第二章方程与不等式第11节 分式方程
■考点1. 分式方程的概念、解法
1.分式方程:只含分式,或分式和整式,并且分母里含有_______的方程叫做分式方程.
2.分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.
注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,解分式方程要验根,其方法是将根代入最简公分母中看分母是不是为_____.21*cnjy*com
3. 增根:使分式方程 的未知数的值即为分式的增根;不是原分式方程的解,分式方程的增根有两个特征:
(1)增根使分母为零;
(2)增根是分式方程化成的整式方程的根.
4.解分式方程的基本解法
(1)去分母,把分式方程转化为__ __方程.
(2)解这个整式方程,求得方程的根.
(3)检验,把解得整式方程的根代入最简公分母,如果最简公分母为0,则它不是原方程的根,而是方程的__ __,必须舍去;如果使最简公分母不为0,则它是原分式方程的根.
5 用换元法解分式方程的一般步骤:
① 设 ,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解 方程,求出辅助未知数的值;③ 把 代入原设中,求出原未知数的值;④ 检验作答.
■考点2. 列分式方程解应用题
列分式方程解应用题与列整式方程解应用题的一般步骤基本相同,都分为:审题、设未知数、找等量关系、列方程、解方程、__ __、作答.但与整式方程不同的是求得方程的解后,要进行两次检验:一是检验所求的解是否是 ;二是检验所求的解是否__
■考点1:分式方程的解法
◇典例:
1.(2018年湖南省株洲市)关于x的分式方程解为x=4,则常数a的值为( )
A.a=1 B.a=2 C.a=4 D.a=10
【考点】分式方程的解
【分析】根据分式方程的解的定义把x=4代入原分式方程得到关于a的一次方程,解得a=10.
解:把x=4代入方程,得
+=0,
解得a=10.
故选:D.
【点评】此题考查了分式方程的解,分式方程注意分母不能为0
2.(2017年黑龙江龙东地区、七台河)已知关于x的分式方程=的解是非负数,那么a的取值范围是( )
A.a>1 B.a≥1 C.a≥1且a≠9 D.a≤1
【考点】分式方程的解;解一元一次不等式.
【分析】根据分式方程的解法即可求出a的取值范围;
解:3(3x﹣a)=x﹣3,
9x﹣3a=x﹣3,
8x=3a﹣3
∴x=,
由于该分式方程有解,
令x=代入x﹣3≠0,
∴a≠9,
∵该方程的解是非负数解,
∴≥0,
∴a≥1,
∴a的范围为:a≥1且a≠9,
故选(C)
3.(2018年湖北省荆州市)解分式方程﹣3=时,去分母可得( )
A.1﹣3(x﹣2)=4
B.1﹣3(x﹣2)=﹣4
C.﹣1﹣3(2﹣x)=﹣4
D.1﹣3(2﹣x)=4
【考点】解分式方程
【分析】分式方程去分母转化为整式方程,即可作出判断.
解:去分母得:1﹣3(x﹣2)=﹣4,
故选:B.
【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验
4.(2018年四川省达州市)若关于x的分式方程=2a无解,则a的值为 .
【考点】分式方程的解
【分析】直接解分式方程,再利用当1﹣2a=0时,当1﹣2a≠0时,分别得出答案.
解:去分母得:
x﹣3a=2a(x﹣3),
整理得:(1﹣2a)x=﹣3a,
当1﹣2a=0时,方程无解,故a=;
当1﹣2a≠0时,x==3时,分式方程无解,
则a=1,
故关于x的分式方程=2a无解,则a的值为:1或.
故答案为:1或.
【点评】此题主要考查了分式方程的解,正确分类讨论是解题关键.
5.(2017年浙江省金华市 )解分式方程:=.
【考点】解分式方程.
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解:去分母得:2(x﹣1)=x+1,
解得:x=3,
经检验x=3是分式方程的解.
◆变式训练
1.(2018年湖南省张家界市)若关于x的分式方程=1的解为x=2,则m的值为( )
A.5 B.4 C.3 D.2
2.(2017年重庆市(B)含答案解)若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则所以满足条件的整数a的值之和是( )
A.3 B.1 C.0 D.﹣3
3.(2018年四川省成都市)分式方程=1的解是( )
A.x=1 B.x=﹣1 C.x=3 D.x=﹣3
4.(2018年四川省巴中市)若分式方程+=有增根,则实数a的取值是( )
A.0或2 B.4 C.8 D.4或8
5.(2018年江苏省连云港市)解方程:﹣=0.
