本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
《电磁感应》巩固与提高
电磁感应部分在高考理综中是重点考察的章节,重点考察法拉第电磁感应定律和楞次定律,特别是图像问题和导棒问题。
专题一:正确理解磁通量的含义
①定义:在匀强磁场中,垂直穿过某一面的磁通量为磁感应强B与该面积S乘积.Φ=BS(如图所示)当平面与磁场方向不垂直时,Φ=B·S·cosθ(如图所示)
②物理意义:磁通量就是表示穿过这个面的磁感线条数.对于同一个平面,当它跟磁场方向垂直时,磁场越强,穿过它的磁感线条数越多,磁通量就越大.当它跟磁场方向平行时,没有磁感线穿过它,则磁通量为零.
③S是指闭合回路中包含磁场的那部分有效面积。
④磁通量虽然是标量,但有正负之分。
⑤磁通量与线圈的匝数无关
⑥磁通量变化三种情况:B不变,S变;S不变,B变;S、B不变,θ变。
【巩固练习】
例1、关于磁通量、磁通密度、磁感应强度,下列说法正确的是 ( )
A.磁感应强度越大的地方,磁通量越大
B.穿过某线圈的磁通量为零时,由B=可知磁通密度为零
C.磁通密度越大,磁感应强度越大
D.磁感应强度在数值上等于1 m2的面积上穿过的最大磁通量
例2、如图所示,在磁感应强度为 B的匀强磁场中有一面积为S的矩形线圈abcd,垂直于磁场方向放置,现使线圈以ab边为轴转180°,求此过程磁通量的变化?
例3、矩形线框abcd的边长分别为l1、l2,可绕它的一条对称轴OO′转动,匀强磁场的磁感应强度为B,方向与OO′垂直,初位置时线圈平面与B平行,如图所示.
(1)初位置时穿过线框的磁通量Φ0为多少?
(2)当线框沿图甲所示方向绕过60°时,磁通量Φ2为多少?这一过程中磁通量的变化ΔΦ1为多少?
(3)当线框绕轴沿图示方向由图乙中的位置再转过60°位置时,磁通量Φ2为多少?这一过程中ΔΦ2=Φ3-Φ2为多少?
专题二:产生感应电流的条件
1、实验:探究产生感应电流的条件
(1)闭合电路的部分导体切割磁感线
导体棒的运动 表针的摆动方向 导体棒的运动 表针的摆动方向
向右平动 向后平动
向左平动 向上平动
向前平动 向下平动
结论:
(2)向线圈中插入磁铁,把磁铁从线圈中拔出
磁铁的运动 表针的摆动方向 磁铁的运动 表针的摆动方向
N极插入线圈 S极插入线圈
N极停在线圈中 S极停在线圈中
N极从线圈中抽出 S极从线圈中抽出
结论:
(3)模拟法拉第的实验
操作 现象
开关闭合瞬间
开关断开瞬间
开关闭合时,滑动变阻器不动
开关闭合时,迅速移动变阻器的滑片
结论:
2、总结:(1)不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生.这种利用磁场产生电流的现象叫电磁感应,产生的电流叫感应电流.
(2)产生感应电流的条件:(1)电路必须闭合;(2)磁通量发生变化.
(3)电磁感应现象中能量的转化:电磁感应的本质是其他形式的能量和电能的转化过程。
【巩固练习】
例1、关于感应电流,下列说法中正确的是 ( )
A.只要穿过线圈的磁通量发生变化,线圈中就一定有感应电流
B.只要闭合导线做切割磁感线运动,导线中就一定有感应电流
C.若闭合电路的一部分导体不做切割磁感线运动,闭合电路中一定没有感应电流
D.当穿过闭合电路的磁通量发生变化时,闭合电路中一定有感应电流
例2、在一长直导线中通以如图所示的恒定电流时,套在长直导线上的闭合线环(环面与导线垂直,长直导线通过环的中心),当发生以下变化时,肯定能产生感应电流的是 ( )
A.保持电流不变,使导线环上下移动
B.保持导线环不变,使长直导线中的电流增大或减小
C.保持电流不变,使导线在竖直平面内顺时针(或逆时针)转动
D.保持电流不变,环在与导线垂直的水平面内左右水平移动
例3、如图所示,矩形线圈与磁场垂直,且一半在匀强磁场内一半在匀强磁场外.下述过程中使线圈产生感应电流的是( )
A.以bc为轴转动45°
B.以ad为轴转动45°
C.将线圈向下平移
D.将线圈向上平移
例4、如图所示,一通电螺线管b放在闭合金属线圈a内,螺线管的中心线正好和线圈的一条直径MN重合.要使线圈a中产生感应电流,可采用的方法有( )
A.将螺线管在线圈a所在平面内转动
B.使螺线管上的电流发生变化
C.使线圈以MN为轴转动
D.使线圈以与MN垂直的一条直径为轴转动
例5、如图所示,在正方形线圈的内部有一条形磁铁,线圈与磁铁在同一平面内,两者有共同的中心轴线OO′,关于线圈中产生感应电流的下列说法中,正确的是( )
A.当磁铁向纸面外平移时,线圈中不产生感应电流
B.当磁铁向上平移时,线圈中不产生感应电流
C.当磁铁向下平移时,线圈中产生感应电流
D.当磁铁N极向纸外,S极向纸里绕OO′轴转动时,线圈中产生感应电流
例6、如图所示,条形磁铁正上方放置一矩形线框,线框平面水平且与条形磁铁平行,则线框由N极端匀速平移到S极端的过程中,线框中的感应电流的情况是( )
A.线框中始终无感应电流
B.线框中始终有感应电流
C.线框中开始有感应电流,当线框运动到磁铁中部时无感应电流,过中部后又有感应电流
D.线框中开始无感应电流,当线框运动到磁铁中部时有感应电流,过中部后又无感应电流
例7、如图所示,导线框MNQP近旁有一个跟它在同一竖直平面内的矩形线圈abcd,下列说法正确的是( )
A.当电阻变大时,abcd中有感应电流
B.当电阻变小时,abcd中有感应电流
C.电阻不变,将abcd在其原来所在的平面内向PQ靠近时,其中有感应电流
D.电阻不变,将abcd在其原来所在的平面内竖直向上运动时,其中有感应电流
例8、如图所示,竖直通电直导线与闭合导线环的平面垂直,且过圆环中心,下列说法正确的是( )
A.电流增强或减弱时,环中无感应电流
B.环竖直向上或向下运动时,环中有感应电流
C.环以导线为轴,在垂直于电流的平面内转动时,环中有感应电流
D.环以自身的任意直径为轴转动时,环中无感应电流
专题三:楞次定律和右手定则
1、楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。(四个字“增反减同”)
●理解:(1)两个磁场:一是引起感应电流的磁场,是原磁场——因;二是感应电流的磁场,是新磁场——果。
(2)阻碍:原磁通量增加——新磁场反向——阻碍增大;
原磁通量减小——新磁场同向——阻碍减小。
(3)另两种表述:1、从磁铁与线圈的相对运动来看,感应电流总要阻碍相对运动。(“来拒去留”。2、从相互作用来看:新磁场对原磁场做负功,原磁场对新磁场做正功。符合能量守恒定律。
●用楞次定律判定感应电流的方向跟用右手定则判断的结果是一致的.右手定则可看作是
楞次定律的特殊情况.对于团合电路的一部分导体切割磁感线而产生感应电流的情况,用右手定则来判断感应电流的方向往往比用楞次定律简便.
●利用楞次定律判定感应电流方向的判定步骤(四步走).
