13.4 课题学习 最短路径问题课时作业
姓名:__________班级:__________考号:__________
一、选择题
如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是( )
A.BC B.CE C.AD D.AC
如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是( )
A. 30° B. 15° C. 20° D. 35°
如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一个点M、N,使△AMN周长最小时,∠AMN+∠ANM的度数为( )
A. 130° B. 120° C. 110° D. 100°
如图,在△ABC中AB=AC, BC=4,面积是20, AC的垂直平分线EF分别交AC、AB边于E、F点,若点D为BC边的中点,点M为线段上一动点,则△CDM周长的最小值为( )
A. B. C. D.
已知∠AOB=30°,点P在∠AOB的内部,P1 与P关于OB对称,P2 与P关于OA对称,则△P1OP2是( )
A. 直角三角形 B. 钝角三角形 C. 等腰三角形 D. 等边三角形
如图,在锐角△ABC中,AC=10,S△ABC =25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是( )
A. 4 B. C. 5 D. 6
如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=( )
A. 40° B. 45° C. 50° D. 55°
如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是( )
A. B. C. 6 D. 3
二、填空题
如图,矩形ABCD中,AB=2,AD=3,点E、F分别AD、DC边上的点,且EF=2,点G为EF的中点,点P为BC上一动点,则PA+PG的最小值为 .
如图所示,在Rt△ABC中,∠A=30°,∠B=90°,AB=12,D是斜边AC的中点,P是AB上一动点,则PC+PD的最小值为_____.
已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是 .
如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在____________.
如图,钝角三角形ABC的面积为30,最长边AB=20,BD平分∠ABC,点M、N分别是BD、BC上的动点,则CM+MN的最小值是_____________.
如图,∠AOB=30°,点P是它内部一点,OP=2,如果点Q、点R分别是OA、OB上的两个动点,那么PQ+QR+RP的最小值是_____.
如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ= .
三、解答题
如图,已知点A、B在直线l的异侧,在l上找点P,使PA+PB最小.
如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标:
(2)在x轴上找一点P,使A1P+AP的和最小.
如图,要在河边修建一个水泵站,分别向张村A和李庄B送水,已知张村A、李庄B到河边的距离分别为akm和bkm,且张、李二村庄相距ckm.水泵应建在什么地方,可使所用的水管最短?请在图中设计出水泵站的位置.
如图,∠AOB=30°,角内有一点P,PO=10cm,两边上各有一点Q,R(均不同于点O),则△PQR的周长的最小值是多少?
如图,小河边有两个村庄A、B.要在河边建一自来水厂向A村与B村供水.
(1)若要使水厂到A、B村的距离相等,则应选择在哪建厂?
(2)若要使水厂到A、B村的水管最省料,应建在什么地方?
(1)已知:如图,点M在锐角∠AOB的内部,在OA边上求作一点P,在OB边上求作一点Q,使得ΔPMQ的周长最小;
(2)已知:如图,点M在锐角∠AOB的内部,在OB边上求作一点P,使得点P到点M的距离与点P到OA边的距离之和最小.
答案解析
一 、选择题
【考点】轴对称﹣最短路线问题;等腰三角形的性质.
【分析】如图连接PC,只要证明PB=PC,即可推出PB+PE=PC+PE,由PE+PC≥CE,推出P、C、E共线时,PB+PE的值最小,最小值为CE的长度.
解:如图连接PC,
∵AB=AC,BD=CD,
∴AD⊥BC,
∴PB=PC,
∴PB+PE=PC+PE,
∵PE+PC≥CE,
∴P、C、E共线时,PB+PE的值最小,最小值为CE的长度,
故选B.
【考点】轴对称-最短路线问题轴对称-最短路线问题
【分析】由于点C关于直线MN的对称点是B,所以当三点在同一直线上时,的值最小.