■考点2:分式方程应用
◇典例
1.(2018年山东省淄博市)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是( )
A. B.
C. D.
【考点】由实际问题抽象出分式方程.
【分析】设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x的分式方程.
解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,
依题意得:﹣=30,即.
故选:C.
【点评】考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.
2.(2018年山东省临沂市)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是( )
A. = B. =
C. = D. =
【考点】分式方程的应用
【分析】设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据“销售数量与去年一整年的相同”可列方程.
解:设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,
根据题意,得: =,
故选:A.
【点评】本题主要考查分式方程的应用,解题的关键是理解题意,确定相等关系.
3.(2018年湖北省襄阳市)正在建设的“汉十高铁”竣工通车后,若襄阳至武汉段路程与当前动车行驶的路程相等,约为325千米,且高铁行驶的速度是当前动车行驶速度的2.5倍,则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.
【考点】分式方程的应用
【分析】设高铁的速度为x千米/小时,则动车速度为0.4x千米/小时,根据题意列出方程,求出方程的解即可.
解:设高铁的速度为x千米/小时,则动车速度为0.4x千米/小时,
根据题意得:﹣=1.5,
解得:x=325,
经检验x=325是分式方程的解,且符合题意,
则高铁的速度是325千米/小时.
【点评】此题考查了分式方程的应用,弄清题中的等量关系是解本题的关键.
4.(2018年湖南省邵阳市)某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.
(1)求A,B两种型号的机器人每小时分别搬运多少材料;
(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?
【考点】分式方程的应用;一元一次不等式的应用
【分析】(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同建立方程求出其解就可以得出结论.
(2)设购进A型机器人a台,根据每小时搬运材料不得少于2800kg列出不等式并解答.
解:(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,
根据题意,得=,
解得x=120.
经检验,x=120是所列方程的解.
当x=120时,x+30=150.
答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;
(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台,
根据题意,得150a+120(20﹣a)≥2800,
解得a≥.
∵a是整数,
∴a≥14.
答:至少购进A型机器人14台.
【点评】本题考查了分式方程的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.
◆变式训练
1.(2018年湖南省益阳市)体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是( )
A.40×1.25x﹣40x=800 B.﹣=40
C.﹣=40 D.﹣=40
2.(2018年四川省遂宁市)A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程 .
3.(2018年山东省菏泽市)列方程(组)解应用题:
为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?
4.(2018年四川省德阳市)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A.B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.
(1)求B工程公司单独建设完成此项工程需要多少天?
(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n天完成,其中m,n均为正整数,且m<46,n<92,求A.B两个工程公司各施工建设了多少天?
1.(2017年黑龙江龙东地区(农垦、森工用))若关于x的分式方程的解为非负数,则a的取值范围是( )
A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4
2.(2017年河南省)解分式方程﹣2=,去分母得( )
A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3
C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3
3.(2018年湖南省怀化市)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为v km/h,则可列方程为( )
A.= B.=
C.= D.=
4.(2017年四川省攀枝花市)若关于x的分式方程+3=无解,则实数m= .
5.(2018年江苏省无锡市)方程=的解是 .
6.(2018年浙江省舟山市)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程: .
7.(2017年江苏南通市)甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间与乙做40个所用的时间相等,则乙每小时所做零件的个数为 .
8.(2017年黑龙江大庆市)解方程:+=1.
9.(2018年山东省威海市)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?
10.(2018年浙江省宁波市)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
(1)求甲、乙两种商品的每件进价;
(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
选择题
1.(2018年四川省甘孜州)若x=4是分式方程=的根,则a的值为( )
A.6 B.﹣6 C.4 D.﹣4
2.(2017年黑龙江省佳木斯市含答案解析)已知关于x的分式方程=的解是非负数,那么a的取值范围是( )
A.a>1 B.a≥1 C.a≥1且a≠9 D.a≤1
3.(2017年黑龙江省鹤岗市含答案解析)若关于x的分式方程的解为非负数,则a的取值范围是( )
A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4
4.(2017年贵州省毕节)关于x的分式方程+5=有增根,则m的值为( )
A.1 B.3 C.4 D.5
5.(2018年湖南省衡阳市)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为( )
A.﹣=10 B.﹣=10
C.﹣=10 D.+=10
填空题
6.(2018年四川省眉山市)已知关于x的分式方程﹣2=有一个正数解,则k的取值范围为 .