(1)明确原磁场的方向;
(2)明确穿过闭合回路的磁通量是增加还是减少;
(3)根据楞次定律,判定感应电流的磁场方向;
(4)利用安培定则判定感应电流的方向
2、感应电流的方向的判定:感应电流的方向跟导体运动的方向和磁感线的方向都有关系。它们三者之间满足——右手定则
伸开右手,使大拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,把右手放入磁场中,让磁力线垂直穿入手心,大拇指指向导体运动方向,那么其余四指所指的方向就是感应电流的方向
注意:(1)右手定则的适用范围:切割型。
(2)在感应电流方向、磁场方向、导体运动方向中已知任意两个的方向可以判断第三个的方向。
3、左手定则和右手定则的区别:
(1)右手定则——判断感应电流的方向
(2)左手定则——判定磁场对电流的作用力方向
【巩固练习】
例1、如图所示,通电导线旁边同一平面有矩形线圈abcd.则 ( )
A.若线圈向右平动,其中感应电流方向是a→b→c→d
B.若线圈竖直向下平动,无感应电流产生
C.当线圈以ab边为轴转动时,其中感应电流方向是a→b→c→d
D.当线圈向导线靠近时,其中感应电流方向是a→b→c→d
例2、如图所示,一水平放置的矩形闭合线框abcd,在细长磁铁的N极附近竖直下落,保持bc边在纸外,ad边在纸内,如图中的位置Ⅰ经过位置Ⅱ到位置Ⅲ,位置Ⅰ和Ⅲ都很靠近Ⅱ,在这个过程中,线圈中感应电流 ( )
A.沿abcd流动
B.沿dcba流动
C.由Ⅰ到Ⅱ是沿abcd流动,由Ⅱ到Ⅲ是沿dcba流动
D.由Ⅰ到Ⅱ是沿dcba流动,由Ⅱ到Ⅲ是沿abcd流动
例3、1931年,英国物理学家狄拉克从理论上预言了存在着只有一个磁极的粒子——磁单极子.如图所示,如果有一个磁单极子(单N极)从a点开始运动穿过线圈后从b点飞过.那么 ( )
A.线圈中感应电流的方向是沿PMQ方向
B.线圈中感应电流的方向是沿QMP方向
C.线圈中感应电流的方向先是沿QMP方向,然后是PMQ方向
D.线圈中感应电流的方向先是沿PMQ方向,然后是QMP方向
解析:将磁单极子(单N极),理解为其磁感线都是向外的
例4、如图所示,一平面线圈用细杆悬于P点,开始时细杆处于水平位置,释放后让它在如图所示的匀强磁场中运动.已知线圈平面始终与纸面垂直,当线圈第一次通过位置Ⅰ和位置Ⅱ时,顺着磁场方向看去,线圈中感应电流的方向分别为 ( )
A.逆时针方向,逆时针方向
B.逆时针方向,顺时针方向
C.顺时针方向,顺时针方向
D.顺时针方向,逆时针方向
例5、一均匀的扁平条形磁铁与一圆形线圈在同一平面内,如图所示,磁铁的中央与圆心O重合.为了在磁铁运动时在线圈中产生图示方向的感应电流I,磁铁的运动方式应该是( )
A.使磁铁沿垂直于线圈平面的方向向纸外平动
B.使磁铁在线圈平面内绕O点顺时针方向转动
C.使磁铁在线圈平面内向上平动
D.N极向纸内、S极向纸外,使磁铁绕O点转动
例6、如图(2)所示,一闭合的金属环从静止开始由高处下落通过条形磁铁后继续下落,空气阻力不计,则在圆环的运动过程中,下列说法正确的是:( )
A.在磁铁的上方时,圆环的加速度小于g,在下方时大于g;
B.圆环在磁铁上方时,加速度小于g,在下方时也小于g;
C.圆环在磁铁的上方时,加速度小于g,在下方时等于g;
D.圆环在磁铁的上方时,加速度大于g,在下方时小于g。
例7、如图所示,螺线管B置于闭合金属圆环A的轴线上,当B中通过的电流I减小时( )
A.环A有缩小的趋势 B.环A有扩张的趋势
C.螺线管B有缩短的趋势 D.螺线管B有伸长的趋势
例8、两圆环AB置于同一水平面上,其中A为均匀带电绝缘环,B为导体环.当A以如图所示的方向绕中心转动的角速度发生变化时,B中产生如图所示的感应电流,则( )
A.A可能带正电且转速减小 B.A可能带正电且转速增大
C.A可能带负电且转速减小 D.A可能带负电且转速增大
例9、如图所示,在匀强磁场中放有平行铜导轨,它与大线圈M相连接。要使小线圈N获得逆时针方向的感应电流,则放在导轨上的裸金属棒ab的运动情况是(两线圈共面放置)( )
A.向右匀速运动 B.向左加速运动
C.向右减速运动 D.向右加速运动
例10、如图所示,导线框abcd与导线AB在同一平面内,直导线中通有恒定的电流I,当线框由左向右匀速通过直导线的过程中,线框中感应电流的方向是( )
A.先abcda,再dcbad,后abcda
B.先abcda,再dcbad
C.始终是dcbad
D.先dcbad,再abcda,后dcbad
例11、(08重庆)如题 图,粗糙水平桌面上有一质量为m的铜质矩形线圈.当一竖直放置的条形磁铁从线圈中线AB正上方等高快速经过时,若线圈始终不动,则关于线圈受到的支持力FN及在水平方向运动趋势的正确判断是( )
A、FN先小于mg后大于mg,运动趋势向左
B、FN先大于mg后小于mg,运动趋势向左
C、FN先大于mg后大于mg,运动趋势向右
D、FN先大于mg后小于mg,运动趋势向右
例12、(08上海卷)老师做了一个物理小实验让学生观察:一轻质横杆两侧各固定一金属环,横杆克绕中心点自由转动,老师拿一条形磁铁插向其中一个小环,后又取出插向另一个小环,同学们看到的现象是( )
A.磁铁插向左环,横杆发生转动
B.磁铁插向右环,横杆发生转动
C.无论磁铁插向左环还是右环,横杆都不发生转动
D. 无论磁铁插向左环还是右环,横杆都发生转动
专题四:法拉第电磁感应定律
法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.公式:E=n△Φ/△t
1、动生型:切割型 △Φ=B·△S 在磁场中运动的导体切割磁感线造成的感应电动势。
●两种情况:(1)导体做切割磁感线运动时产生感应电动势大小表达式:E=Blv(L为有效长度)
(2)导体做旋转切割磁感线运动时产生感应电动势大小表达式:E=1/2Blv=1/2Bwl2
●几个应该说明的问题.
(1)在法拉第电磁感应定律中感应电动势E的大小不是跟磁通量Ф成正比,也不是跟磁通量的变化量ΔФ成正比,而是跟磁通量的变化率成正比.
(2)法拉第电磁感应定律反映的是在Δt一段时间内平均感应电动势.只有当Δt趋近于零时,才是即时值.
(3)公式E=Blv中,当v取即时速度则E是即时值,当v取平均速度时,E是平均感应电动势.
(4)当磁通量变化时,对于闭合电路一定有感应电流.若电路不闭合,则无感应电流,但仍然有感应电动势.
(5)哪一段导体切割磁感线,则哪一段导体就相当于电源。
(6)感应电动势就是电源电动势,是非静电力使电荷移动增加电势能的结果.电路中感应电流的强弱由感应电动势的大小E和电路总电阻决定,符合欧姆定律.