解:由题意知,当B.?P、D三点位于同一直线时,PC+PD取最小值,
连接BD交MN于P,
∵△ABC是等边三角形,D为AC的中点,
∴BD⊥AC,
∴PA=PC,
∴
【点睛】考查轴对称-最短路线问题,找出点C关于直线MN的对称点是B,根据两点之间,线段最短求解即可.
【考点】轴对称-最短路线问题,三角形的外角的性质,垂直平分线的性质
解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值,作DA延长线AH,
∵∠DAB=120°,
∴∠HAA′=60°,
∴∠AA′M+∠A″=∠HAA′=60°,
∵∠MA′A=∠MAA′,∠NAD=∠A″,
且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,
∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,
故选B.
【点睛】本题主要考查了平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.
【考点】轴对称-最短路线问题,等腰三角形的性质
【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知CM=AM,故△CDM周长=AD+CD,由此即可得出结论.
解:连接AD交EF于点M,此时△CDM周长最小,
∵AB=AC,D为BC 中点,
∴AD⊥BC,
∵S△ABC=BC.AD,BC=4,
∴AD=10,
则△CDM周长=CM+MD+CD,
∵EF垂直平分AC,
∴CM=AM,
又BD=4,D为BC中点,
∴CD=2,
∴△CDM周长=AD+CD=12,
故选D.
【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
【考点】轴对称-最短路线问题,,等边三角形的判定
【分析】根据轴对称的性质可知:OP1=OP2=OP,∠P1OP2=60°,即可判断△P1OP2是等边三角形.
解:如图,连接OP,
∵P1与P关于OB对称,P2与P关于OA对称,
∴OP1=OP,OP=OP2,∠BOP=∠BOP1,∠AOP=∠AOP2,
∴OP1=OP2,
∠P1OP2=∠BOP+∠BOP1+∠AOP+∠AOP2=2∠BOP+2∠AOP=2∠AOB,
∵∠AOB=30°,
∴∠P1OP2=60°,
∴△P1OP2是等边三角形,
故选D.
【点睛】本题考查了轴对称的性质,等边三角形的判定,熟练掌握轴对称的性质求出△P1OP2的两边相等且有一个角是60°是解题的关键,作出图形更形象直观.
【考点】轴对称-最短路线问题
解:如图,
∵AD是∠BAC的平分线,
∴点B关于AD的对称点B′在AC上,
过点B′作B′N⊥AB于N交AD于M,
由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,
过点B作BE⊥AC于E,
∵AC=10,S△ABC=25,
∴×10?BE=25,
解得BE=5,
∵AD是∠BAC的平分线,B′与B关于AD对称,
∴AB=AB′,
∴△ABB′是等腰三角形,
∴B′N=BE=5,
即BM+MN的最小值是5.
故选C.
【考点】轴对称-最短路线问题.
【分析】 作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质即可求解.
解:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,连接P1O、P2O,
∵PP1关于OA对称,
∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°
同理,∠P2OP=2∠NOP,OP=OP2,
∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,
∴△P1OP2是等腰三角形.
∴∠OP2N=∠OP1M=50°,
∴∠P1OP2=180°﹣2×50°=80°,
∴∠AOB=40°,
故选A.
【点评】本题考查了对称的性质,正确作出图形,证得△P1OP2是等腰三角形是解题的关键.
【考点】轴对称-最短路线问题,含30度的直角三角形
【分析】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如
图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.
解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,
则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,
∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,
∴此时△PMN周长最小,
作OH⊥CD于H,则CH=DH,
∵∠OCH=30°,
∴OH=OC=,
CH=OH=,
∴CD=2CH=3.
故选D.
【点睛】本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.
二 、填空题
【考点】轴对称-最短路线问题.
【分析】因为EF=2,点G为EF的中点,根据直角三角形斜边上中线的性质得出DG=1,所以G是以D为圆心,以1为半径的圆弧上的点,作A关于BC的对称点A′,连接A′D,交BC于P,交以D为圆心,以1为半径的圆于G,此时PA+PG的值最小,最小值为A′G的长;根据勾股定理求得A′D=5,即可求得A′G=A′D﹣DG=5﹣1=4,从而得出PA+PG的最小值.