7.(2017年四川省泸州市)若关于x的分式方程+=3的解为正实数,则实数m的取值范围是 .
8.(2018年湖北省黄石市)分式方程=1的解为
9.(2017年江苏宿迁市)若关于x的分式方程=﹣3有增根,则实数m的值是 .
10.(2018年浙江省嘉兴市)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程: .
11.(2017年湖南永州市 )某水果店搞促销活动,对某种水果打8折出售,若用60元钱买这种水果,可以比打折前多买3斤.设该种水果打折前的单价为x元,根据题意可列方程为 .
12.(2018年江苏省宿迁市)为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.
解答题
13.(2017年山东济宁市)解方程:=1﹣.
14.(2018年江苏省徐州市)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?
15.(2018年江苏省扬州市)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)
16.(2017年辽宁葫芦岛市)在“母亲节”前夕,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来可购买玫瑰数量的1.5倍.
(1)求降价后每枝玫瑰的售价是多少元?
(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?
第二章方程与不等式第11节 分式方程
■考点1. 分式方程的概念、解法
1.分式方程:只含分式,或分式和整式,并且分母里含有__未知数__的方程叫做分式方程.
2.分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.
注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,解分式方程要验根,其方法是将根代入最简公分母中看分母是不是为__零__.【出处:21教育名师】
3. 增根:使分式方程分母为零的未知数的值即为分式的增根;不是原分式方程的解,分式方程的增根有两个特征:
(1)增根使分母为零;
(2)增根是分式方程化成的整式方程的根.
4.解分式方程的基本解法
(1)去分母,把分式方程转化为__整式__方程.
(2)解这个整式方程,求得方程的根.
(3)检验,把解得整式方程的根代入最简公分母,如果最简公分母为0,则它不是原方程的根,而是方程的__增根__,必须舍去;如果使最简公分母不为0,则它是原分式方程的根.
5 用换元法解分式方程的一般步骤:
① 设辅助未知数 ,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解 方程,求出辅助未知数的值;③ 把辅助未知数代入原设中,求出原未知数的值;④ 检验作答.
■考点2. 列分式方程解应用题
列分式方程解应用题与列整式方程解应用题的一般步骤基本相同,都分为:审题、设未知数、找等量关系、列方程、解方程、__检验__、作答.但与整式方程不同的是求得方程的解后,要进行两次检验:一是检验所求的解是否是所列分式方程的解;二是检验所求的解是否__符合实际意义__.
■考点1:分式方程的解法
◇典例:
1.(2018年湖南省株洲市)关于x的分式方程解为x=4,则常数a的值为( )
A.a=1 B.a=2 C.a=4 D.a=10
【考点】分式方程的解
【分析】根据分式方程的解的定义把x=4代入原分式方程得到关于a的一次方程,解得a=10.
解:把x=4代入方程,得
+=0,
解得a=10.
故选:D.
【点评】此题考查了分式方程的解,分式方程注意分母不能为0
2.(2017年黑龙江龙东地区、七台河)已知关于x的分式方程=的解是非负数,那么a的取值范围是( )
A.a>1 B.a≥1 C.a≥1且a≠9 D.a≤1
【考点】分式方程的解;解一元一次不等式.
【分析】根据分式方程的解法即可求出a的取值范围;
解:3(3x﹣a)=x﹣3,
9x﹣3a=x﹣3,
8x=3a﹣3
∴x=,
由于该分式方程有解,
令x=代入x﹣3≠0,
∴a≠9,
∵该方程的解是非负数解,
∴≥0,
∴a≥1,
∴a的范围为:a≥1且a≠9,
故选(C)
3.(2018年湖北省荆州市)解分式方程﹣3=时,去分母可得( )
A.1﹣3(x﹣2)=4
B.1﹣3(x﹣2)=﹣4
C.﹣1﹣3(2﹣x)=﹣4
D.1﹣3(2﹣x)=4
【考点】解分式方程
【分析】分式方程去分母转化为整式方程,即可作出判断.