【典例精析】
例1、(辽宁卷)如图4所示,两根相距为l的平行直导轨ab、cd、b、d间连有一固定电阻R,导轨电阻可忽略不计。MN为放在ab和cd上的一导体杆,与ab垂直,其电阻也为R。整个装置处于匀强磁场中,磁感应强度的大小为B,磁场方向垂直于导轨所在平面(指向图中纸面内)。现对MN施力使它沿导轨方向以速度v(如图)做匀速运动。令U表示MN两端电压的大小,则 ( )
A.流过固定电阻R的感应电流由b到d
B.流过固定电阻R的感应电流由d到b
C.流过固定电阻R的感应电流由b到d
D.流过固定电阻R的感应电流由d到b
例2、(04全国卷)一直升飞机停在南半球的地磁极上空。该处地磁场的方向竖直向上,磁感应强度为B。直升飞机螺旋桨叶片的长度为l,螺旋桨转动的频率为f,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动。螺旋桨叶片的近轴端为a,远轴端为b,如图所示。忽略a到转轴中心线的距离,用ε表示每个叶片中的感应电动势,则( )
A. ε=πfl2B,且a点电势低于b点电势
B. ε=2πfl2B,且a点电势低于b点电势
C. ε=πfl2B,且a点电势高于b点电势
D. ε=2πfl2B,且a点电势高于b点电势
●计算通过闭合回路的电量常用推导式:q=△Φ/R (请你自己推导一下)
例1、(06全国1卷)如图,在匀强磁场中固定放置一根串接一电阻R的直角形金属导轨aob(在纸面内),磁场方向垂直于纸面朝里,另有两根金属导轨c、d分别平行于oa、ob放置。保持导轨之间接触良好,金属导轨的电阻不计。现经历以下四个过程:①以速率v移动d,使它与ob的距离增大一倍;②再以速率v移动c,使它与oa的距离减小一半;③然后,再以速率2v移动c,使它回到原处;④最后以速率2v移动d,使它也回到原处。设上述四个过程中通过电阻R的电量大小依次为Q1、Q2、Q3和Q4,则 ( )
A.Q1=Q2=Q3=Q4 B.Q1=Q2=2Q3=2Q4
C.2Q1=2Q2=Q3=Q4 D.Q1≠Q2=Q3≠Q4
例2、如图所示,电阻为R的金属棒ab,从图示位置分别以速度v1、v2沿电阻不计的光滑轨道匀速滑到虚线处.若v1∶v2=1∶2,则两次移动棒的过程中( )
A.回路中感应电流之比I1∶I2=1∶2
B.回路中产生热量之比Q1∶Q2=1∶2
C.外力做功的功率之比P1∶P2=1∶2
D.回路中通过截面的总电荷量之比q1∶q2=1∶2
2、感生型:△Φ=△B·S 因为磁场的变化而产生的感应电动势
【典例精析】
例1、(08·全国Ⅰ·20)矩形导线框abcd固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直低面向里,磁感应强度B随时间变化的规律如图所示.若规定顺时针方向为感应电流I的正方向,下列各图中正确的是 ( )
A B C D
例2、(09·广东物理·18)如图(a)所示,一个电阻值为R ,匝数为n的圆形金属线与阻值为2R的电阻R1连结成闭合回路。线圈的半径为r1 . 在线圈中半径为r2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图18(b)所示。图线与横、纵轴的截距分别为t0和B0 . 导线的电阻不计。求0至t1时间内
(1)通过电阻R1上的电流大小和方向;
(2)通过电阻R1上的电量q及电阻R1上产生的热量。
【巩固练习】
例1、一匀强磁场,磁场方向垂直纸面,规定向里的方向为正。在磁场中有一细金属圆环,线圈平面位于纸面内,如图甲所示。现令磁感应强度B随时间t变化,先按图乙中所示的Oa图象变化,后来又按图象bc和cd变化,令E1、E2、E3分别表示这三段变化过程中感应电动势的大小,I1,I2,I3分别表示对应的感应电流,则( )
A.E1>E2,I1沿逆时针方向,I2沿顺时针方向
B.E1C.E1D.E2=E3,I2沿顺时针方向,I3沿顺时针方向
例2、如图所示,矩形金属框置于匀强磁场中,ef为一导体棒,可在ab和cd间滑动并接触良好;设磁感应强度为B,ef长为L,在Δt时间内向左匀速滑过距离Δd,由电磁感应定律E=n可知,下列说法正确的是( )
A、当ef向左滑动时,左侧面积减少L·Δd,右侧面积增加L·Δd,因此E=2BLΔd/Δt
B、当ef向左滑动时,左侧面积减小L·Δd,右侧面积增大L·Δd,互相抵消,因此E=0
C、在公式E=n中,在切割情况下,ΔΦ=B·ΔS,ΔS应是导线切割扫过的面积,因此E=BLΔd/Δt
D、在切割的情况下,只能用E=BLv计算,不能用E=n计算
例3、在图中,EF、GH为平行的金属导轨,其电阻可不计,R为电阻器,C为电容器,AB为可在EF和GH上滑动的导体横杆.有均匀磁场垂直于导轨平面.若用I1和I2分别表示图中该处导线中的电流,则当横杆AB( )
A、匀速滑动时,I1=0,I2=0
B、匀速滑动时,I1≠0,I2≠0
C、加速滑动时,I1=0,I2=0
D、加速滑动时,I1≠0,I2≠0
例4、两块水平放置的金属板间的距离为d,用导线与一个n匝线圈相连,线圈电 阻为r,线圈中有竖直方向的磁场,电阻R与金属板连接,如图所示,两板间有一个质量为m、电荷量+q的油滴恰好处于静止,则线圈中的磁感应强度B的变化情况和磁通量的变化率分别是 ( )
A.磁感应强度B竖直向上且正增强,=
B.磁感应强度B竖直向下且正增强,=
C.磁感应强度B竖直向上且正减弱,=
D.磁感应强度B竖直向下且正减弱,=
例5、竖直放置的光滑U形导轨宽0.5m,电阻不计,置于很大的磁感应强度是1T的匀强磁场中,磁场垂直于导轨平面,如图16所示,质量为10g,电阻为1Ω的金属杆PQ无初速度释放后,紧贴导轨下滑(始终能处于水平位置)。问:
(1)到通过PQ的电量达到0.2c时,PQ下落了多大高度?
(2)若此时PQ正好到达最大速度,此速度多大?
(3)以上过程产生了多少热量?
专题五:自感现象和日光灯
①自感现象是指当线圈自身电流发生变化时,在线圈中引起的电磁感应现象,当线圈中的电流增加时,自感电流的方向与原电流方向相反;当线圈中电流减小时,自感电流的方向与原电流的方向相同.自感电动势的大小与电流的变化率成正比.
②自感现象是电磁感应的特例.一般的电磁感应现象中变化的原磁场是外界提供的,而自感现象中是靠流过线圈自身变化的电流提供一个变化的磁场.它们同属电磁感应,所以自感现象遵循所有的电磁感应规律.自感电动势仅仅是减缓了原电流的变化,不会阻止原电流的变化或逆转原电流的变化.原电流最终还是要增加到稳定值或减小到零。
③自感系数L由线圈自身的性质决定,与线圈的长短、粗细、匝数、有无铁芯有关.
④自感现象可以分为两类:串联型和并联型(如下图1、2示)
⑤自感现象的应用——日光灯
(1)启动器:利用氖管的辉光放电,起自动把电路接通和断开的作用
(2)镇流器:在日光灯点燃时,利用自感现象,产生瞬时高压,在日光灯正常发光时,,利用自感现象,起降压限流作用。
(3)日光灯的工作原理图如下:
图中A镇流器,其作用是在灯开始点燃时起产生瞬时高压的作用;在日光灯正常发光时起起降压限流作用.B是日光灯管,它的内壁涂有一层荧光粉,使其发出的光为柔和的白光;C是启动器,它是一个充有氖气的小玻璃泡,里面装上两个电极,一个固定不动的静触片和一个用双金属片制成的U形触片组成.
