名称 | 2018-2019学年 高中数学必修三第三章训练卷(一)Word版含答案- | ![]() | |
格式 | zip | ||
文件大小 | 171.8KB | ||
资源类型 | 教案 | ||
版本资源 | 人教新课标A版 | ||
科目 | 数学 | ||
更新时间 | 2018-09-30 15:12:32 |
C.P(A)=P(B) D.P(A)、P(B)大小不确定
10.如图所示,
△ABC为圆O的内接三角形,AC=BC,AB为圆O的直径,向该圆内随机投一点,则该点落在△ABC内的概率是( )
A. B. C. D.
11.若以连续两次掷骰子分别得到的点数m,n作为点P的坐标(m,n),则点P在圆x2+y2=25外的概率是( )
A. B. C. D.
12.如图所示,两个圆盘都是六等分,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )
A. B. C. D.
二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)
13.已知半径为a的球内有一内接正方体,若球内任取一点,则该点在正方体内的概率为________.
14.在平面直角坐标系xOy中,设D是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E是到原点的距离不大于1的点构成的区域,向D中随机投一点,
则落入E中的概率为________.
15.在半径为1的圆的一条直径上任取一点,过这个点作垂直于直径的弦,则弦长超过圆内接等边三角形边长的概率是________.
16.在体积为V的三棱锥的棱AB上任取一点P,则三棱锥的体积大于的概率是________.
三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)
17.(10分)已知函数f(x)=-x2+ax-b.
若a,b都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率.
18.(12分)假设向三个相邻的军火库投掷一个炸弹,炸中第一个军火库的概率为0.025,其余两个各为0.1,只要炸中一个,另两个也发生爆炸,求军火库发生爆炸的概率.
19.(12分)如右图所示,OA=1,在以O为圆心,OA为半径的半圆弧上任取一点B,求使△AOB的面积大于等于的概率.
20.(12分)甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)设(i,j)分别表示甲、乙抽到的牌的牌面数字,写出甲、乙二人抽到的牌的所有情况;
(2)若甲抽到红桃3,则乙抽到的牌面数字比3大的概率是多少?
(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.
你认为此游戏是否公平,说明你的理由.
21.(12分)现有8名奥运会志愿者,其中志愿者A1、A2、A3通晓日语,B1、B2、B3通晓俄语,C1、C2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(1)求A1被选中的概率;
(2)求B1和C1不全被选中的概率.
22.(12分)已知实数a,.
(1)求直线y=ax+b不经过第四象限的概率;
(2)求直线y=ax+b与圆x2+y2=1有公共点的概率.
2018-2019学年必修三第三章训练卷
概率(一)答 案
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.【答案】C
【解析】①张涛获得冠军有可能发生也有可能不发生,所以为随机事件;
②抽到的学生有可能是李凯,也有可能不是,所以为随机事件;
③有可能抽到1号签也有可能抽不到,所以为随机事件;
④标准大气压下,水在4°C时不会结冰,所以是不可能事件,不是随机事件.
故选C.
2.【答案】B
3.【答案】A
【解析】记“甲碰到同性同学”为事件A,“甲碰到异性同学”为事件B,则,,故P(A)
4.【答案】A
【解析】在区间,,其区间长度为,又已知区间的长度为π,由几何概型知.故选A.
5.【答案】B
【解析】由题意知在20组随机数中表示三次投篮恰有两次命中的有:191、271、932、812、393,共5组随机数,故所求概率为.B选项正确.
6.【答案】D
【解析】由于只有2本英语书,从中任意抽取3本,其中至少有一本是语文书.
故选D.
7.【答案】D
【解析】4枪命中3枪共有4种可能,其中有且只有2枪连中有2种可能,
所以.故选D.
8.【答案】B
【解析】可能构成的两位数的总数为5×4=20(种),因为是“任取”两个数,所以每个数被取到的概率相同,可以采用古典概型公式求解,其中大于40的两位数有以4开头的:41,42,43,45共4种;以5开头的:51,52,53,54共4种,所以.
故选B.
9.【答案】C
【解析】横坐标与纵坐标为0的可能性是一样的.故选C.
10.【答案】A
【解析】连接OC,设圆O的半径为R,记“所投点落在△ABC内”为事件A,
则.故选A.