解:去分母得:1﹣3(x﹣2)=﹣4,
故选:B.
【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验
4.(2018年四川省达州市)若关于x的分式方程=2a无解,则a的值为 .
【考点】分式方程的解
【分析】直接解分式方程,再利用当1﹣2a=0时,当1﹣2a≠0时,分别得出答案.
解:去分母得:
x﹣3a=2a(x﹣3),
整理得:(1﹣2a)x=﹣3a,
当1﹣2a=0时,方程无解,故a=;
当1﹣2a≠0时,x==3时,分式方程无解,
则a=1,
故关于x的分式方程=2a无解,则a的值为:1或.
故答案为:1或.
【点评】此题主要考查了分式方程的解,正确分类讨论是解题关键.
5.(2017年浙江省金华市 )解分式方程:=.
【考点】解分式方程.
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解:去分母得:2(x﹣1)=x+1,
解得:x=3,
经检验x=3是分式方程的解.
◆变式训练
1.(2018年湖南省张家界市)若关于x的分式方程=1的解为x=2,则m的值为( )
A.5 B.4 C.3 D.2
【考点】分式方程的解
【分析】直接解分式方程进而得出答案.
解:∵关于x的分式方程=1的解为x=2,
∴x=m﹣2=2,
解得:m=4.
故选:B.
【点评】此题主要考查了分式方程的解,正确解方程是解题关键.
2.(2017年重庆市(B)含答案解)若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则所以满足条件的整数a的值之和是( )
A.3 B.1 C.0 D.﹣3
【分析】先解不等式组,根据不等式组有且仅有四个整数解,得出a≤3,再解分式方程+=2,根据分式方程有非负数解,得到a≥﹣2,进而得到满足条件的整数a的值之和.
解:解不等式组,可得,
∵不等式组有且仅有四个整数解,
∴﹣≥﹣1,
∴a≤3,
解分式方程+=2,可得y=(a+2),
又∵分式方程有非负数解,
∴y≥0,
即(a+2)≥0,
解得a≥﹣2,
∴﹣2≤a≤3,
∴满足条件的整数a的值为﹣2,﹣1,0,1,2,3,
∴满足条件的整数a的值之和是3,
故选:A.
【点评】本题主要考查了分式方程的解,解题时注意:使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.
3.(2018年四川省成都市)分式方程=1的解是( )
A.x=1 B.x=﹣1 C.x=3 D.x=﹣3
【考点】解分式方程
【分析】观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
解:=1,
去分母,方程两边同时乘以x(x﹣2)得:
(x+1)(x﹣2)+x=x(x﹣2),
x2﹣x﹣2+x=x2﹣2x,
x=1,
经检验,x=1是原分式方程的解,
故选:A.
【点评】考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
4.(2018年四川省巴中市)若分式方程+=有增根,则实数a的取值是( )
A.0或2 B.4 C.8 D.4或8
【考点】分式方程的增根
【分析】先把分式方程化为整式方程,确定分式方程的增根,代入计算即可.
解:方程两边同乘x(x﹣2),得3x﹣a+x=2(x﹣2),
由题意得,分式方程的增根为0或2,
当x=0时,﹣a=﹣4,
解得,a=4,
当x=2时,6﹣a+2=0,
解得,a=8,
故选:D.
【点评】本题考查的是分式方程的增根,增根的定义:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.
5.(2018年江苏省连云港市)解方程:﹣=0.
【考点】解分式方程
【分析】根据等式的性质,可得整式方程,根据解整式方程,可得答案.
解:两边乘x(x﹣1),得
3x﹣2(x﹣1)=0,
解得x=﹣2,
经检验:x=﹣2是原分式方程的解.
【点评】本题考查了解分式方程,利用等式的性质将分式方程转化成整式方程是解题关键,要检验方程的根.
■考点2:分式方程应用
◇典例
1.(2018年山东省淄博市)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是( )
A. B.
C. D.
【考点】由实际问题抽象出分式方程.
【分析】设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x的分式方程.
解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,
依题意得:﹣=30,即.
故选:C.
