24.4 弧长和扇形面积课时作业(1)
姓名:__________班级:__________考号:__________
、选择题
1.如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为( )
A. B. C.2π D.
2.如图,一段公路的转弯处是一段圆弧(),则的展直长度为( )
A.3π B.6π C.9π D.12π
3.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为( )
A.π B.π C.π D.π
4.如图,△ABC内接于⊙O,∠A=60°,BC=6,则的长为( )
A.2π B.4π C.8π D.12π
5.一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是( )
A.300° B.150° C.120° D.75°
6.如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为( )
A.2π B. C. D.
7.如图,正方形ABCD内接于⊙O,AB=2,则的长是( )
A.π B.π C.2π D.π
8.如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为( )
A. B.2 C.π D.π
、填空题
9.一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为 cm.
10.一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为 cm.
11.如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是___________ .
12.如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是 .
13.如图,△ABC的外接圆O的半径为3,∠C=55°,则劣弧的长是 .(结果保留π)
14.如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为 .
15.如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,∠AOB=120°,从A到B只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少走了 步(假设1步为0.5米,结果保留整数).(参考数据:≈1.732,π取3.142)
、解答题
16.如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.
(1)CD与⊙O有怎样的位置关系?请说明理由;
(2)若∠CDB=60°,AB=6,求的长.
17.如图,AB是⊙O的直径,直线CD与⊙O相切于点C,且与AB的延长线交于点E.点C是弧BF的中点.
(1)求证:AD⊥CD;
(2)若∠CAD=30°.⊙O的半径为3,一只蚂蚁从点B出发,沿着BE--EC--弧CB爬回至点B,求蚂蚁爬过的路程(π≈3.14,≈1.73,结果保留一位小数.)
18.如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).
19.如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=
(1)求证:OA=OB;
(2)已知AB=4,OA=4,求阴影部分的面积.
20.如图,以AB为直径的⊙O经过AC的中点D,DE⊥BC于点E.
(1)求证:DE是⊙O的切线;
(2)当DE=1,∠C=30°时,求图中阴影部分的面积.
21.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点)
(1)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到△A1B1C1,请画出△A1B1C1;
(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;
(3)求线段B1C1变换到B1C2的过程中扫过区域的面积.
答案解析
、选择题
1.【考点】圆周角定理;弧长的计算
【分析】先计算圆心角为120°,根据弧长公式=,可得结果.
解:连接OD,
∵∠ABD=30°,
∴∠AOD=2∠ABD=60°,
∴∠BOD=120°,
∴的长==,
故选:D.
【点评】本题考查了弧长的计算和圆周角定理,熟练掌握弧长公式是关键,属于基础题.
2.【考点】弧长的计算
【分析】直接利用弧长公式计算得出答案.
解:的展直长度为:=6π(m).
故选:B.
【点评】此题主要考查了弧长计算,正确掌握弧长公式是解题关键.
3.【考点】含30度角的直角三角形;弧长的计算
【分析】先根据ACB=90°,AB=4,∠A=30°,得圆心角和半径的长,再根据弧长公式可得到弧CD的长.
解:∵∠ACB=90°,AB=4,∠A=30°,
∴∠B=60°,BC=2
∴的长为=,
故选:C.
【点评】本题主要考查了弧长公式的运用和直角三角形30度角的性质,解题时注意弧长公式为:l=(弧长为l,圆心角度数为n,圆的半径为R).
4.【考点】三角形的外接圆与外心;弧长的计算.
【分析】连接CO,并延长,与圆交于点D,连接BD,利用同弧所对的圆周角相等求出∠D的度数,在直角三角形BCD中,利用勾股定理求出CD的长,即为圆的直径,进而求出∠BOC的度数,利用弧长公式计算即可得到结果.
解:连接CO,并延长,与圆交于点D,连接BD,
∵CD为圆O的直径,
∴∠DBC=90°,
∵∠A与∠D都对,
∴∠D=∠A=60°,
在Rt△DCB中,∠BCD=30°,
∴BD=CD,
设BD=x,则有CD=2x,
根据勾股定理得:x2+(6)2=(2x)2,
解得:x=6,
∴OB=OD=OC=6,且∠BOC=120°,
则的长为=4π,
故选B
5.【考点】扇形面积的计算;弧长的计算.
【分析】利用扇形面积公式1求出R的值,再利用扇形面积公式2计算即可得到圆心角度数.
解:∵一个扇形的弧长是10πcm,面积是60πcm2,
∴S=Rl,即60π=×R×10π,
解得:R=12,
∴S=60π=,
解得:n=150°,
故选B
6.【考点】弧长的计算;圆周角定理.
【分析】先连接CO,依据∠BAC=50°,AO=CO=3,即可得到∠AOC=80°,进而得出劣弧AC的长为=.
解:如图,连接CO,
∵∠BAC=50°,AO=CO=3,
∴∠ACO=50°,
∴∠AOC=80°,
∴劣弧AC的长为=,
故选:D.