11.【答案】B
【解析】本题中涉及两个变量的平方和,类似于两个变量的和或积的情况,可以用列表法,使x2+y2>25的次数与总试验次数的比就近似为本题结果.即.
B选项正确.
12.【答案】A
【解析】可求得同时落在奇数所在区域的情况有4×4=16(种),而总的情况有6×6=36(种),于是由古典概型概率公式,得.故选A.
二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)
13.【答案】
【解析】因为球半径为a,则正方体的对角线长为2a,设正方体的边长为x,
则,∴,由几何概型知,所求的概率.
14.【答案】
【解析】如图所示,区域D表示边长为4的正方形的内部(含边界),区域E表示单位圆及其内部,
因此.
15.【答案】
【解析】
记“弦长超过圆内接等边三角形的边长”为事件A,如图所示,不妨在过等边三角形BCD的顶点B的直径BE上任取一点F作垂直于直径的弦,当弦为CD时,就是等边三角形的边长,弦长大于CD的充要条件是圆心O到弦的距离小于OF,由几何概型的概率公式得.
16.【答案】
【解析】由题意可知,如图所示,三棱锥与三棱锥的高相同,因此 (PM,BN为其高线),又,
故,故所求概率为 (长度之比).
三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)
17.【答案】.
【解析】a,b都是从0,1,2,3,4五个数中任取的一个数的基本事件总数为N=5×5=25个.函数有零点的条件为Δ=a2-4b≥0,即a2≥4b.因为事件“a2≥4b”包含,,,,,,,,,,,,共12个.所以事件“a2≥4b”的概率为.
18.【答案】.
【解析】设A、B、C分别表示炸中第一、第二、第三军火库这三个事件.
则P(A)=0.025,P(B)=P(C)=0.1,
设D表示军火库爆炸这个事件,则有
D=A∪B∪C,其中A、B、C是互斥事件,
∴P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.025+0.1+0.1=0.225.
19.【答案】.
【解析】因为,,所以,
所以,所以的概率为.
20.【答案】(1)见解析;(2);(3)公平,见解析.
【解析】(1)甲、乙二人抽到的牌的所有情况(方片4用4′表示,其他用相应的数字表示)为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),,(4′,2),(4′,3),(4′,4),共12种不同情况.
(2)甲抽到红桃3,乙抽到的牌的牌面数字只能是2,4,4′,因此乙抽到的牌的牌面数字比3大的概率为.
(3)甲抽到的牌的牌面数字比乙大的情况有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种,故甲胜的概率,同理乙胜的概率.因为P1=P2,
所以此游戏公平.
21.【答案】(1);(2).
【解析】(1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件为
(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2),共18个基本事件.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.
用M表示“A1恰被选中”这一事件,则
M={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2)},
事件M由6个基本事件组成,因而.
(2)用N表示“B1、C1不全被选中”这一事件,则其对立事件表示“B1、C1全被选中”这一事件,由于,事件由3个基本事件组成,
所以,由对立事件的概率公式得:.
22.【答案】(1);(2).
【解析】(1)由于实数对(a,b)的所有取值为:(-2,-2),(-2,-1),(-2,1),(-2,2),(-1,-2),(-1,-1),(-1,1),(-1,2),(1,-2),(1,-1),(1,1),(1,2),(2,-2),(2,-1),(2,1),(2,2),共16种.
设“直线y=ax+b不经过第四象限”为事件A,
若直线y=ax+b不经过第四象限,则必须满足,即满足条件的实数对(a,b)有(1,1),(1,2),(2,1),(2,2),共4种.∴.故直线y=ax+b不经过第四象限的概率为.
(2)设“直线y=ax+b与圆x2+y2=1有公共点”为事件B,
若直线y=ax+b与圆x2+y2=1有公共点,则必须满足,
即b2≤a2+1.
若a=-2,则b=-2,-1,1,2符合要求,此时实数对(a,b)有4种不同取值;
若a=-1,则b=-1,1符合要求,此时实数对(a,b)有2种不同取值;
若a=1,则b=-1,1符合要求,此时实数对(a,b)有2种不同取值,
若a=2,则b=-2,-1,1,2符合要求,此时实数对(a,b)有4种不同取值.
∴满足条件的实数对(a,b)共有12种不同取值.∴.
故直线y=ax+b与圆x2+y2=1有公共点的概率为.