本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
第3章 《磁场》同步辅导(二)
知识概要
带电粒子在电场、磁场中的运动可分为下列几种情况
带电粒子在电场、磁场、重力场中的运动,简称带电粒子在复合场中的运动,一般具有较复杂的运动图景。这类问题本质上是一个力学问题,应顺应力学问题的研究思路和运用力学的基本规律。
分析带电粒子在电场、磁场中运动,主要是两条线索:
(1)力和运动的关系。根据带电粒子所受的力,运用牛顿第二定律并结合运动学规律求解。
(2)功能关系。根据场力及其它外力对带电粒子做功引起的能量变化或全过程中的功能关系,从而可确定带电粒子的运动情况,这条线索不但适用于均匀场,也适用于非均匀场。因此要熟悉各种力做功的特点。
处理带电粒子在场中的运动问题应注意是否考虑带电粒子的重力。这要依据具体情况而定,质子、α粒子、离子等微观粒子,一般不考虑重力;液滴、尘埃、小球等宏观带电粒子由题设条件决定,一般把装置在空间的方位介绍的很明确的,都应考虑重力,有时还应根据题目的隐含条件来判断。
处理带电粒子在电场、磁场中的运动,还应画好示意图,在画图的基础上特别注意运用几何知识寻找关系。
点拨解疑
【例题1】如图1所示,图中虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B的匀强磁场,方向垂直纸面向外。O是MN上的一点,从O点可以向磁场区域发射电量为+q、质量为m、速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方向。已知先后射入的两个粒子恰好在磁场中给定的P点相遇,P到O的距离为L,不计重力及粒子间的相互作用。
(1)求所考察的粒子在磁场中的轨道半径;
(2)求这两个粒子从O点射入磁场的时间间隔。
【例题2】 如图所示,长方形abcd 长ad=0.6m,宽ab=0.3m,O、e分别是ad、bc的中点,以ad为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度B=0.25T。一群不计重力、质量m=3×10-7kg、电荷量q=+2×10-3C的带电粒子以速度v=5×102m/s沿垂直ad方向且垂直于磁场射入磁场区域
A.从Od边射入的粒子,出射点全部分布在Oa边
B.从aO边射入的粒子,出射点全部分布在ab边
C.从Od边射入的粒子,出射点分布在Oa边和ab边
D.从aO边射入的粒子,出射点分布在ab边和be边
【例题3】如图所示,在x轴上方存在着垂直于纸面向里、磁感应强度为B的匀强磁场。一个不计重力的带电粒子从坐标原点O处以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x轴正方向成120°角,若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a,则该粒子的比荷和所带电荷的正负是
A.,正电荷 B.,正电荷
C. ,负电荷 D. ,负电荷
【例题4】如图4所示,在直角坐标系的第一、二象限内有垂直于纸面的匀强磁场,第三象限有沿Y轴负方向的匀强电场,第四象限内无电场和磁场。质量为m、带电量为q的粒子从M点以速度v0沿x轴负方向进入电场,不计粒子的重力,粒子经N、P最后又回到M点。设OM=L,ON=2L,则:
关于电场强度E的大小,下列结论正确的是 ( )
A. B.
C. D.
(2)匀强磁场的方向是 。
(3)磁感应强度B的大小是多少?
【例题5】在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B。一质量为m,带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP=d)射入磁场(不计重力影响)。
⑴如果粒子恰好从A点射出磁场,求入射粒子的速度。
⑵如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图)。求入射粒子的速度。
【例题6】 如图5所示,在水平正交的匀强电场和匀强磁场中,半径为R的光滑绝缘竖直圆环上,套有一个带正电的小球,已知小球所受电场力与重力相等,小球在环顶端A点由静止释放,当小球运动的圆弧为周长的几分之几时,所受磁场力最大?