【巩固练习】
例1、如图所示,L为自感系数较大的线圈,在滑动变阻器的滑动片P从A端迅速滑向B端过程中,经过AB中点C时电路中电流为I1;P从B端迅速滑向A端过程中经过C点时的电流为I2;P固定于C点不动时电流为I0.则( )
A.I1=I2=I0 B.I1>I0>I2
C.I1=I2>I0 D.I1例2、如图所示,L是自感系数很大、电阻很小的线圈,下述情况中不正确的是( )
A.S1合上后,Q灯逐渐亮起来
B.再合上S2稳定后,P灯是暗的
C.再断开S1瞬间,Q灯立即熄灭,P灯亮一下再灭
D.再断开S1瞬间,P灯和Q灯过一会才熄灭
例3、如图所示电路中,S是闭合的,此时流过L的电流为i1,流过灯A的电流为i2,且i1例4、(2004年天津调研)如图所示,一条形磁铁在图示位置由静止开始下落穿过采用双线绕成的闭合线圈,则条形磁铁从下落到穿过线圈的过程中可能做( )
A.匀减速运动
B.匀速运动
C.非匀变速运动
D.自由落体运动
例5、在制作精密电阻时,为消除使用过程中由于电流的变化而引起的自感现象,采取了双线绕法,如图所示.其理由是( )
A.当电路中电流变化时,两股导线产生的自感电动势互相抵消
B.当电路中电流变化时,两股导线中的感应电流互相抵消
C.当电路中电流变化时,两股导线产生的磁通量互相抵消
D.当电路中电流变化时,电流的变化量互相抵消
例6、如图所示的电路中,A1和A2是完全相同的灯泡,线圈L的电阻可以忽略不计,下列说法中正确的是( )
A.合上开关S接通电路时,A2先亮A1后亮,最后一样亮
B.合上开关S接通电路时,A1和A2始终一样亮
C.断开开关S切断电路时,A2立即熄灭,A1过一会熄灭
D.断开开关S切断电路时,A1和A2都要过一会才熄灭
专题六:涡流、电磁阻尼和电磁驱动
1、涡流:块状金属放在变化磁场中,或者让它在磁场中运动时,金属块内产生的感应电流。金属块中的涡流要产生热量
(1)涡流的防止:导体在非均匀磁场中移动或处在随时间变化的磁场中时,因涡流而导致能量损耗称为涡流损耗。涡流损耗的大小与磁场的变化方式、导体的运动、导体的几何形状、导体的磁导率和电导率等因素有关。
①、增大铁芯材料的电阻率,常用的材料是硅钢。
②、用互相绝缘的硅钢片叠成的铁芯来代替整块硅钢铁芯。
(2)涡流的利用:涡流的热效应
A.高频焊接:
线圈中通以高频交流电时,待焊接的金属工件中就产生感应电流(涡电流)。由于焊缝处的接触电阻很大,放出的焦耳热很多,致使温度升得很高,将金属熔化,焊接在一起。我国产生的自行车架就是用这种方法焊接的。
B.高频感应炉
高频感应炉利用涡流来熔化金属。图是冶炼金属的感应炉的示意图.冶炼锅内装入被冶炼的金属,线圈通上高频交变电流,这时被冶炼的金属中就产生很强的涡流,从而产生大量的热使金属熔化.这种冶炼方法速度快,温度容易控制,并能避免有害杂质混入被冶炼的金属中,因此适于冶炼特种合金和特种钢。
C.电磁炉
电磁炉的工作原理是采用磁场感应涡加流加热原理,利用电流通过线圈产生磁场,当磁场内的磁感线通过铁质锅底时会产生无数的涡流是锅的本身自行高速发热,然后再作用于锅内食物。这种最新的加热方式,能减少热量传递的中间环节,可大大提升制热效率,比传统炉具(电炉、气炉)节省能源一半以上。
D、探雷器和安检门都是利用涡流制成的
探测地雷的探雷器是利用涡流工作的,士兵手持一个长柄线圈在地面上扫过,线圈中由变化的电流,如果地下埋着金属物品,金属中感应涡流,涡流的磁场反过来影响线圈中的电流,使仪器报警,这种探雷器可以用来探测金属壳的地雷或有较大金属零件的地雷。机场的安检门可以探测人身携带的金属物品,道理是一样的。
2、涡流的磁效应:电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动,这种现象成为电磁阻尼。
把铜板做成的摆放到电磁铁的磁场中,当电磁铁未通电时,摆要往复多次,摆才能停止下来.如果电磁铁通电,磁场在摆动的铜板中产生涡流。涡流受磁场作用力的方向与摆动方向相反,因而增大了摆的阻尼,摆很快就能停止下来。电磁仪表中的电磁阻尼器就是根据涡流磁效应制作的,在磁电式测量仪表中,常把使指针偏转的线圈绕在闭合铝框上,当测量电流流过线圈时,铝框随线圈指针一起在磁场中转动,这时铝框内产生的涡流将受到磁场作用力,抑止指针的摆动,使指针较快地稳定在指示位置上。此外,电气机车的电磁制动器也是根据这一效应制作的。
3、涡流的机械效应:电磁驱动
在磁场运动时带动导体一起运动,这种作用称为“电磁驱动”作用。当磁铁转动时,根据楞次定律此时在圆盘上将产生涡流,受到磁场的作用力将产生一个促使金属圆盘按磁场旋转方向发生转动的力矩。但是如果圆盘的转速达到了与磁场转速一样,则两者的相对速度为零,感应电流便不会产生,这时电磁驱动作用便消失。所以在电磁驱动作用下,金属圆盘的转速总要比磁铁或磁场的转速小,或者说两者的转速总是异步的。感应式异步电动机就是根据这个原理制成的。电磁驱动作用可用来制造测量转速的电表,这类转速表常称为磁性式转速表。用磁性式转速表测量转速时,将被测机器的转轴通过连接器和传动机构与转速表中的永久磁铁的转轴相连,永久磁铁一般是由一
块充以四个极的磁钢制成,这便形成一个旋转磁场。在永久磁铁的上方有一个金属圆盘,称为感应片。感应片与永久磁铁间有很小的气隙,两者互不接触。当永久磁铁随着机器的转轴旋转时,感应片上将产生涡流。这涡流又将受到这旋转磁场的作用力,结果感应片被驱动,从而沿永久磁铁的旋转方向运动。感应片的转动将带动与感应片转轴相连的弹簧,将其扭紧,从而产生弹性恢复转矩。最后,当感应片转过一定的角度,由电磁驱动作用产生的转矩刚巧与弹性恢复的转矩抵消时,便达到一个暂时平衡状态。由机器带动转动的永久磁铁转速越快,感应片受到的电磁驱动作用所产生的转矩越大,因而指针的偏转角度就越大。这样,便可通过指针的偏转角度来显示机器的转速。
交流感应电动机就是利用电磁驱动的原理工作的。
【巩固练习】
例1、如图所示,abcd是一闭合的小金属线框,用一根绝缘的细杆挂在固定点O,使金属线框在竖直平面内来回摆动的过程穿过水平方向的匀强磁场区域,磁感线方向跟线框平面垂直,若悬点摩擦和空气阻力不计,则( )
A.线框进入或离开磁场区域时,都产生感应电流,而且电流的方向相反
B.线框进入磁场区域后,越靠近OO′线时速度越大,因而产生的感应电流也越大
C.线框开始摆动后,摆角会越来越小,摆角小到某一值后将不再减小
D.线框摆动过程中,机械能完全转化为线框电路中的电能
例2、如图所示为一光滑轨道,其中MN部分为一段对称的圆弧,两侧的直导轨与圆弧相切,在MN部分有如图所示的匀强磁场,有一较小的金属环如图放置在P点,金属环由静止自由释放,经很多次来回运动后,下列判断正确的有( )
A、金属环仍能上升到与P等高处;
B、金属环最终将静止在最低点;
C、金属环上升的最大高度与MN等高处;
D、金属环上升的最大高度一直在变小。
例3、著名物理学家弗曼曾设计过一个实验,如图所示.在一块绝缘板上中部安一个线圈,并接有电源,板的四周有许多带负电的小球,整个装置支撑起来.忽略各处的摩擦,当电源接通的瞬间,下列关于圆盘的说法中正确的是( )
A.圆盘将逆时针转动 B.圆盘将顺时针转动
C.圆盘不会转动 D.无法确定圆盘是否会动
例4、(2002上海)如图所示,A、B为大小、形状均相同且内壁光滑,但用不同材料制成的圆管,竖直固定在相同高度。两个相同的磁性小球,同时从A、B管上端的管口无初速释放,穿过A管比穿过B管的小球先落到地面。下面对于两管的描述这可能正确的是:( )
A、A管是用塑料制成的,B管是用铜制成的;
B、A管是用铝制成的,B管是用胶木制成的;
