-λt是属于指数函数y=e-x类型的,所以它是减函数,即原子数N的值随时间t的增大而减少.
(2)将N=N0e-λt写成e-λt=,根据对数的定义有-λt=ln,所以t=-(ln N-ln N0)=(ln N0-ln N).
(3)把N=代入t=(ln N0-ln N),
得t=(ln N0-ln)=ln 2.
11.解 (1)投资为x万元,A产品的利润为f(x)万元,B产品的利润为g(x)万元,由题设f(x)=k1x,g(x)=k2,
由图知f(1)=,∴k1=,又g(4)=,∴k2=.
从而f(x)=x(x≥0),g(x)=(x≥0).
(2)设A产品投入x万元,则B产品投入10-x万元,设企业的利润为y万元,
y=f(x)+g(10-x)=+(0≤x≤10),
令=t,
则y=+t=-(t-)2+(0≤t≤),
当t=,ymax≈4,此时x=10-=3.75,10-x=6.25.
所以投入A产品3.75万元,投入B产品6.25万元时,能使企业获得最大利润,且最大利润约为4万元.
12.解 设该乡镇现在人口量为M,则该乡镇现在一年的粮食总产量为360M,
经过1年后,该乡镇粮食总产量为360M(1+4%),人口量为M(1+1.2%),则人均占有粮食为;经过2年后,人均占有粮食为;…;经过x年后,人均占有粮食为y=,即所求函数解析式为y=360()x.
13.解 (1)S△AEH=S△CFG=x2,
S△BEF=S△DGH=(a-x)(2-x).
∴y=S矩形ABCD-2S△AEH-2S△BEF=2a-x2-(a-x)(2-x)
=-2x2+(a+2)x.
由,得0∴y=-2x2+(a+2)x,定义域为(0,2].
(2)当<2,即a<6时,
则x=时,y取最大值;
当≥2,即a≥6时,y=-2x2+(a+2)x在(0,2]上是增函数,
则x=2时,ymax=2a-4.
综上所述:当a<6,AE=时,绿地面积取最大值;
当a≥6,AE=2时,绿地面积取最大值2a-4.