《第14章勾股定理》 测试
一、选择题(32分)
已知△ABC的三边长为a,b,c,且满足(a-2)2+|b-2|+|c-2|=0,则此三角形一定是( )
A. 等腰三角形 B. 直角三角形
C. 等腰直角三角形 D. 一般三角形
如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为( )
A. 10?m B. 15?m C. 18?m D. 20?m
如图,为修铁路需凿隧道AC,测得∠A+∠B=90°,AB=130m,BC=120m,若每天凿隧道5m,则把隧道凿通需要( )
A. 10天 B. 9天 C. 8天 D. 11天
一直角三角形的两边长分别为3和4.则第三边的长为( )
A. 5 B. C. D. 5或
如图①,分别以Rt△ABC三边为直径向形外作三个半圆,其面积分别为S1,S2,S3;图②,分别以Rt△ABC三边为边向形外作三个正方形,其面积分别为S1,S2,S3;图③,分别以Rt△ABC三边为边向形外作三个等边三角形,其面积分别为S1,S2,S3.其中满足S1=S2+S3的有( )
A. B. C. D.
如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条直水管,则水管的长为( )
A. 45m
B. 40m
C. 50m
D. 56m
下列几组数:①7,24,25;②8,15,17;③9,40,41;④n2-1,2n,n2+1(n是大于1的正整数).其中是勾股数的有( )
A. 1组 B. 2组 C. 3组 D. 4组
如图是一块长,宽,高分别是6cm,4cm和3cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是
A. B. C. D. ?cm
二、填空题(本大题共5小题,共20分)
以下列各组数为三角形的边长:①62,82,102;②,,;③1,,;④8,15,17;⑤300,400,500.其中能构成直角三角形的有______ .(填序号)
在△ABC中,a2+b2=25,ab=12,且c=5,则最大边上的高是______ .
如图,已知Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,现将△ABC进行折叠,使顶点A、B重合,则折痕DE= ______ cm.
在Rt△ABC中,∠C=90°,BC=6cm,CA=8cm,动点P从C出发,以每秒2cm的速度沿CA、AB运动到点B,则从c出发______ 秒时,可使S△BCP=S△ABC.
观察下列各式:32+42=52;82+62=102;152+82=172;242+102=262;…;你有没有发现其中的规律?请用你发现的规律写出接下来的式子:______ .
三、解答题(共48分)
如图,在一个高BC为6米,长AC为10米,宽为2.5米的楼梯表面铺设地毯,若每平方米地毯50元,请你帮助算出铺设地毯至少需要花费多少钱?
如图,在Rt△ABC中,AB=BC,D为AC边的中点,过点D作DE⊥DF,交AB于点E,交BC于点F.
(1)试判断线段DE与DF是否相等?并说明理由;
(2)若AE=4,FC=3,求线段EF的长.
如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?
如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D,E,F为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.
(1)线段BH与AC相等吗?若相等给予证明,若不相等请说明理由;
(2)求证:BG2-GE2=EA2.
答案
1.A
2.C
3.A
4.D
5D
6.B
7.D
8.C
9.③④⑤
10. 2.4
11.1.875
12. 2或6.5
13.352+122=372
14.解:由勾股定理得:AB==8(米),
∴AB+BC=14(米),
∴14×2.5×50=1750(元).
?答:铺设地毯至少需要花费1750元.
15.解:(1)DE=DF,理由如下:
如图,连接BD.
∵等腰直角三角形ABC中,D为AC边上中点,
∴BD⊥AC,BD=CD=AD,∠ABD=45°,
∴∠C=45°,
∴∠ABD=∠C.
∵DE丄DF,
∴∠FDC+∠BDF=∠EDB+∠BDF,
∴∠FDC=∠EDB.
在△EDB与△FDC中,
∵,
∴△EDB≌△FDC(ASA),
∴DE=DF;
(2)∵△EDB≌△FDC,
∴BE=FC=3,
∴AB=AE+BE=4+3=7,则BC=AB=7,
∴BF=BC-CF=7-3=4.
在Rt△EBF中,∵∠EBF=90°,
∴EF2=BE2+BF2=32+42,
∴EF=5.
故线段EF的长为5.
16.解:∵使得C,D两村到E站的距离相等.
∴DE=CE,
∵DA⊥AB于A,CB⊥AB于B,
∴∠A=∠B=90°,
∴AE2+AD2=DE2,BE2+BC2=EC2,
∴AE2+AD2=BE2+BC2,
设AE=x,则BE=AB-AE=(25-x),
∵DA=15km,CB=10km,
∴x2+152=(25-x)2+102,
解得:x=10,
∴AE=10km,
∴收购站E应建在离A点10km处.
17.(1)BH=AC,理由如下:
∵CD⊥AB,BE⊥AC,
∴∠BDH=∠BEC=∠CDA=90°,
∵∠ABC=45°,
∴∠BCD=180°-90°-45°=45°=∠ABC
∴DB=DC,
∵∠BDH=∠BEC=∠CDA=90°,
∴∠A+∠ACD=90°,∠A+∠HBD=90°,
∴∠HBD=∠ACD,
∵在△DBH和△DCA中
,
∴△DBH≌△DCA(ASA),
∴BH=AC.
(2)连接CG,
由(1)知,DB=CD,
∵F为BC的中点,
∴DF垂直平分BC,
∴BG=CG,
∵∠ABE=∠CBE,BE⊥AC,
∴EC=EA,
在Rt△CGE中,由勾股定理得:CG2-GE2=CE2,
∵CE=AE,BG=CG,
∴BG2-GE2=EA2.