C、A管是用胶木制成的,B管是用塑料制成的;
D、A管是用胶木制成的,B管是用铝制成的。
例5、变压器的铁芯是利用薄硅钢片叠压而成的,而不是采用一整块硅钢,这是因为( )
A.增大涡流,提高变压器的效率 B.减小涡流,提高变压器的效率
C.增大铁芯中的电阻,以产生更多的热量 D.增大铁芯中的电阻,以减小发热量
●电磁感应中的图像问题
电磁感应中常涉及磁感应强度B、磁通量Φ、感应电动势E和感应电流I随时间t变化的图像,即B-t图像、Φ-t图像、E-t 图像和I-t图像等。
对于切割磁感线产生感应电动势和感应电流的情况还常涉及感应电动势E和感应电流I随线圈位移x变化的图像,即E-x图像和I-x图像。
这些图像问题大体上可分为两类:由给定的电磁感应过程选出或画出正确的图像,或由给定的有关图像分析电磁感应过程,求解相应的物理量。不管是何种类型,电磁感应中的图像问题常需利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解决。
【巩固练习】
例1、(05全国1)如图所示,两条平行虚线之间存在匀强磁场,虚线间的距离为l,磁场方向垂直纸面向里。abcd是位于纸面内的梯形线圈,ad与bc间的距离也为l。t=0时刻,bc边与磁场区域边界重合。现令线圈以恒定的速度v沿垂直于磁场区域边界的方向穿过磁场区域。取沿a→b→c→d→a的感应电流方向为正,则在线圈穿越磁场区域的过程中,感应电流I随时间t变化的图线可能是 ( )
例2、(07全国卷1)如图所示,LOO’L’为一折线,它所形成的两个角∠LOO′ 和∠OO′L′ 均为450。折线的右边有一匀强磁场,其方向垂直于纸面向里.一边长为l的正方形导线框沿垂直于OO′ 的方向以速度v作匀速直线运动,在t=0时刻恰好位于图中所示的位置。以逆时针方向为导线框中电流的正方向,在下面四幅图中能够正确表示电流—时间(I—t)关系的是(时间以l/v为单位)( )
例3、(08全国卷1)矩形导线框abcd固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直低面向里,磁感应强度B随时间变化的规律如图所示.若规定顺时针方向为感应电流I的正方向,下列各图中正确的是( )
例4、(06天津卷)在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图1所示,当磁场的磁感应强度B随时间如图2变化时,图3中正确表示线圈中感应电动势E变化的是( )
例5、(上海卷)如下右图所示,竖直放置的螺线管与导线abcd构成回路。导线所围区域内有一个垂直纸面向里的变化的匀强磁场。螺线管下方水平桌面上有一导体圆环,导线abcd所围区域内磁场的磁感应强度按下面哪一图线所表示的方式随时间变化时,导体圆环将受到向上的磁场作用力 ( )
A. B. C. D.
例6、(2010北京卷)在如图所示的电路中,两个相同的小灯泡L1和L2分别串联一个带铁芯的电感线圈L和一个滑动变阻器R。闭合开关S后,调整R,使L1和L2发光的亮度一样,此时流过两个灯泡的电流均为I。然后,断开S。若t′时刻再闭合S,则在t′前后的一小段时间内,正确反映流过L1的电流i1、流过L2的电流i2随时间t变化的图像是( )
●电磁感应中的力学问题
电磁感应中产生的感应电流在磁场中将受到安培力的作用,因此,电磁感应问题往往跟力学问题联系在一起,解决这类电磁感应中的力学问题,不仅要应用电磁学中的有关规律,如楞次定律、法拉第电磁感应定律、左右手定则、安培力的计算公式等,还要应用力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律、机械能守恒定律等。要将电磁学和力学的知识综合起来应用。
重点:导棒问题
1、单导棒模型常见的几种情况:
(1)如下图所示.单杆ab以一定的初速度v0在光滑水平轨道上作加速度越来越小的减速运动,在安培力作用下最终静止,则回路中产生的焦耳热Q=mv2/2。
(2)如下图所示,单杆ab在恒定的外力作用下在光滑水平轨道上由静止开始运动,因,故其加速度不断减小,最终当F拉=F时,a=0以速度匀速运动。
(3)(不要求)如图所示,单杆ab在恒力F作用下,由静止开始在光滑水平轨道上运动,设电容器的电容为C,t时刻ab杆速度为v,t+△t时刻速度为v+△v,根据以下关系
I=△Q/△t △Q=C△U
△U=BL △v △v=a△t
F-BIL=ma 可得金属杆最终以加速度做匀加速运动
2、双导棒模型情况总结:
【典例精析】
例1、(2001年高考试题)如右上图所示,一对平行光滑轨道放置在水平地面上,两轨道间距L=0.20 m,电阻R=1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆与轨道的电阻皆可忽略不计,整个装置处于磁感强度B=0.50T的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F沿轨道方向拉杆,使之做匀加速运动.测得力F与时间t的关系如下图所示.求杆的质量m和加速度a.
例2、水平面上两根足够长的金属导轨平行固定放置,间距为L,一端通过导线与阻值为R的电阻连接;导轨上放一质量为m的金属杆(见图),金属杆与导轨的电阻不计;均匀磁场竖直向下.用与导轨平行的恒定力F作用在金属杆上,杆最终将做匀速运动.当改拉力的大小时,相对应的匀速运动速度v也会改变,v和F的关系如图 (取重力加速度g=10m/s 2)
(1)金属杆在匀速运动之前做作什么运动
(2)若m=0.5 kg,L=0.5 m,R=0.5 Ω,磁感应强度B为多大
(3)由ν-F图线的截距可求得什么物理量 其值为多少
例3、如图甲所示,光滑且足够长的金属导轨MN、PQ平行地固定的同一水平面上,两导轨间距L=0.20cm,两导轨的左端之间所接受的电阻R=0.40,导轨上停放一质量m=0.10kg的金属杆ab,位于两导轨之间的金属杆的电阻r=0.10,导轨的电阻可忽略不计。整个装置处于磁感应强度B=0.50T的匀强磁场中,磁场方向竖直向下。现用一水平外力F水平向右拉金属杆,使之由静止开始运动,在整个运动过程中金属杆始终与导轨垂直并接触良好,若理想电压表的示数U随时间t变化的关系如图乙所示。求金属杆开始运动经t=5.0s时,
(1)通过金属杆的感应电流的大小和方向;
(2)金属杆的速度大小;
(3)外力F的瞬时功率。
例4、(2010江苏卷)(江苏卷)如图所示,两足够长的光滑金属导轨竖直放置,相距为L, 一理想电流表与两导轨相连,匀强磁场与导轨平面垂直。一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放。导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I。整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻。求:
(1)磁感应强度的大小B;
(2)电流稳定后,导体棒运动速度的大小v;
(3)流经电流表电流的最大值Im
例5、(2010天津卷)如图所示,质量,电阻,长度的导体棒横放在U型金属框架上。框架质量,放在绝缘水平面上,与水平面间的动摩擦因数,相距0.4m的、相互平行,电阻不计且足够长。电阻的垂直于。整个装置处于竖直向上的匀强磁场中,磁感应强度。垂直于施加的水平恒力,从静止开始无摩擦地运动,始终与、保持良好接触。当运动到某处时,框架开始运动。设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10m/s2。