【点评】本题考查了圆周角定理,弧长的计算,熟记弧长的公式是解题的关键.
7.【考点】弧长公式,正方形的性质,弦、弧、圆心角、弦心距的关系
【分析】连接OA.OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.
解:连接OA.OB,
∵正方形ABCD内接于⊙O,
∴AB=BC=DC=AD,
∴===,
∴∠AOB=×360°=90°,
在Rt△AOB中,由勾股定理得:2AO2=(2)2,
解得:AO=2,
∴的长为=π,
故选:A.
【点评】本题考查了弧长公式和正方形的性质,能求出∠AOB的度数和OA的长是解此题的关键.
8.【考点】轨迹;菱形的性质.
【分析】如图,连接AC、BD交于点G,连接OG.首先说明点E从点A运动到点B时,点F的运动路径长为,求出圆心角,半径即可解决问题.
解:如图,连接AC、BD交于点G,连接OG.
∵BF⊥CE,
∴∠BFC=90°,
∴点F的运动轨迹在以边长为直径的⊙O上,
当点E从点A运动到点B时,点F的运动路径长为,
∵四边形ABCD是菱形,
∴AB=BC=CD=AD=4,
∵∠ABC=60°,
∴∠BCG=60°,
∴∠BOG=120°,
∴的长==π,
故选D.
、填空题
9.【考点】弧长的计算
【分析】根据弧长公式L=求解即可.
解:∵L=,
∴R==9.
故答案为:9.
【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L=.
10.【考点】弧长的计算
【分析】根据弧长公式可得结论.
解:根据题意,扇形的弧长为=2π,
故答案为:2π
【点评】本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.
11..【考点】弧长公式,勾股定理
【分析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求 出 OA,最后用勾股定理即可得出结论.
解:设圆锥底面圆的半径为 r,
∵AC=6,∠ACB=120°,
∴=2πr,
∴r=2,即:OA=2,
在 Rt△AOC 中,OA=2,AC=6,根据勾股定理得,OC==4,
故答案为:4.
【点评】此题主要考查了扇形的弧长公式,勾股定理,求出 OA 是解本题的关键.
12.【考点】三角形的外接圆与外心,圆周角定理,弧长的计算
【分析】连接OB、OC,利用弧长公式转化为方程求解即可;
解:连接OB、OC.
∵∠BOC=2∠BAC=120°,的长是,
∴=,
∴r=2,
故答案为2.
【点评】本题考查三角形的外接圆与外心,圆周角定理,弧长的计算等知识,解题的关键是熟练掌握弧长公式,属于中考常考题型.
13.【考点】三角形的外接圆与外心;弧长的计算
【分析】根据同弧所对的圆心角是圆周角的2倍,可求∠AOB=110°,根据弧长公式可求劣弧的长.
解:∵∠AOB=2∠C且∠C=55°
∴∠AOB=110°
根据弧长公式的长==
故答案为
【点评】本题考查了三角形的外接圆与外心,同弧所对的圆心角是圆周角的2倍,弧长公式,关键是熟练运用弧长公式解决问题.
14.【考点】弧长的计算;坐标与图形变化﹣旋转
【分析】由点A(1,1),可得OA==,点A在第一象限的角平分线上,那么∠AOB=45°,再根据弧长公式计算即可.
解:∵点A(1,1),
∴OA==,点A在第一象限的角平分线上,
∵以点O为旋转中心,将点A逆时针旋转到点B的位置,
∴∠AOB=45°,
∴的长为=.
故答案为.
【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),也考查了坐标与图形变化﹣旋转,求出OA=以及∠AOB=45°是解题的关键.
15.【考点】勾股定理的应用;垂径定理的应用,弧长公式
【分析】作OC⊥AB于C,如图,根据垂径定理得到AC=BC,再利用等腰三角形的性质和三角形内角和计算出∠A=30°,则OC=10,AC=10,所以AB≈69(步),然后利用弧长公式计算出的长,最后求它们的差即可.
解:作OC⊥AB于C,如图,
则AC=BC,
∵OA=OB,
∴∠A=∠B=(180°﹣∠AOB)=(180°﹣120°)=30°,
在Rt△AOC中,OC=OA=10,AC=OC=10,
∴AB=2AC=20≈69(步);
而的长=≈84(步),
的长与AB的长多15步.
所以这些市民其实仅仅少走了 15步.
故答案为15.
【点评】本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.
、解答题
16.【考点】圆周角定理;直线与圆的位置关系;弧长的计算
【分析】(1)连接OD,只需证明∠ODC=90°即可;
(2)由(1)中的结论可得∠ODB=30°,可求得弧AD的圆心角度数,再利用弧长公式求得结果即可.
解:(1)相切.理由如下:
连接OD,
∵BD是∠ABC的平分线,
∴∠CBD=∠ABD,
又∵OD=OB,
∴∠ODB=∠ABD,
∴∠ODB=∠CBD,
∴OD∥CB,
∴∠ODC=∠C=90°,
∴CD与⊙O相切;
(2)若∠CDB=60°,可得∠ODB=30°,
∴∠AOD=60°,
又∵AB=6,
∴AO=3,
∴==π.