【点评】考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.
2.(2018年山东省临沂市)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是( )
A. = B. =
C. = D. =
【考点】分式方程的应用
【分析】设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据“销售数量与去年一整年的相同”可列方程.
解:设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,
根据题意,得: =,
故选:A.
【点评】本题主要考查分式方程的应用,解题的关键是理解题意,确定相等关系.
3.(2018年湖北省襄阳市)正在建设的“汉十高铁”竣工通车后,若襄阳至武汉段路程与当前动车行驶的路程相等,约为325千米,且高铁行驶的速度是当前动车行驶速度的2.5倍,则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.
【考点】分式方程的应用
【分析】设高铁的速度为x千米/小时,则动车速度为0.4x千米/小时,根据题意列出方程,求出方程的解即可.
解:设高铁的速度为x千米/小时,则动车速度为0.4x千米/小时,
根据题意得:﹣=1.5,
解得:x=325,
经检验x=325是分式方程的解,且符合题意,
则高铁的速度是325千米/小时.
【点评】此题考查了分式方程的应用,弄清题中的等量关系是解本题的关键.
4.(2018年湖南省邵阳市)某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.
(1)求A,B两种型号的机器人每小时分别搬运多少材料;
(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?
【考点】分式方程的应用;一元一次不等式的应用
【分析】(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同建立方程求出其解就可以得出结论.
(2)设购进A型机器人a台,根据每小时搬运材料不得少于2800kg列出不等式并解答.
解:(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,
根据题意,得=,
解得x=120.
经检验,x=120是所列方程的解.
当x=120时,x+30=150.
答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;
(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台,
根据题意,得150a+120(20﹣a)≥2800,
解得a≥.
∵a是整数,
∴a≥14.
答:至少购进A型机器人14台.
【点评】本题考查了分式方程的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.
◆变式训练
1.(2018年湖南省益阳市)体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是( )
A.40×1.25x﹣40x=800 B.﹣=40
C.﹣=40 D.﹣=40
【考点】由实际问题抽象出分式方程
【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.
解:小进跑800米用的时间为秒,小俊跑800米用的时间为秒,
∵小进比小俊少用了40秒,
方程是﹣=40,
故选:C.
【点评】本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.
2.(2018年四川省遂宁市)A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程 .
【考点】由实际问题抽象出分式方程
【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.
解:设乙车的速度是x千米/小时,则根据题意,可列方程:
﹣=.
故答案为:﹣=.
【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出两车所用时间是解题关键.
3.(2018年山东省菏泽市)列方程(组)解应用题:
为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?
【考点】分式方程的应用
【分析】设台式电脑的单价是x元,则笔记本电脑的单价为1.5x元,利用购买笔记本电脑和购买台式电脑的台数和列方程+=120,然后解分式方程即可.
解:设台式电脑的单价是x元,则笔记本电脑的单价为1.5x元,
根据题意得+=120,
解得x=2400,
经检验x=2400是原方程的解,
当x=2400时,1.5x=3600
答:笔记本电脑和台式电脑的单价分别为3600元和2400元.
【点评】本题考查了分式方程的应用:列分式方程解应用题的一般步骤:设、列、解、验、答.
4.(2018年四川省德阳市)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A.B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.
(1)求B工程公司单独建设完成此项工程需要多少天?
(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n天完成,其中m,n均为正整数,且m<46,n<92,求A.B两个工程公司各施工建设了多少天?
【考点】二元一次方程的应用;分式方程的应用
【分析】(1)设B工程公司单独完成需要x天,根据题意列出关于x的分式方程,求出分式方程的解得到x的值,经检验即可得到结果;
(2)根据题意列出关于m与n的方程,由m与n的范围,确定出正整数m与n的值,即可得到结果.
解:(1)设B工程公司单独完成需要x天,
根据题意得:45×+54(+)=1,
解得:x=120,
经检验x=120是分式方程的解,且符合题意,
答:B工程公司单独完成需要120天;
(2)根据题意得:m×+n×=1,
整理得:n=120﹣m,
∵m<46,n<92,
∴120﹣m<92,
解得42<m<46,
∵m为正整数,
∴m=43,44,45,
又∵120﹣m为正整数,
∴m=45,n=90,
答:A.B两个工程公司各施工建设了45天和90天.