(1)求框架开始运动时速度v的大小;
(2)从开始运动到框架开始运动的过程中,上产生的热量,求该过程位移x的大小。
例6、(05全国卷1)图中a1b1c1d1和a2b2c2d2为在同一竖直面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。导轨的a1b1段与a2b2段是竖直的,距离为l1;c1d1段与c2d2段也是竖直的,距离为l2。x1y1与x2y2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m1和m2,它们都垂直于导轨并与导轨保持光滑接触。两杆与导轨构成的回路的总电阻为R。F为作用于金属杆x1y1上的竖直向上的恒力。已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。
例7、(04全国卷)如图,在水平面上有两条平行导电导轨MN、PQ,导轨间距离为,匀强磁场垂直于导轨所在的平面(纸面)向里,磁感应强度的大小为B,两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为和,两杆与导轨接触良好,与导轨间的动摩擦因数为,已知:杆1被外力拖动,以恒定的速度沿导轨运动;达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略,求此时杆2克服摩擦力做功的功率。
●电磁感应中的能量问题
1. 产生和维持感应电流的存在的过程就是其它形式的能量转化为感应电流电能的过程。
导体在达到稳定状态之前,外力移动导体所做的功,一部分消耗于克服安培力做功,转化为产生感应电流的电能或最后在转化为焦耳热,另一部分用于增加导体的动能,即
当导体达到稳定状态(作匀速运动时),外力所做的功,完全消耗于克服安培力做功,并转化为感应电流的电能或最后在转化为焦耳热
2. 在电磁感应现象中,能量是守恒的。楞次定律与能量守恒定律是相符合的,认真分析电磁感应过程中的能量转化,熟练地应用能量转化与守恒定律是求解叫复杂的电磁感应问题常用的简便方法。
3. 安培力做正功和克服安培力做功的区别:电磁感应的过程,同时总伴随着能量的转化和守恒,当外力克服安培力做功时,就有其它形式的能转化为电能;当安培力做正功时,就有电能转化为其它形式的能。
4. 在较复杂的电磁感应现象中,经常涉及求解耳热的问题。尤其是变化的安培力,不能直接由Q=I2 Rt解,用能量守恒的方法就可以不必追究变力、变电流做功的具体细节,只需弄清能量的转化途径,注意分清有多少种形式的能在相互转化,用能量的转化与守恒定律就可求解,而用能量的转化与守恒观点,只需从全过程考虑,不涉及电流的产生过程,计算简便。这样用守恒定律求解的方法最大特点是省去许多细节,解题简捷、方便。
【典例精析】
例1、两根相距为L的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平面内,另一边垂直于水平面。质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与水平和竖直导轨之间有相同的动摩擦因数μ,导轨电阻不计,回路总电阻为2R。 整个装置处于磁感应强度大小为B,方向竖直向上的匀强磁场中。当ab杆在平行于水平导轨的拉力作用下沿导轨匀速运动时,cd杆也正好以某一速度向下做匀速运动。设运动过程中金属细杆ab、cd与导轨接触良好。重力加速度为g。求:
(1)ab杆匀速运动的速度v1;
(2)ab杆所受拉力F,
(3)ab杆以v1匀速运动时,cd杆 以v2(v2已知)匀速运动,则在cd杆向下运动h过程中,整个回路中产生的焦耳热为多少?
例2、如图所示,MN、PQ为相距L=0.2 m的光滑平行导轨,导轨平面与水平面夹角为θ=30°,导轨处于磁感应强度为B=1 T、方向垂直于导轨平面向上的匀强磁场中,在两导轨的M、P两端接有一电阻为R=2 Ω的定值电阻,回路其余电阻不计.一质量为m=0.2 kg的导
体棒垂直导轨放置且与导轨接触良好.今平行于导轨对导体棒施加一作用力F,使导体棒从ab位置由静止开始沿导轨向下匀加速滑到底端,滑动过程中导体棒始终垂直于导轨,加速度大小为a=4 m/s2,经时间t=1 s滑到cd位置,从ab到cd过程中电阻发热为Q=0.1 J,g取10 m/s2.求:
(1)到达cd位置时,对导体棒施加的作用力;
(2)导体棒从ab滑到cd过程中作用力F所做的功.
例3、如图所示,MN、PQ是两条水平放置彼此平行的金属导轨,匀强磁场的磁感线垂直导轨平面。导轨左端接阻值R=1.5Ω的电阻,电阻两端并联一电压表,垂直导轨跨接一金属杆ab,ab的质量m=0.1kg,电阻r=0.5Ω。ab与导轨间的动摩擦因数μ=0.5,导轨电阻不计。现用F=0.7N的水平恒力向右拉ab,使之从静止开始运动,经时间t=2s后,ab开始做匀速运动,此时电压表示数U =0.3V,g取10m/s2,求ab匀速运动时外力F的功率。
高二年级物理单元过关试题(电磁感应部分)
第Ⅰ卷 选择题部分(42分)
一、选择题(本题共14小题,每小题3分,共42分)
1.现代生活中常用到一些电气用品与装置,它们在没有直接与电源连接下,可利用电磁感应产生的电流发挥功能.下列有关电磁感应的叙述,正确的是 ( )
A.电磁感应现象是丹麦科学家厄司特最先发现的
B.发电机可以利用电磁感应原理将力学能转换为电能
C.电气用品中引起电磁感应的电源电路,使用的是稳定的直流电
D.日光灯的镇流器的工作原理是电磁感应中的自感
2.MN、GH为光滑的水平平行金属导轨,ab、cd为跨在导轨上的两根金属杆,匀强磁场垂直穿过MN、GH所在的平面,如图所示,则 ( )
A.若固定ab,使cd向右滑动,则abdc回路有电流,电流方向由a→b→d→c
B.若ab、cd以相同的速度一起向右滑动,则abdc回路有电流,电流方向由c→d→b→a
C.若ab向左、cd向右同时运动,则abdc回路电流为零
D.若ab、cd都向右运动,且两棒速度vcd>vab,则abdc回路有电流,电流方向由c→d→b→a
3.某输电线路横穿公路时,要在地下埋线通过,为了保护线路不至于被压坏,预先铺设结实的过路钢管,再让输电线从钢管中穿过.电线穿管的方案有两种,甲方案是铺设两根钢管,两条输电线分别从两根钢管中穿过,乙方案是只铺设一根钢管,两条输电线都从这一根钢管中穿过,如果输电导线输送的电流很强大,那么,以下说法正确的 ( )
A.无论输送的电流是恒定电流还是交变电流,甲、乙两方案都是可行的
B.若输送的电流是恒定电流,甲、乙两方案都是可行的
C.若输送的电流是交变电流,乙方案是可行的,甲方案是不可行的
D.若输送的电流是交变电流,甲方案是可行的,乙方案是不可行的
4.如图所示,金属棒ab置于水平放置的光滑框架cdef上,棒与框架接触良好,匀强磁场垂直于ab棒斜向下.从某时刻开始磁感应强度均匀减小,同
时施加一个水平外力F使金属棒ab保持静止,则F ( )
A.方向向右,且为恒力 B.方向向右,且为变力
C.方向向左,且为变力 D.方向向左,且为恒力
5、如图所示,平行于y轴的导体棒以速度v向右做匀速直线运动,经过半径为R、磁感应强度为B的圆形匀强磁场区域,导体棒中的感应电动势E与导体棒位置x关系的图象是图中的 ( )
6、如图(a)、(b)所示,R和自感线圈L的电阻都很小,接通K,使电路达到稳定,灯泡S发光,下列说法正确的是 ( )
A.在电路(a)中,断开K,S将渐渐变暗
B.在电路(a)中,断开K,S将先变得更亮,然后渐渐变暗