解:∵EF=2,点G为EF的中点,
∴DG=1,
∴G是以D为圆心,以1为半径的圆弧上的点,
作A关于BC的对称点A′,连接A′D,交BC于P,交以D为圆心,以1为半径的圆于G,此时PA+PG的值最小,最小值为A′G的长;
∵AB=2,AD=3,
∴AA′=4,
∴A′D=5,
∴A′G=A′D﹣DG=5﹣1=4;
∴PA+PG的最小值为4;
故答案为4.
【点评】本题考查了轴对称﹣最短路线问题,判断出G点的位置是解题的关键.
【考点】轴对称-最短路线问题,等边三角形的性质
【分析】作C关于AB的对称点E,连接ED,易求∠ACE=60°,则AC=AE,且△ACE为等边三角形,CP+PD=DP+PE为E与直线AC之间的连接线段,其最小值为E到AC的距离=AB=12,所以最小值为12.
解:作C关于AB的对称点E,连接ED,
∵∠B=90°,∠A=30°,
∴∠ACB=60°,
∵AC=AE,
∴△ACE为等边三角形,
∴CP+PD=DP+PE为E与直线AC之间的连接线段,
∴最小值为C'到AC的距离=AB=12,
故答案为:12
【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.
【考点】轴对称-最短路线问题.
【分析】过M作MN′⊥OB于N′,交OC于P,即MN′的长度等于点P到点M与到边OA的距离之和的最小值,解直角三角形即可得到结论.
解:过M作MN′⊥OB于N′,交OC于P,
则MN′的长度等于PM+PN的最小值,
即MN′的长度等于点P到点M与到边OA的距离之和的最小值,
∵∠ON′M=90°,OM=4,
∴MN′=OM?sin60°=2,
∴点P到点M与到边OA的距离之和的最小值为2.
【考点】轴对称-最短路线问题
【分析】过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.
解:如图,过AD作C点的对称点C′,
根据轴对称的性质可得:PC=PC′,CD=C′D
∵四边形ABCD是矩形
∴AB=CD
∴△ABP≌△DC′P
∴AP=PD
即P为AD的中点.
故答案为:P为AB的中点.
【点睛】本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.
【考点】轴对称-最短路线问题
【分析】过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.
解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,
∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,
∴MN=ME,
∴CE=CM+ME=CM+MN的最小值.
∵三角形ABC的面积为15,AB=10,
∴×10×CE=15,
∴CE=3.
即CM+MN的最小值为3.
故答案为3.
【点睛】本题考查轴对称-最短路线问题,关键是画出符合条件的图形.
【考点】轴对称-最短路线问题,等边三角形的判定
【分析】先作点P关于OA,OB的对称点P′,P″,连接P′P″,由轴对称确定最短路线问题,P′P″分别与OA,OB的交点即为Q,R,△PQR周长的最小值=P′P″,由轴对称的性质,可证∠POA=∠P′OA,∠POB=∠P″OB,OP′=OP″=OP=2, ∠P′OP″=2∠AOB=2×30°=60°,继而可得△OP′P″是等边三角形,即PP′=OP′=2.
解:作点P关于OA,OB的对称点P′,P″,连接P′P″,
由轴对称确定最短路线问题,P′P″分别与OA,OB的交点即为Q,R,
△PQR周长的最小值=P′P″,由轴对称的性质,
∠POA=∠P′OA,∠POB=∠P″OB,OP′=OP″=OP=2,
所以,∠P′OP″=2∠AOB=2×30°=60°,
所以,△OP′P″是等边三角形,
所以,PP′=OP′=2.
故答案为:2.
【点睛】本题主要考查轴对称和等边三角形的判定,解决本题的关键是要熟练掌握轴对称性质和等边三角形的判定.
【考点】轴对称﹣最短路线问题;平行线的性质.