【点评】此题主要考查圆的切线的判定、等腰三角形的性质及圆周角定理的运用.一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.
17.【考点】切线的性质,弧长的计算
【分析】(1)连接OC,根据切线的性质得到OC⊥CD,证明OC∥AD,根据平行线的性质证明;
(2)根据圆周角定理得到∠COE=60°,根据勾股定理、弧长公式计算即可.
解:(1)连接OC.
∵直线CD与⊙O相切,
∴OC⊥CD.
∵点C是的中点,
∴∠DAC=∠EAC.
∵OA=OC,∴∠OCA=∠EAC,
∴∠DAC=∠OCA,
∴OC∥AD,
∴AD⊥CD;
(2)∵∠CAD=30°,
∴∠CAE=∠CAD=30°,由圆周角定理得:∠COE=60°,
∴OE=2OC=6,EC=OC=3==π,
∴蚂蚁爬过的路程=3+3+π≈11.3.
【点睛】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长公式是解题的关键.
18.【考点】切线的性质;弧长的计算.
【分析】(1)连接OD,由切线的性质即可得出∠ODF=90°,再由BD=CD,OA=OB可得出OD是△ABC的中位线,根据三角形中位线的性质即可得出,根据平行线的性质即可得出∠CFD=∠ODF=90°,从而证出DF⊥AC;
(2)由∠CDF=30°以及∠ODF=90°即可算出∠ODB=60°,再结合OB=OD可得出△OBD是等边三角形,根据弧长公式即可得出结论.
(1)证明:连接OD,如图所示.
∵DF是⊙O的切线,D为切点,
∴OD⊥DF,
∴∠ODF=90°.
∵BD=CD,OA=OB,
∴OD是△ABC的中位线,
∴OD∥AC,
∴∠CFD=∠ODF=90°,
∴DF⊥AC.
(2)解:∵∠CDF=30°,
由(1)得∠ODF=90°,
∴∠ODB=180°﹣∠CDF﹣∠ODF=60°.
∵OB=OD,
∴△OBD是等边三角形,
∴∠BOD=60°,
∴的长===π.
【点评】本题考查了切线的性质、弧长公式、平行线的性质、三角形中位线定理以及等边三角形的判断,解题的关键是:(1)求出∠CFD=∠ODF=90°;(2)找出△OBD是等边三角形.本题属于中档题,难度不大,解决该题型题目时,通过角的计算找出90°的角是关键.
19.【考点】切线的性质;扇形面积的计算.
【分析】(1)连接OC,由切线的性质可知∠ACO=90°,由于=,所以∠AOC=∠BOC,从而可证明∠A=∠B,从而可知OA=OB;
(2)由(1)可知:△AOB是等腰三角形,所以AC=2,从可求出扇形OCE的面积以及△OCB的面积
解:(1)连接OC,
∵AB与⊙O相切于点C
∴∠ACO=90°,
由于=,
∴∠AOC=∠BOC,
∴∠A=∠B
∴OA=OB,
(2)由(1)可知:△OAB是等腰三角形,
∴BC=AB=2,
∴sin∠COB==,
∴∠COB=60°,
∴∠B=30°,
∴OC=OB=2,
∴扇形OCE的面积为:=,
△OCB的面积为:×2×2=2
∴S阴影=2﹣π
20.【考点】切线的判定;扇形面积的计算.
【分析】(1)连接OD,利用平行线的判定定理可以得到∠ODE=∠DEC=90°,从而判断DE是圆的切线;
(2)由∠C=30°,DE=1,∠DEC=90°,求得DC=2,由于OD∥BC,于是得到∠ODA=30°,根据等腰三角形的性质得到∠AOD=120°,于是得到OA=,阴影部分面积即可求得.
解:(1)连接OD,
∵AB是⊙O的直径,D是AC的中点,
∴OD是△ABC的中位线,
∴OD∥BC,
∵DE⊥BC,
∴OD⊥DE,
∵点D在圆上,
∴DE为⊙O的切线;
(2)∵∠C=30°,DE=1,∠DEC=90°,
∴DC=2,
∵OD∥BC,
∴∠ODA=30°,
∵OD=OA,
∴∠OAD=∠ODA=30°,
∴∠AOD=120°,
∴OA=,
∴阴影部分面积S=﹣×2×=﹣.
【点评】本题目考查了切线的判定,等腰三角形的判定及性质、圆周角定理及切线的性质,涉及的知识点比较多且碎,解题时候应该注意.
21.【考点】作图﹣旋转变换;扇形面积的计算;作图﹣平移变换.
【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用旋转的性质进而得出对应点位置,进而得出答案;
(3)首先得出圆心角以及半径,再利用扇形面积公式直接计算得出答案.
解:(1)如图所示:△A1B1C1,即为所求;
(2)如图所示:△A2B1C2,即为所求;
(3)线段B1C1变换到B1C2的过程中扫过区域的面积为:=π.