C.在电路(b)中,断开K,S将渐渐变暗
D.在电路(b)中,断开K,S将先变得更亮,然后渐渐变暗
7、如图所示,竖直面内的虚线上方是一匀强磁场B,从虚线下方竖直上抛一正方形线圈,线圈越过虚线进入磁场,最后又落回原处,运动过程中线圈平面保持在竖直面内,不计空气阻力,则 ( )
A.上升过程克服磁场力做的功大于下降过程克服磁场力做的功
B.上升过程克服磁场力做的功等于下降过程克服磁场力做的功
C.上升过程克服重力做功的平均功率大于下降过程中重力的平均功率
D.上升过程克服重力做功的平均功率等于下降过程中重力的平均功率
8、如图3所示是验证楞次定律实验的示意图,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流.各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中正确的是 ( )
9、如图所示,用一根长为L、质量不计的细杆与一个上弧长为l0、下弧长为d0的金属线框的中点连接并悬挂于O点,悬点正下方存在一个上弧长为2l0、下弧长为2d0的、方向垂直于纸面向里的匀强磁场,且d0 L.先将线框拉开到如图所示位置,松手后让线框进入磁场,忽略空气阻力和摩擦.下列说法正确的是 ( )
A.金属线框进入磁场时感应电流的方向为a→b→c→d→a
B.金属线框离开磁场时感应电流的方向为a→d→c→b→a
C.金属线框dc边进入磁场与ab边离开磁场的速度大小总是相等
D.金属线框最终将在磁场内做简谐运动
10、如图所示,通过水平绝缘传送带输送完全相同的铜线圈,线圈均与传送带以相同的速度匀速运动.为了检测出个别未闭合的不合格线圈,让传送带通过一固定匀强磁场区域,磁场方向垂直于传送带,线圈进入磁场前等距离排列,穿过磁场后根据线圈间的距离,就能够检测出不合格线圈,通过观察图形,判断下列说法正确的是 ( )
A.若线圈闭合,进入磁场时,线圈相对传送带向后滑动
B.若线圈不闭合,进入磁场时,线圈相对传送带向后滑动
C.从图中可以看出,第2个线圈是不合格线圈
D.从图中可以看出,第3个线圈是不合格线圈
11、唱卡拉OK用的话筒内有传感器.其中有一种是动圈式的,它的工作原理是在弹性膜片后面粘接一个轻小的金属线圈,线圈处于永磁体的磁场中,当声波使膜片前后振动时,就将声音信号转变为电信号.下列说法正确的是 ( )
A.该传感器是根据电流的磁效应工作的
B.该传感器是根据电磁感应原理工作的
C.膜片振动时,穿过金属线圈的磁通量不变
D.膜片振动时,金属线圈中不会产生感应电动势
12、某地的地磁场磁感应强度的竖直分量方向向下,大小为4.5×10-5T。一灵敏电压表连接在当地入海河段的两岸,河宽100m,该河段涨潮和落潮时有海水(视为导体)流过。设落潮时,海水自西向东流,流速为2m/s。下列说法正确的是 ( )
A.电压表记录的电压为5mV B.电压表记录的电压为9mV
C.河南岸的电势较高 D.河北岸的电势较高
13、如图,空间某区域中有一匀强磁场,磁感应强度方向水平,且垂直于纸面向里,磁场上边界b 和下边界d水平。在竖直面内有一矩形金属统一加线圈,线圈上下边的距离很短,下边水平。线圈从水平面a开始下落。已知磁场上下边界之间的距离大于水平面a、b之间的距离。若线圈下边刚通过水平面b、c(位于磁场中)和d时,线圈所受到的磁场力的大小分别为Fb、Fc和Fd,则 ( )
A.Fd>Fc>Fb B. Fc < Fd < Fb
C. Fc > Fb > Fd D. Fc < Fb < Fd
14、半径为r带缺口的刚性金属圆环在纸面上固定放置,在圆环的缺口两端引出两根导线,分别与两块垂直于纸面固定放置的平行金属板连接,两板间距为d,如图(上)所示。有一变化的磁场垂直于纸面,规定向内为正,变化规律如图(下)所示。在t=0时刻平板之间中心有一重力不计,电荷量为q的静止微粒,则以下说法正确的是( )
A. 第2秒内上极板为正极
B. 第3秒内上极板为负极
C. 第2秒末微粒回到了原来位置
D. 第3秒末两极板之间的电场强度大小为0.2
第Ⅱ卷 非选择题部分(58分)
二、实验题(8分)
如图所示器材可用来研究电磁感应现象及确定感应电流方向。
(1)在给出的实物图中,用实线作为导线将实验仪器连成实验电路。
(2)线圈L1和L2的绕向一致,将线圈L1插入L2中,合上开关。能使L2中感应电流的流向与L1中电流的流向相同的实验操作是( )
A.插入软铁棒 B.拔出线圈L1
C.增大接人电路中的滑动变阻器的阻值 D.断开开关
三、计算题(本题共5小题,共50分)
15.如图所示,将直径为d,电阻为R的闭合金属环从匀强磁场B中拉出,求这一过程中
(1)磁通量的改变量为多少?
(2)通过金属环某一截面的电量为多少?
16。如图所示,在磁感应强度为0.4 T的匀强磁场中,让长为0.5 m、电阻为0.1 Ω的导体棒ab在金属框上以10 m/s的速度向右匀速滑动,电阻R1=6 Ω,R2=4 Ω,其他导线上的电阻可忽略不计.求:
(1)ab棒中的电流大小与方向;
(2)为使ab棒匀速运动,外力的机械功率;
(3)ab棒中转化成电能的功率,并比较机械功率与转化功率是否相等.
17、法拉第曾提出一种利用河流发电的设想,并进行了实验研究。实验装置的示意图可用题23图表示,两块面积均为S的矩形金属板,平行、正对、竖直地全部浸在河水中,间距为d。水流速度处处相同,大小为v,方向水平。金属板与水流方向平行。地磁场磁感应强度的竖直分量为B,水的电阻为p,水面上方有一阻值为R的电阻通过绝缘导线和电建K连接到两金属板上。忽略边缘效应,求:
(1)该发电装置的电动势;
(2)通过电阻R的电流强度;
(3)电阻R消耗的电功率
18、如图所示,竖直平行导轨间距L = 0.20m,导体棒ab与导轨接触良好且无摩擦,ab的电阻R=0.40Ω,质量m = 0.010kg ,导轨的电阻不计,整个装置处在与轨道平面垂直的匀强磁场中,磁感应强度B = 1.0T .现将ab棒由静止释放,不计空气阻力,设导轨足够长.求:
(1)ab棒释放后其加速度a与运动速度v的函数关系式;
(2)求ab棒运动的最大速度.(g取10m/s2)
19、如图甲所示,两定滑轮可以绕垂直于纸面的光滑水平轴、O转动,滑轮上绕一细线,线的一端系一质量为M的重物,另一端系一质量为m的金属杆.在竖直平面内有两根间距为L的足够长的平行金属导轨PQ、MN,在Q、N之间连接有阻值为R的电阻,其余电阻不计.磁感应强度为B的匀强磁场与导轨平面垂直.开始时金属杆置于导轨下端,将重物由静止释放,重物最终能匀速下降,运动过程中金属杆始终与导轨接触良好.
(1)求重物匀速下降的速度大小.
(2)对一定的磁感应强度B,取不同的质量M,测出相应的重物做匀速运动时的V值,得到实验图线如图乙所示,图中画出了磁感应强度分别为B1和B2时的两条实验图线。试根据实验结果计算比值.
参考答案
专题一:正确理解磁通量的含义
【巩固练习】
例1、CD
例2、错解:初态,末态,故。
错解分析:错解中忽略了磁通量的正、负。
正确解法:初态中,末态,故
例3、解:(1)当处于图甲所示位置时,从俯视图可看出没有磁感线穿过矩形线框,故Φ0=0.
(2)当绕轴(从上往下看)沿逆时针方向转动60°到a′b′位置时,线框与B的夹角θ=60°.
所以Φ2=B·Ssin60°=BS
ΔΦ1=Φ2-Φ0= BS.
(3)当再由a′b′位置逆时针转60°时,到a″b″,这时线框与B方向成120°角.
所以Φ2=B·Ssin120°=BS,ΔΦ2=Φ3-Φ2=BS-BS=0.
注意:a′b′位置和a″b″位置时,穿过线框磁通量的方向没有发生变化.
