小升初数学全面复习专题汇编学案 专题二:图形与几何(上)(解析版+原卷版)

文档属性

名称 小升初数学全面复习专题汇编学案 专题二:图形与几何(上)(解析版+原卷版)
格式 rar
文件大小 3.0MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2018-10-24 09:30:12

文档简介

小升初数学全面复习专题汇编学案专题二:图形与几何(上)(原卷版)
第一部分:图形的认识
考点一:等腰三角形与等边三角形
(1)等腰三角形:
在同一三角形中,有两条边相等,且两底角相等的三角形。
(2)等边三角形:
在同一三角形中,三条边都相等的三角形,且每个角都是60°。
(3)关系:
等边三角是特殊的等腰三角形。

例题探究:
1.等边三角形也是( )。
A.钝角三角形
B.直角三角形
C.锐角三角形

2. 已知一个等腰三角形的顶角是80°,那么它的底角是( )。
A.50°
B.100°
C.80°

考点二:正方体的特征
用六个完全相同的正方形围成的立体图形。也叫立方体。
例题探究:
1.王师傅要用铁丝做一个棱长是4分米的正方体,要准备( )米。
A.48 B.16 C.1.6 D.4.8

2.至少( )个完全一样的小正方体可以拼成一个稍大的正方体。
A.8 B.9 C.4
考点三:正方形的特征及性质
例题探究:四个角都是直角的四边形一定是正方形。( )

考点四:长方形的特征及性质
1.长方形:是一种平面图形,长方形的四个角都是直角,同时长方形的对角线相等。
2.长方形的性质:
①长方形的四个角都是直角;
②长方形的对边平行且相等;
③长方形的对角线相等;
④长方形是轴对称图形,至少有2条对称轴;
⑤长方形是特殊的平行四边形,具有平行四边形的所有性质。
3.长方形的判断:
①有一个角是直角的平行四边形是长方形;
②有三个角是直角的四边形是长方形;
③对角线相等的平行四边形是长方形。
例题探究:两组对边分别平行,并且有四个直角的四边形一定是( )。
A.平行四边形 B.长方形 C.正方形

考点五:长方体的特征
例题探究:一个长方体的长是6厘米,宽是7厘米,高是8厘米。它所有棱长的和是多少?

考点六:扇形的认识
1.弧:圆上任意两点间的部分叫做弧。
2.圆心角:顶点在圆心的角叫做圆心角。
3.扇形:一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
3.在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关系。
以半圆为弧的扇形的圆心角是180°。

例题探究:
1.扇形越大,圆心角就越大。( )

2. 下面图形中的角是圆心角的是( )。

考点七:平面图形的分类及识别
1.线段 射线 直线
2.角及角的分类
2条边,1个顶点
如图的角可记作∠AOB或∠BOA或∠1
3.三角形及分类
3条线段首尾相接围成的图形,叫作三角形。3个顶点、3条边、3个角
4.四边形
5。四边形的分类
6。圆 扇形
在同一圆中,所有半径r相等,直径d相等,且d=2r。
r——半径 n°——圆心角度数
例题探究:
1.下面三个图形中,( )不是四边形。
2. 下面说法中,正确的是( )。
考点八:四边形的特点、分类及识别
1.四边形的概念:由不在同一直线上四条线段依次首尾相接围成的封闭的平面图形。
2.四边形的特点:有四条边,四个角,且内角和是360°。
3.四边形的分类:
例题探究:把符合要求的图形序号填在横线里。
A.正方形
B.长方形
C.平行四边形
D.梯形
①.两组对边分别平行,且有4个直角。 ( )
②.只有一组对边平行。 ( )
③.两组对边平行,没有直角。 ( )

考点九:立体图形的分类及识别
例题探究:下面立体图形中,截面形状不可能是长方形的是( )。

考点十:圆柱的特征
1.圆柱:一个矩形,以它的一条边为轴旋转一周所生成的几何体叫做圆柱。
2.圆柱的特征:
(1)圆柱是由3个面围成的。
(2)圆柱的上、下两个面叫做底面。
(3)圆柱周围的面(上、下底面除外)叫做侧面。
(4)两个底面之间的距离叫做高。
例题探究:
1. 下面图形中是圆柱的是( )。