针对训练
1.如图1所示,将截面为正方形的真空腔abcd放置在一匀强磁场中,磁场方向垂直纸面向里.若有一束具有不同速率的电子由小孔a沿ab方向射入磁场,打在腔壁上被吸收,则由小孔c和d射出的电子的速率之比_______;通过磁场的时间之比为 。
2.如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感应强度为B。一带正电的粒子以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ。若粒子射出磁场的位置与O点的距离为L,求该粒子的电量和质量之比
3.电视机显像管简单原理如图所示,初速度不计的电子经加速电场加速后进入有限边界宽度为L的匀强磁场,磁感应强度为B,如要求电子束偏转角为,求加速电场的电势差U。(已知电子电量为e,质量为m)
4.如图4所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)
5.竖直的平行金属平板A、B相距d,板长为L,板间电压为U。垂直纸面向里、磁感应强度为B的匀强磁场只分布在两板之间,如图5所示。质量为m,带电量为+q的油滴从正上方下落并在两板中央进入板内空间。已知刚进入时电场力大小等于磁场力大小,最后油滴从一板下端点离开,求油滴离开场区时速度的大小。
6.如图所示,在半径为r0的圆形区域内有匀强磁场,磁感应强度为B,磁场方向垂直于纸面向外,已知∠MAC=∠NAC=30°,有一束不计重力的质量为m、带电量为q的正电荷以大小不同的速度从A点沿直径AC方向射入磁场,要使该粒子束只能从MCN弧上射出,求粒子束的速度大小的范围
7、如图所示,在坐标系Oxy的第一象限中存在沿y轴正方向的匀强电场,场强大小为E。在其他象限中存在匀强磁场,磁场方向垂直纸面向里。A是y轴上的一点,它到坐标原点O的距离为h;C是x轴上的一点,到O的距离为l。一质量为m、电荷量为q的带负电的粒子以某一初速度沿x轴方向从A点进入电场区域,继而同过C点进入磁场区域,并再次通过A点,此时速度与y轴正方向成锐角。不计重力作用。试求:
(1)粒子经过C点是速度的大小和方向;
(2)磁感应强度的大小B。
参考答案:
【例题1】【点拨解疑】(1)设粒子在磁场中做圆周运动的轨道半径为R,由牛顿第二定律得
,则
(2)如图2所示,以OP为弦可以画两个半径相同的圆,分别表示在P点相遇的两个粒子的轨迹。圆心分别为O1、O2,过O点的直径分别为OO1Q1、OO2Q2,在O点处两个圆的切线分别表示两个粒子的射入方向,用θ表示它们之间的夹角。由几何关系可知,,从O点射入到相遇,粒子1的路程为半个圆周加弧长Q1P=Rθ,粒子2的路程为半个圆周减弧长PQ2=Rθ
粒子1的运动时间为 ,其中T为圆周运动的周期。
粒子2运动的时间为 两粒子射入的时间间隔为 因为 所以 有上述算式可解得
【例题2】D 【例题3】C
【例题4】【点拨解疑】 (1)由带电粒子在电场中做类平抛运动,易知,且则E= 故选C (2)由左手定则,匀强磁场的方向为垂直纸面向里。
(3)根据粒子在电场中运动的情况可知,粒子带负电。粒子在电场中做类平抛运动,设到达N点的速度为v,运动方向与x轴负方向的夹角为θ,如图4所示。
由动能定理得将(1)式中的E代入可得 所以θ=45°粒子在磁场中做匀速圆周运动,经过P点时速度方向也与x轴负方向成45°角。
则OP=OM=L NP=NO+OP=3L
粒子在磁场中的轨道半径为R=Npcos45°= 又解得