专题二:产生感应电流的条件
【巩固练习】
例1、D 例2、C 例3、B 例4、D 例5、ABD 例6、C 例7、ABC 例8、AD
专题三:楞次定律和右手定则
【巩固练习】
例1、ABC 例2、A 例3、B 例4、B 例5、D 例6、B 例7、AD 例8、BC 例9、D 例10、D 例11、D 例12、B
专题四:法拉第电磁感应定律
【典例精析】
例1、A 例2、A
●计算通过闭合回路的电量常用推导式:q=△Φ/R (请你自己推导一下)
例1、A 例2、AB
2、感生型:△Φ=△B·S 因为磁场的变化而产生的感应电动势
【典例精析】
例1、D
例2、解析:⑴由图象分析可知,0至时间内
由法拉第电磁感应定律有
而
由闭合电路欧姆定律有
联立以上各式解得
通过电阻上的电流大小为
由楞次定律可判断通过电阻上的电流方向为从b到a
⑵通过电阻上的电量
通过电阻上产生的热量
【巩固练习】
例1、BD 例2、C 例3、D 例4、C
例5、21、(1)0.4米 (2)0.4米/秒 (3) 0.0392J
专题五:自感现象和日光灯
【巩固练习】
例1、D 例2、D 例3、D 例4、D 例5、C 例6、AD
专题六:涡流、电磁阻尼和电磁驱动
【巩固练习】
例1、AC 例2、C 例3、解析:A(瞬间增强的磁场会在周围产生一个顺时针的涡旋电场,负电荷受到逆时针方向的电场力,带动圆盘逆时针转动,而负电荷的这种定向运动则形成了顺时针的环形电流) 例4、AD 例5、BD
●电磁感应中的图像问题
例1、B 例2、B 例3、D 例4、A 例5、A 例6、B
●电磁感应中的力学问题
例1、解析:导体杆在轨道上做匀加速直线运动,用v表示其速度,t表示时间,则有
v = a t ①
杆切磁感线,将产生感应电动势 ②
在杆、轨道和电阻的闭合回路中产生电流 ③
杆受到安培力为 f = Ibl ④
根据牛顿第二定律,有 F-f = ma ⑤
联立以上各式,得 ⑥
由图线上取两点代入⑥式,可解得a = 10m/s, m = 0.1kg
例2、解析:(1)变速运动(或变加速运动、加速度减小的加速运动,加速运动)。
(2)感应电动势 ①
感应电流 ②
安培力 ③
由图线可知金属杆受拉力、安增力和阻力作用,匀速时合力为零。
④
⑤
由图线可以得到直线的斜率k=2,(T) ⑥
(3)由直线的截距可以求得金属杆受到的阻力f,f=2(N) ⑦
若金属杆受到的阻力仅为动摩擦力,由截距可求得动摩擦力
例3、解析:(1)由图象可知,
此时电路中的电流(即通过金属杆的电流)
用右手定则判断出,此时电流的方向由b指向a
(2)金属杆产生的感应电动势
因
(3)金属杆速度为v时,电压表的示数应为
由图象可知,U与t成正比,由于R、r、B及L均与不变量,所以v与t成正比,即金属杆应沿水平方向向右做初速度为零的匀加速直线运动
金属杆运动的加速度
根据牛顿第二定律,在5.0s末时对金属杆有F—BIL=ma,解得F=0.20N
此时F的瞬时功率P=Fv=1.0W
例4、【解析】(1)电流稳定后,导体棒做匀速运动 ①
解得:B= ②
(2)感应电动势 ③
感应电流 ④
由②③④解得
(3)由题意知,导体棒刚进入磁场时的速度最大,设为vm
机械能守恒
感应电动势的最大值
感应电流的最大值
解得:
例5、【解析】(1)ab对框架的压力 ………………………………①
框架受水平面的支持力………………………………②
依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力
…………………………………………………③
ab中的感应电动势E=……………………………………………④
MN中电流 …………………………………………⑤
MN受到的安培力 …………………………………………⑥
框架开始运动时 ……………………………………………⑦
由上述各式代入数据解得v=6m/s ……………………………………⑧
(2) 闭合回路中产生的总热量: ……………………⑨
由能量守恒定律,得:……………………………⑩
代入数据解得x=1.1m …………………………………………………⑾
例6、解:设杆向上运动的速度为v,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少。由法拉第电磁感应定律,回路中的感应电动势的大小
①
回路中的电流 ②
电流沿顺时针方向。两金属杆都要受到安培力作用,作用于杆的安培力为
③
方向向上,作用于杆的安培力 ④
方向向下。当杆作为匀速运动时,根据牛顿第二定律有
⑤
解以上各式,得 ⑥
⑦
作用于两杆的重力的功率的大小 ⑧
电阻上的热功率 ⑨
由⑥、⑦、⑧、⑨式,可得 ⑩
例7、解法一:设杆2的运动速度为v,由于两杆运动时,两杆间和导轨构成的回路中的磁通量发生变化,产生感应电动势 ①
感应电流 ②
杆2作匀速运动,它受到的安培力等于它受到的摩擦力, ③
导体杆2克服摩擦力做功的功率 ④
解得 ⑤
解法二:以F表示拖动杆1的外力,以I表示由杆1、杆2和导轨构成的回路中的电流,达
到稳定时,对杆1有 ①
对杆2有 ②
外力F的功率 ③
以P表示杆2克服摩擦力做功的功率,则有 ④
由以上各式得 ⑤
●电磁感应中的能量问题
例1、
例2、解析:(1)导体棒在cd处速度为:v=at=4 m/s
切割磁感线产生的电动势为:E=BLv=0.8 V
回路感应电流为:I==0.4 A
导体棒在cd处受安培力:F安=BIL=0.08 N
平行导轨向下为正方向:mgsinθ+F-F安=ma
解得:F=-0.12 N
对导体棒施加的作用力大小为0.12 N,方向平行导轨平面向上.
(2)ab到cd的距离:x=at2=2 m
根据功能关系:mgxsinθ+WF-Q=mv2-0
解得:WF=-0.3 J.
答案:(1)0.12 N 方向平行导轨平面向上 (2)-0.3 J
例3、解析:E=BLv ①
ER/(R+r)=0.3 ②
E=0.4V ③
v=E/BL ④
F=BIL+mgμ ⑤
由以上各式可得v=0.4m/s BL=1V s/ m
P=Fv=0.28W
b
d
c
a
o
R
P
Q
M
N
P
Q
∷∷∷∷∷
A
B
a
b
c
d
l
t
2l/v
O
l/v
t
I
O
l/v
2l/v
t
I
2l/v
O
l/v
t
I
2l/v
O
l/v
I
A
B
C
D
O'
L
O
L'
450
l
l
l
v
0
t
I
2
1
3
D.
0
t
I
2
1
3
A.
0
t
I
2
1
3
B.
0
t
I
2
1
3
C.
O
B
t
O
B
t
O
B
t
O
B
t
a
b
c
d
v=0,2杆受到恒定水平
外力作用
光滑平行导轨
规
律
开始两杆做变加速运动,稳定时,两杆以相同的加速度做匀变速运动
杆1做变减速运动,杆2做变加速运动,稳定时,两杆的加速度为0,以相同速度做匀速运动
分
析
m1=m2
r1=r2
l1=l2
m1=m2
r1=r2
l1=l2
示
意
图
v1≠0 v2=0 ,
不受其它水平外力作用。
光滑平行导轨
条件
2
1
v
t
0
0
v
t
2
1
B
2
1
v
B
2
1
F
V
a
M
N
Q
P
R
F
b
甲
2
0
U/V
t/s
1
3
4
5
0.2
0.4
0.6
乙
乙
F
a1
b1
c1
d1
x1
y1
a2
b2
c2
d2
x2
y2
M 2 1 N
P Q
E电
Q
WF –Wf =ΔE
E电
Q
WF =Wf
a
b
c
d
B/T
t/s
O
1
2
3
4
0.1
q
d
r
×
×
×
×
×
×
b
a
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网