【点评】此题考查了分式方程的应用,以及二元一次方程的应用,找出题中的等量关系是解本题的关键.
1.(2017年黑龙江龙东地区(农垦、森工用))若关于x的分式方程的解为非负数,则a的取值范围是( )
A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4
【考点】分式方程的解.
【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为0求出a的范围即可.
解:去分母得:2(2x﹣a)=x﹣2,
解得:x=,
由题意得:≥0且≠2,
解得:a≥1且a≠4,
故选:C.
2.(2017年河南省)解分式方程﹣2=,去分母得( )
A.1﹣2(x﹣1)=﹣3
B.1﹣2(x﹣1)=3
C.1﹣2x﹣2=﹣3
D.1﹣2x+2=3
【考点】解分式方程.
【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.
解:分式方程整理得:﹣2=﹣,
去分母得:1﹣2(x﹣1)=﹣3,
故选A
3.(2018年湖南省怀化市)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为v km/h,则可列方程为( )
A.= B.=
C.= D.=
【考点】由实际问题抽象出分式方程
【分析】根据“以最大航速沿江顺流航行100km所用时间,与以最大航速逆流航行80km所用时间相等,”建立方程 即可得出结论.
解:江水的流速为v km/h,则以最大航速沿江顺流航行的速度为(30+v)km/h,以最大航速逆流航行的速度为(30﹣v)km/h,
根据题意得,,
故选:C.
【点评】此题是由实际问题抽象出分式方程,主要考查了水流问题,找到相等关系是解本题的关键.
4.(2017年四川省攀枝花市)若关于x的分式方程+3=无解,则实数m= .
【考点】分式方程的解.
【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.
解:方程去分母得:7+3(x﹣1)=mx,
整理,得(m﹣3)x=4,
当整式方程无解时,m﹣3=0,m=3;
当整式方程的解为分式方程的增根时,x=1,
∴m﹣3=4,m=7,
∴m的值为3或7.
故答案为3或7.
5.(2018年江苏省无锡市)方程=的解是 .
【考点】解分式方程
【分析】方程两边都乘以x(x+1)化分式方程为整式方程,解整式方程得出x的值,再检验即可得出方程的解.
解:方程两边都乘以x(x+1),得:(x﹣3)(x+1)=x2,
解得:x=﹣,
检验:x=﹣时,x(x+1)=≠0,
所以分式方程的解为x=﹣,
故答案为:x=﹣.
【点评】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.
6.(2018年浙江省舟山市)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程: .
【考点】由实际问题抽象出分式方程
【分析】根据“甲检测300个比乙检测200个所用的时间少10%”建立方程,即可得出结论.
解:设设甲每小时检测x个,则乙每小时检测(x﹣20)个,
根据题意得,=(1﹣10%),
故答案为=×(1﹣10%).
【点评】此题主要考查了分式方程的应用,正确找出等量关系是解题关键
7.(2017年江苏南通市)甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间与乙做40个所用的时间相等,则乙每小时所做零件的个数为 .
【考点】分式方程的应用.
【分析】设乙每小时做x个,则甲每小时做(x+4)个,甲做60个所用的时间为,乙做40个所用的时间为;根据甲做60个所用的时间与乙做40个所用的时间相等,列方程求解.
解:设乙每小时做x个,则甲每小时做(x+4)个,甲做60个所用的时间为,乙做40个所用的时间为,
列方程为:=,
解得:x=8,
经检验:x=8是原分式方程的解,且符合题意,
答:乙每小时做8个.
故答案是:8.
8.(2017年黑龙江大庆市)解方程:+=1.
【考点】解分式方程.
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解:去分母得:x2+x+2=x2+2x,
解得:x=2,
经检验x=2是分式方程的解.
9.(2018年山东省威海市)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?
【考点】分式方程的应用
【分析】设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即可得出关于x的分式方程,解之经检验后即可得出结论.
解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,
根据题意得:﹣=+,
解得:x=60,
经检验,x=60是原方程的解,且符合题意,
∴(1+)x=80.
答:软件升级后每小时生产80个零件.