【例题5】⑴由于粒子在P点垂直射入磁场,故圆弧轨道的圆心在AP上,AP是直径。
设入射粒子的速度为v1,由洛伦兹力的表达式和牛顿第二定律得: 解得:
⑵设O/是粒子在磁场中圆弧轨道的圆心,连接O/Q,设O/Q=R/。
由几何关系得:
由余弦定理得:解得:
设入射粒子的速度为v,由 解出:
【例题6】 【点拨解疑】 小球下滑的过程中,要使磁场力最大,则需要速度最大。OC为与小球受到的重力、电场力的合力平行的半径。由功能关系寻找速度最大的点,因为洛伦兹力不做功,所以不考虑磁场的作用,从图中A到C,上述合力有切向分力,且与速度同向,因此做正功,小球动能增加;在C点时,该合力为径向,没有切向分力;此后切向分力与线速度反向,动能将减小;故在C点时速度最大,所受磁场力也最大。由受力分析知
mg=qE mg=qEtanα 得α= 45°
由图知θ=α+90°=135°
故小球运动的弧长与周长之比为,
所以运动的弧长为周长的。
针对训练 1.2:1 1:2
2.解:由于洛伦兹力提供向心力,则:,R为圆
轨道的半径, 解得:①
圆轨道的圆心位于OA的中垂线上,,由几何关系可得:
② 联立①、②两式,解得
3.解:电子经加速电场加速后,速度为v,则由动能定理得
电子进入匀强磁场中作匀速圆周运动,轨迹如图,
由几何关系得,电子运动半径
由牛顿第二定律,有
由以上各式解得加速电压
4.解析:如图13所示,带电粒子从S点出发,在两筒之间的电场作用下加速,沿径向穿过狭缝a而进入磁场区,在洛伦兹力作用下做匀速圆周运动。粒子再回到S点的条件是能沿径向穿过狭缝d.只要穿过了d,粒子就会在电场力作用下先减速,再反向加速,经d重新进入磁场区,然后粒子以同样方式经过c、b,再回到S点。设粒子进入磁场区的速度大小为v,根据动能定理,有
设粒子做匀速圆周运动的半径为R,由洛伦兹力公式和牛顿第二定律,有
由前面分析可知,要回到S点,粒子从a到d必经过圆周,所以半径R必定等于筒的外半径r,即R=r。由以上各式解得。
5.洛伦兹力会随速度的改变而改变,对全过程而言,带电体是在变力作用下进行的一个较复杂的运动。对这样的运动,不能通过牛顿定律和运动学公式求解,需另找方法,一般用动能定理或能量守恒定律求解。由动能定理得:
由题设条件,油滴刚进入场区时有:
由此可解得油滴离开场区的速度为:
6.粒子的速度越小,射出时就越靠近A点,速度越大就越靠近N点,设从N点射出的粒子的速度为vm,其在圆形区域内的运动轨迹如图所示,其圆心为Ol,设半径为rm,则
(1) (2)
(3) (4) (5)
粒子的速度大于或等于,粒子束才能从MCN弧上射出,既粒子的速度大小的范围是:
(6)
7(1)以a表示粒子在电场作用下的加速度,有qE=ma
加速度沿y轴负方向。设粒子从A点进入电场时的初速度为v0,由A点运动到C点经历的时间为t,则有
由式得
设粒子从C点进入磁场时的速度为v,v垂直于x轴的分量
由式得
设粒子经过C点时的速度方向与x轴夹角为,则有
由式得
(2)粒子从C点进入磁场后在磁场中做速率为v的圆周运动。若圆周的半径为R,则有
设圆心为P,则PC必与过C点的速度垂直,且有。用表示与y轴的夹角,由几何关系得
由式解得
由式得 。
半径公式: 周期公式:
带电粒子在电场磁场中的运动
带电粒子在电场中的运动
带电粒子在磁场中的运动
带电粒子在复合场中的运动
直线运动:如用电场加速或减速粒子
偏转:类似平抛运动,一般分解成两个分运动求解
圆周运动:以点电荷为圆心运动或受装置约束运动