2. 下面图形以直线为轴旋转会形成圆柱的是( )。

考点十一:圆柱的展开图
圆柱的展开图:
圆柱的侧面沿高剪开的展开图是一个长方形(或正方形),这个长方形(正方形)的长等于圆柱底面的周长,宽等于圆柱的高。
例题探究:
1. 将圆柱体的侧面展开,得不到( )。
A.长方形 B.正方
C.平行四边形 D.梯形

2. 一个圆柱侧面展开是一个正方形,它的高是半径的( )倍。
A.2 B.2π C.6.28

小升初数学全面复习专题汇编学案 专题二:图形与几何(上)(解析版)
第一部分:图形的认识
考点一:等腰三角形与等边三角形
(1)等腰三角形:
在同一三角形中,有两条边相等,且两底角相等的三角形。
(2)等边三角形:
在同一三角形中,三条边都相等的三角形,且每个角都是60°。
(3)关系:
等边三角是特殊的等腰三角形。

例题探究:
1.等边三角形也是( C )。
A.钝角三角形
B.直角三角形
C.锐角三角形
解析:
等边三角形也叫正三角形,是指三条边、三个角都是相等的三角形。每个角都是:180°÷3=60°,所以等边三角形一定是锐角三角形。

2. 已知一个等腰三角形的顶角是80°,那么它的底角是( A )。
A.50°
B.100°
C.80°
解析:
等腰三角形,两条腰相等,两底角相等,内角和是180°
(180°-80°)÷2=50° 所以,它的两底角是50°。
考点二:正方体的特征
用六个完全相同的正方形围成的立体图形。也叫立方体。
例题探究:
1.王师傅要用铁丝做一个棱长是4分米的正方体,要准备( D )米。
A.48 B.16 C.1.6 D.4.8
解析:
要准备的铁丝长度,其实就是正方体的棱长和。一个正方体有12条棱长,且每条棱长都相等,所以,棱长和=棱长×12。
解:
4×12=48(分米)
48分米=4.8米
答:要准备4.8米的铁丝。
2.至少( A )个完全一样的小正方体可以拼成一个稍大的正方体。
A.8 B.9 C.4
解析:
假设小正方体的棱长是1厘米,体积是1立方厘米,拼成的正方体棱长至少是2厘米,体积为8立方厘米,进一步求出个数。
解: 1×1×1=1(立方厘米)
2×2×2=8(立方厘米)
8÷1=8(个)
答:至少需要8个完全一样的小正方体。
考点三:正方形的特征及性质
例题探究:四个角都是直角的四边形一定是正方形。( 错 )
解析:四条边相等,四个角都是直角的四边形是正方形,题干的说法不全,四个角都是直角的四边形还可能是长方形。
考点四:长方形的特征及性质
1.长方形:是一种平面图形,长方形的四个角都是直角,同时长方形的对角线相等。
2.长方形的性质:
①长方形的四个角都是直角;
②长方形的对边平行且相等;
③长方形的对角线相等;
④长方形是轴对称图形,至少有2条对称轴;
⑤长方形是特殊的平行四边形,具有平行四边形的所有性质。
3.长方形的判断:
①有一个角是直角的平行四边形是长方形;
②有三个角是直角的四边形是长方形;
③对角线相等的平行四边形是长方形。
例题探究:两组对边分别平行,并且有四个直角的四边形一定是( B )。
A.平行四边形 B.长方形 C.正方形
解析:
根据长方形的性质可得:
两组对边相等,四个角都是直角的四边形可能是长方形,也可能是正方形,又因为正方形是特殊的长方形,所以一定是长方形。
考点五:长方体的特征
例题探究:一个长方体的长是6厘米,宽是7厘米,高是8厘米。它所有棱长的和是多少?
解:长方体棱长总和=(长+宽+高)×4
(6+7+8)×4=84(厘米)
答:它所有棱长的和是84厘米。
考点六:扇形的认识
1.弧:圆上任意两点间的部分叫做弧。
2.圆心角:顶点在圆心的角叫做圆心角。
3.扇形:一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
3.在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关系。
以半圆为弧的扇形的圆心角是180°。