【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
10.(2018年浙江省宁波市)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
(1)求甲、乙两种商品的每件进价;
(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
【考点】分式方程的应用;一元一次不等式的应用
【分析】(1)设甲种商品的每件进价为x元,乙种商品的每件进价为y元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程;
(2)设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式.
解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.
根据题意,得,=,
解得 x=40.
经检验,x=40是原方程的解.
答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;
(2)甲乙两种商品的销售量为=50.
设甲种商品按原销售单价销售a件,则
(60﹣40)a+(60×0.7﹣40)(50﹣a)+(88﹣48)×50≥2460,
解得 a≥20.
答:甲种商品按原销售单价至少销售20件.
【点评】本题考查了分式方程的应用,一元一次不等式的应用.本题属于商品销售中的利润问题,对于此类问题,隐含着一个等量关系:利润=售价﹣进价.
选择题
1.(2018年四川省甘孜州)若x=4是分式方程=的根,则a的值为( )
A.6 B.﹣6 C.4 D.﹣4
【考点】分式方程的解
【分析】把x=4代入分式方程,得到关于a的一元一次方程,通过解新方程求得a的值.
解:将x=4代入分式方程可得:=,
化简得=1,
解得a=6.
故选:A.
【点评】本题主要考查分式方程及其解法.注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.
2.(2017年黑龙江省佳木斯市含答案解析)已知关于x的分式方程=的解是非负数,那么a的取值范围是( )
A.a>1 B.a≥1 C.a≥1且a≠9 D.a≤1
【考点】 分式方程的解; 解一元一次不等式.
【分析】根据分式方程的解法即可求出a的取值范围;
解:3(3x﹣a)=x﹣3,
9x﹣3a=x﹣3,
8x=3a﹣3
∴x=,
由于该分式方程有解,
令x=代入x﹣3≠0,
∴a≠9,
∵该方程的解是非负数解,
∴≥0,
∴a≥1,
∴a的范围为:a≥1且a≠9,
故选(C)
3.(2017年黑龙江省鹤岗市含答案解析)若关于x的分式方程的解为非负数,则a的取值范围是( )
A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4
【考点】分式方程的解.
【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为0求出a的范围即可.
解:去分母得:2(2x﹣a)=x﹣2,
解得:x=,
由题意得:≥0且≠2,
解得:a≥1且a≠4,
故选:C.
.
4.(2017年贵州省毕节 )关于x的分式方程+5=有增根,则m的值为( )
A.1 B.3 C.4 D.5
【考点】分式方程的增根.
【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出m的值.
解:方程两边都乘(x﹣1),
得7x+5(x﹣1)=2m﹣1,
∵原方程有增根,
∴最简公分母(x﹣1)=0,
解得x=1,
当x=1时,7=2m﹣1,
解得m=4,
所以m的值为4.
故选C.
5.(2018年湖南省衡阳市)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为( )
A.﹣=10 B.﹣=10
C.﹣=10 D.+=10
【考点】由实际问题抽象出分式方程
【分析】根据题意可得等量关系:原计划种植的亩数﹣改良后种植的亩数=10亩,根据等量关系列出方程即可.
解:设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,
根据题意列方程为:﹣=10.
故选:A.
【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
填空题
6.(2018年四川省眉山市)已知关于x的分式方程﹣2=有一个正数解,则k的取值范围为 .
【考点】分式方程的解
【分析】根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零.
解;﹣2=,
方程两边都乘以(x﹣3),得
x=2(x﹣3)+k,
解得x=6﹣k≠3,
关于x的方程程﹣2=有一个正数解,
∴x=6﹣k>0,
k<6,且k≠3,
∴k的取值范围是k<6且k≠3.
故答案为:k<6且k≠3.
【点评】本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k的范围是解此题的关键.
7.(2017年四川省泸州市)若关于x的分式方程+=3的解为正实数,则实数m的取值范围是 .
【考点】分式方程的解;解一元一次不等式.
【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.
解:+=3,
方程两边同乘(x﹣2)得,x+m﹣2m=3x﹣6,
解得,x=,
∵≠2,
∴m≠2,
由题意得,>0,
解得,m<6,
故答案为:m<6且m≠2.
8.(2018年湖北省黄石市)分式方程=1的解为
【考点】解分式方程
【分析】方程两边都乘以最简公分母,化为整式方程,然后解方程,再进行检验.