直线运动(当带电粒子的速度与磁场平行时)
圆周运动(当带电粒子的速度与磁场垂直时)
直线运动:垂直运动方向的力必定平衡
圆周运动:重力与电场力一定平衡,由洛伦兹力提供向心力
一般的曲线运动
4
4
图1
a
b
c
d
S
o
图4
图5
20081126
a
b
c
d
S
o
图13
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
第三章 《磁场》同步辅导(一)
一、基本知识梳理
1.磁场的产生
⑴磁极周围有磁场。
⑵电流周围有磁场(奥斯特实验)。
安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。(但这并不等于说所有磁场都是由运动电荷产生的,因为麦克斯韦发现变化的电场也能产生磁场。)
2.磁场的基本性质
磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。(注意:跟电场的基本性质相比较)
3.磁场力的方向的判定
磁极和电流之间的相互作用力(包括磁极与磁极、电流与电流、磁极与电流),都是运动电荷之间通过磁场发生的相互作用。因此在分析磁极和电流间的各种相互作用力的方向时,不要再沿用初中学过的“同名磁极互相排斥,异名磁极互相吸引”的结论(该结论只有在一个磁体在另一个磁体外部时才正确),而应该用更加普遍适用的:“同向电流互相吸引,反向电流互相排斥”,或用左手定则判定。
4.磁感线
⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N极的指向。磁感线的疏密表示磁场的强弱。
⑵磁感线是封闭曲线(和静电场的电场线不同)。
⑶要熟记常见的几种磁场的磁感线:
⑷安培定则(一)和(二):对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。
5.磁感应强度
(条件是匀强磁场中,或ΔL很小,并且L⊥B )。
磁感应强度是矢量。单位是特斯拉,符号为T,1T=1N/(Am)=1kg/(As2)
6.磁通量
如果在磁感应强度为B的匀强磁场中有一个与磁场方向垂直的平面,其面积为S,则定义B与S的乘积为穿过这个面的磁通量,用Φ表示。Φ是标量,但是有方向(进该面或出该面)。单位为韦伯,符号为Wb。证明:1Wb=1Tm2=1Vs=1kgm2/(As2)。
可以认为穿过某个面的磁感线条数就是磁通量。
在匀强磁场磁感线垂直于平面的情况下,B=Φ/S,所以磁感应强度又叫磁通密度。在匀强磁场中,当B与S的夹角为α时,有Φ=BSsinα。
二、安培力 (磁场对电流的作用力)
1.安培力方向的判定
⑴用左手定则。
⑵用“同性相斥,异性相吸”(只适用于磁铁之间或磁体位于螺线管外部时)。
⑶用“同向电流相吸,反向电流相斥”(反映了磁现象的电本质)。
【例1】磁场对电流的作用力大小为F=BIL(注意:L为有效长度,电流与磁场方向应 ).F的方向可用 定则来判定.
试判断下列通电导线的受力方向.
× × × × . . . .
× × × × . . . .
× × × × . . . .
× × × × . . . .
试分别判断下列导线的电流方向或磁场方向或受力方向.
【例2】如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动?
【例3】 如图在条形磁铁N极附近悬挂一个线圈,当线圈中通有逆时针方向的电流时,线圈将向哪个方向偏转?