【分析】作PE⊥l1于E交l2于F,在PF上截取PC=8,连接QC交l2于B,作BA⊥l1于A,此时PA+AB+BQ最短.作QD⊥PF于D.首先证明四边形ABCP是平行四边形,PA+BQ=CB+BQ=QC,利用勾股定理即可解决问题.
解:作PE⊥l1于E交l2于F,在PF上截取PC=8,连接QC交l2于B,作BA⊥l1于A,此时PA+AB+BQ最短.作QD⊥PF于D.
在Rt△PQD中,∵∠D=90°,PQ=4,PD=18,
∴DQ==,
∵AB=PC=8,AB∥PC,
∴四边形ABCP是平行四边形,
∴PA=BC,
∴PA+BQ=CB+BQ=QC===4.
故答案为4
三 、解答题
【考点】作图,轴对称-最短路线问题
【分析】过A作直线l的垂线,在垂线上取点A′,使直线l是AA′的垂直平分线,连接BA′即可.
作法:
作A点关于直线l的对称点A′,连接A′B交l于点P,则P点为所求.
【点评】本题考查了轴对称-最短路线问题的应用,关键是正确画出图形,题型较好,难度适中.
【考点】作图-轴对称变换;轴对称-最短路线问题.
【分析】(1)利用关于y轴对称点的性质得出各对应点位置进而得出答案;
(2)利用轴对称求最短路径的方法得出答案.
解:(1)如图所示:△A1B1C1,即为所求,
点A1的坐标为:(﹣2,4);
故答案为:(﹣2,4);
(2)如图所示:P点即为所求.
【点评】此题主要考查了轴对称变换以及利用轴对称求最短路径问题,得出对应点位置是解题关键.
【考点】轴对称-最短路线问题试题
【分析】作点A关于河边所在直线l的对称点A′,连接A′B交l于P,则点P为水泵站的位置,此时,PA+PB的长度之和最短,即所铺设水管最短.
解:如图所示:
【点睛】本题考查的是作图﹣应用与设计作图,熟知“两点之间,线段最短”是解答此题的关键.
【考点】轴对称-最短路线问题试题
【分析】设点P关于OA的对称点是E,关于OB的对称点是F,当点R、Q在EF上时,△PQR的周长=PQ+QR+PR=EF,此时周长最小.
解:作出点P关于OA的对称点E,作出点P关于OB的对称点F,连接EF,交OA于Q,交OB于R.连接PQ,PR,PE,PF,OE,OF,
则PQ=EQ,PR=RF,
则△PQR的周长=PQ+QR+PR=EQ+QR+RF=EF,
∵∠AOP=∠AOE,∠POB=∠FOB,∠AOB=∠AOP+∠POB=30°,
∴∠EOF=90°,
又∵OE=OP,OF=OP,
∴OE=OF=10,
即△EOF是等边三角形,
∴EF=OP=10,
所以△PQR的周长的最小值为10.
【考点】作图—应用与设计作图,轴对称-最短路线问题
【分析】1)到A、B两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”.
(2)要使水厂到A村、B村的距离和最短,可联想到“两点之间线段最短”.
解:(1)如图2,画线段AB的中垂线,交EF与P,则P到A、B的距离相等.
(2)如图3,画出点A关于河岸EF的对称点A′,连结A′B交EF于P,则P到AB的距离和最短
【点睛】轴对称的概念与性质在解决某些计算、作图、证明等问题中有着重要的作用.我们在解轴对称问题时,应该仔细分析题设条件,正确理解实际问题的理论依据,根据对应的原理法则,灵活巧妙地建立相应的数学模型.利用所学知识解决实际问题
【考点】轴对称-最短路线问题试题
【分析】 根据轴对称确定最短路线问题,作出点关于的对称点,点关于的对称点,连接与的交点即为所求的点
作出点关于的对称点,根据垂线段最短,作 与的交点即为所求作的点
解:作点关于角两边的对称点然后连接,交两边于
作点关于的对称点,根据垂线段最短,作 与的交点即为所求作的点