例题探究:
1.扇形越大,圆心角就越大。(× )
解析:
考查扇形的大小与圆心角的关系。题中说法是错误的,只有在同一个圆中,扇形越大,这个扇形所对的圆心角才越大。
2. 下面图形中的角是圆心角的是( A )。
解析: 考查圆心角的认识。 顶点在圆心的角叫做圆心角。
考点七:平面图形的分类及识别
1.线段 射线 直线
2.角及角的分类
2条边,1个顶点
如图的角可记作∠AOB或∠BOA或∠1
3.三角形及分类
3条线段首尾相接围成的图形,叫作三角形。3个顶点、3条边、3个角
4.四边形
5。四边形的分类
6。圆 扇形
在同一圆中,所有半径r相等,直径d相等,且d=2r。
r——半径 n°——圆心角度数
例题探究:
1.下面三个图形中,( B )不是四边形。
2. 下面说法中,正确的是( C )。
考点八:四边形的特点、分类及识别
1.四边形的概念:由不在同一直线上四条线段依次首尾相接围成的封闭的平面图形。
2.四边形的特点:有四条边,四个角,且内角和是360°。
3.四边形的分类:
例题探究:把符合要求的图形序号填在横线里。
A.正方形
B.长方形
C.平行四边形
D.梯形
①.两组对边分别平行,且有4个直角。 ( A、B )
②.只有一组对边平行。 ( D )
③.两组对边平行,没有直角。 ( C )
解析:
长方形特征:两组对边分别平行且相等,四个角都是直角;
正方形特征:两组对边分别平行,四条边都相等,四个角都是直角;
平行四边形特征:两组对边分别且相等;
梯形特征:有且只有一组对边平行。
考点九:立体图形的分类及识别
例题探究:下面立体图形中,截面形状不可能是长方形的是( C )。
解析:长方体、正方体、圆柱的截面都可能出现长方形,只有圆柱的截面只与圆、三角形有关;
故选C。
考点十:圆柱的特征
1.圆柱:一个矩形,以它的一条边为轴旋转一周所生成的几何体叫做圆柱。
2.圆柱的特征:
(1)圆柱是由3个面围成的。
(2)圆柱的上、下两个面叫做底面。
(3)圆柱周围的面(上、下底面除外)叫做侧面。
(4)两个底面之间的距离叫做高。
例题探究:
1. 下面图形中是圆柱的是( D )。
解析:
考查圆柱的认识。根据圆柱的特征可知:选项D是圆柱;故选D。
2. 下面图形以直线为轴旋转会形成圆柱的是( A )。
解析:
考查圆柱的认识。根据圆柱的定义可知:一个矩形,以它的一条边为轴旋转一周所生成的几何体叫做圆柱;故选A。
考点十一:圆柱的展开图
圆柱的展开图:
圆柱的侧面沿高剪开的展开图是一个长方形(或正方形),这个长方形(正方形)的长等于圆柱底面的周长,宽等于圆柱的高。
例题探究:
1. 将圆柱体的侧面展开,得不到( D )。
A.长方形 B.正方
C.平行四边形 D.梯形
解析:
围成圆柱的侧面是一个圆筒,沿着高剪开,会得到长方形或正方形,沿斜直线剪开会得到平行四边形。但是无论怎么直线剪开,都不会得到梯形。 故选D。
2. 一个圆柱侧面展开是一个正方形,它的高是半径的( B )倍。
A.2 B.2π C.6.28
解析:
因为正方形的边长=圆的周长,所以高为:2πr;
则高是半径的:2πr÷r=2π
答:它的高是半径的2π倍。故选B。

同课章节目录