2.安培力大小的计算
F=BLIsinα(α为B、L间的夹角)高中只要求会计算α=0(不受安培力)和α=90°两种情况。
二、针对训练:
1.下列说法中正确的是 ( )
A.磁感线可以表示磁场的方向和强弱
B.磁感线从磁体的N极出发,终止于磁体的S极
C.磁铁能产生磁场,电流也能产生磁场
D.放入通电螺线管内的小磁针,根据异名磁极相吸的原则,小磁针的N极一定指向通 电螺线管的S极
2.在地球赤道上空有一小磁针处于水平静止状态,突然发现小磁针N极向东偏转,由此可知( )
A.一定是小磁针正东方向上有一条形磁铁的N极靠近小磁针
B.一定是小磁针正东方向上有一条形磁铁的S极靠近小磁针
C.可能是小磁针正上方有电子流自南向北水平通过
D.可能是小磁针正上方有电子流自北向南水平通过
3.两根长直通电导线互相平行,电流方向相同.它们的截面处于一个等边三角形ABC的A和B处.如图所示,两通电导线在C处的磁场的磁感应强度的值都是B,则C处磁场的总磁感应强度是( )
A.2B B.B
C.0 D.B
4.根据安培假说的思想,认为磁场是由于电荷运动产生的,这种思想对于地磁场也适用,而目前在地球上并没有发现相对于地球定向移动的电荷,那么由此判断,地球应该 ( )
A.带负电 B.带正电 C.不带电 D.无法确定
5.关于垂直于磁场方向的通电直导线所受磁场作用力的方向,正确的说法是
A.跟电流方向垂直,跟磁场方向平行
B.跟磁场方向垂直,跟电流方向平行
C.既跟磁场方向垂直,又跟电流方向垂直
D.既不跟磁场方向垂直,又不跟电流方向垂直
6.如图所示,直导线处于足够大的匀强磁场中,与磁感线成θ=30°角,导线中通过的电流为I,为了增大导线所受的磁场力,可采取下列四种办法,其中不正确的是( )
A.增大电流I
B.增加直导线的长度
C.使导线在纸面内顺时针转30°
D.使导线在纸面内逆时针转60°
7.如图所示,一金属直杆MN两端接有导线,悬挂于线圈上方,MN与线圈轴线均处于竖直平面内,为使M N垂直纸面向外运动,可以( )
A.将a、c端接在电源正极,b、d端接在电源负极
B.将b、d端接在电源正极,a、c端接在电源负极
C.将a、d端接在电源正极,b、c端接在电源负极
D.将a、c端接在交流电源的一端,b、d接在交流电源的另一端
8.如图所示,弹簧秤下挂一条形磁铁,其中条形磁铁N极的一部分位于未通电的螺线管内,下列说法正确的是 ( )
①若将a接电源正极,b接负极,弹簧秤示数减小
②若将a接电源正极,b接负极,弹簧秤示数增大
③若将b接电源正极,a接负极,弹簧秤示数增大
④若将b接电源正极,a接负极,弹簧秤示数减小
A.①② B.①③ C.②③ D.②④
9.如图所示,a、b、c三个圆环,水平套在条形磁铁外面,其中a、b两环大小相同,c环最大,a环位于N极处,b、c两环位于条形磁铁中部,则穿过三个环的磁通量的大小是[ ]
(A)c环最大,a、b环相同;
(B)三个环相同;
(C)b环比c环大;
(D)a环比b环大。
10.如图所示,两条绝缘导线十分接近地垂直交叉放置,流过每条导线的电流I大小相等,方向如图,则磁感应强度为穿进纸面最大的区域是[ ]
(A)I (B)II (C)III (D)IV
11.互相绝缘地直导线和环形导线,分别通以如图所示的电流I1和I2,若直导线固定不动,且沿环形导线的直径放置,则环形导线将[ ]
(A)向左移动 (B)向右移动
(C)向上移动 (D)向下移动
12.长为L,重为G的均匀金属棒一端用细线悬挂,一端搁在桌面上与桌面夹角为α,现垂直细线和棒所在平面加一个磁感应强度为B的匀强磁场,当棒通入如图所示方向的电流时,细线中正好无拉力.则电流的大小为______ A.
13.如图所示,在两根劲度系数都为k的相同的轻质弹簧下悬挂有一根导体棒ab,导体棒置于水平方向的匀强磁场中,且与磁场垂直.磁场方向垂直纸面向里,当导体棒中通以自左向右的恒定电流时,两弹簧各伸长了Δl1;若只将电流反向而保持其他条件不变,则两弹簧各伸长了Δl2,求:(1)导体棒通电后受到的磁场力的大小 (2)若导体棒中无电流,则每根弹簧的伸长量为多少
1.AC2.C 3.D 4.A 5.C 6.C 7.ABD 8.B 9C 10D 11D 12、Gcosα/BL
13.(1)k(Δl2-Δl1) (2) (Δl1+Δl2)
地球磁场 通电直导线周围磁场 通电环行导线周围磁场
×
B
I
B
B
F
×
B
×
F
S
N
I
S N
第10题
III
II
I
I
IV
第9题
第11题
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网