解:方程两边都乘以2(x2﹣1)得,
8x+2﹣5x﹣5=2x2﹣2,
解得x1=1,x2=0.5,
检验:当x=0.5时,x﹣1=0.5﹣1=﹣0.5≠0,
当x=1时,x﹣1=0,
所以x=0.5是方程的解,
故原分式方程的解是x=0.5.
故答案为:x=0.5
【点评】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
9.(2017年江苏宿迁市)若关于x的分式方程=﹣3有增根,则实数m的值是 .
【考点】分式方程的增根.
【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣2=0,求出x的值,代入整式方程求出m的值即可.
解:去分母,得:m=x﹣1﹣3(x﹣2),
由分式方程有增根,得到x﹣2=0,即x=2,
把x=2代入整式方程可得:m=1,
故答案为:1.
10.(2018年浙江省嘉兴市)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程: .
【考点】由实际问题抽象出分式方程
【分析】根据“甲检测300个比乙检测200个所用的时间少10%”建立方程,即可得出结论.
解:设设甲每小时检测x个,则乙每小时检测(x﹣20)个,
根据题意得,=(1﹣10%),
故答案为=×(1﹣10%).
【点评】此题主要考查了分式方程的应用,正确找出等量关系是解题关键.
11.(2017年湖南永州市 )某水果店搞促销活动,对某种水果打8折出售,若用60元钱买这种水果,可以比打折前多买3斤.设该种水果打折前的单价为x元,根据题意可列方程为 .
【考点】由实际问题抽象出分式方程.
【分析】本题可根据:60元打折前买的斤数比打折后买的斤数少3斤,然后即可列出方程.
解:依题意得:=﹣3,
故答案为:=﹣3.
12.(2018年江苏省宿迁市)为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.
【考点】分式方程的实际应用
【分析】设原计划每天种树x棵,则实际每天种树2x棵,根据题意列出分式方程,解之即可.
解:设原计划每天种树x棵,则实际每天种树2x棵,依题可得:,
解得:x=120.
经检验x=120是原分式方程的根.
故答案为:120.
解答题
13.(2017年山东济宁市)解方程:=1﹣.
【考点】解分式方程.
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解:去分母得:2x=x﹣2+1,
移项合并得:x=﹣1,
经检验x=﹣1是分式方程的解.
14.(2018年江苏省徐州市)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?
【考点】分式方程的应用
【分析】设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据平均速度=路程÷时间结合A车的平均速度比B车的平均速度慢80km/h,即可得出关于t的分式方程,解之经检验后即可得出结论.
解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,
根据题意得:﹣=80,
解得:t=2.5,
经检验,t=2.5是原分式方程的解,且符合题意,
∴1.4t=3.5.
答:A车行驶的时间为3.5小时,B车行驶的时间为2.5小时.
【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
15.(2018年江苏省扬州市)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)
【考点】分式方程的应用
【分析】设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据时间=路程÷速度结合客车比货车少用6小时,即可得出关于x的分式方程,解之经检验后即可得出结论.
解:设货车的速度是x千米/小时,则客车的速度是2x千米/小时,
根据题意得:﹣=6,
解得:x=121≈121.8.
经检验,x=121.8为此分式方程的解.
答:货车的速度约是121.8千米/小时.
【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
16.(2017年辽宁葫芦岛市)在“母亲节”前夕,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来可购买玫瑰数量的1.5倍.
(1)求降价后每枝玫瑰的售价是多少元?
(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?
【考点】分式方程的应用;一元一次不等式的应用.
【分析】(1)可设降价后每枝玫瑰的售价是x元,根据等量关系:降价后30元可购买玫瑰的数量=原来购买玫瑰数量的1.5倍,列出方程求解即可;
(2)可设购进玫瑰y枝,根据不等量关系:购进康乃馨的钱数+购进玫瑰的钱数≤900元,列出不等式求解即可.
解:(1)设降价后每枝玫瑰的售价是x元,依题意有
=×1.5,
解得:x=2.
经检验,x=2是原方程的解.
答:降价后每枝玫瑰的售价是2元.
(2)设购进玫瑰y枝,依题意有
2(500﹣y)+1.5y≤900,
解得:y≥200.
答:至少购进玫瑰200枝.