课时分层作业(十) 离散型随机变量的分布列
(建议用时:40分钟)
[基础达标练]
一、选择题
1.下列表格中,不是某个随机变量的分布列的是( )
A.
X
-2
0
2
4
P
0.5
0.2
0.3
0
B.
X
0
1
2
P
0.7
0.15
0.15
C.
X
1
2
3
P
-
D.
X
1
2
3
P
lg 1
lg 2
lg 5
C [C选项中,P(X=1)<0不符合P(X=xi)≥0的特点,也不符合P(X=1)+P(X=2)+P(X=3)=1的特点,故C选项不是分布列.]
2.若随机变量X的分布列如下表所示,则a2+b2的最小值为( )
【导学号:95032135】
X=i
0
1
2
3
P(X=i)
a
b
A. B. C. D.
C [由分布列性质可知a+b=,而a2+b2≥=.故选C.]
3.下列问题中的随机变量不服从两点分布的是( )
A.抛掷一枚骰子,所得点数为随机变量X
B.某射手射击一次,击中目标的次数为随机变量X
C.从装有5个红球,3个白球的袋中取1个球,令随机变量X=
D.某医生做一次手术,手术成功的次数为随机变量X
A [A中随机变量X的取值有6个,不服从两点分布,故选A.]
4.抛掷两颗骰子,所得点数之和X是一个随机变量,则P(X≤4)等于( )
【导学号:95032136】
A. B. C. D.
A [根据题意,有P(X≤4)=P(X=2)+P(X=3)+P(X=4).抛掷两颗骰子,按所得的点数共36个基本事件,而X=2对应(1,1),X=3对应(1,2),(2,1),X=4对应(1,3),(3,1),(2,2),
故P(X=2)=,P(X=3)==,
P(X=4)==,所以P(X≤4)=++=.]
5.在15个村庄中,有7个村庄交通不太方便,现从中任意选10个村庄,用ξ表示10个村庄中交通不太方便的村庄数,下列概率中等于的是( )
A.P(ξ=2) B.P(ξ≤2)
C.P(ξ=4) D.P(ξ≤4)
C [A项,P(ξ=2)=;
B项,P(ξ≤2)=P(ξ=2)≠;
C项,P(ξ=4)=;
D项,P(ξ≤4)=P(ξ=2)+P(ξ=3)+P(ξ=4)>.]
二、填空题
6.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P=________.
【导学号:95032137】
[设二级品有k个,∴一级品有2k个,三级品有个,总数为个.
∴分布列为
ξ
1
2
3
P
P=P(ξ=1)=.]
7.从装有3个红球,2个白球的袋中随机取2个球,设其中有ξ个红球,则随机变量ξ的分布列为________.
[P(ξ=0)==,P(ξ=1)===,P(ξ=2)==.]
8.从4名男生和2名女生中任选3人参加数学竞赛,则所选3人中,女生的人数不超过1人的概率为________.
【导学号:95032138】
[设所选女生数为随机变量X,X服从超几何分布,P(X≤1)=P(X=0)+P(X=1)=+=.]
三、解答题
9.将一颗骰子掷两次,求两次掷出的最大点数ξ的分布列.
[解] 将一颗骰子连掷两次共出现6×6=36种等可能的基本事件,其最大点数ξ可能取的值为1,2,3,4,5,6.
P(ξ=1)=,
ξ=2包含三个基本事件(1,2),(2,1),(2,2)(其中(x,y)表示第一枚骰子点数为x,第二枚骰子点数为y),所以P(ξ=2)==.
同理可求得P(ξ=3)=,P(ξ=4)=,P(ξ=5)=,P(ξ=6)=,
所以ξ的分布列为
ξ
1
2
3
4
5
6
P
10.在8个大小相同的球中,有2个黑球,6个白球,现从中取3个球,求取出的球中白球个数X的分布列.
[解] X的可能取值是1,2,3,
P(X=1)==;P(X=2)==;P(X=3)==.
故X的分布列为
X
1
2
3
P
[能力提升练]
一、选择题
1.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以为概率的事件是( )
A.都不是一等品 B.恰有一件一等品
C.至少有一件一等品 D.至多有一件一等品
D [设取到一等品的件数是ξ,则ξ=0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==.
因为P(ξ=0)+P(ξ=1)=,所以满足题设的事件是“至多有一件一等品”.]
2.离散型随机变量X的分布列中部分数据丢失,丢失数据以“x”“y”(x,y∈N)代替,其表如下:
X
1
2
3
4
5
6
P
0.20
0.10
0.x5
0.10
0.1y
0.20
则P=( )
【导学号:95032139】
A.0.25 B.0.35 C.0.45 D.0.55
B [根据分布列的性质可知,随机变量的所有取值的概率和为1,得x=2,y=5.故P=P(X=2)+P(X=3)=0.35.]
二、填空题
3.若P(ξ≤n)=1-a,P(ξ≥m)=1-b,其中m<n,则P(m≤ξ≤n)等于________.
1-(a+b) [P(m≤ξ≤n)=1-P(ξ>n)-P(ξ<m)=1-[1-(1-a)]-[1-(1-b)]=1-(a+b).]
4.设随机变量X的概率分布列为P(X=n)=(n=1,2,3,4),其中a为常数,则P=________.
【导学号:95032140】
[由题意,知P(X=1)+P(X=2)+P(X=3)+P(X=4)=+++=1,
∴a=.
∴P=P(X=1)+P(X=2)=+==×=.]
三、解答题
5.袋中有4个红球、3个黑球,随机取球,设取到一个红球得2分,取到一个黑球得1分,从袋中任取4个球.
(1)求得分X的分布列;
(2)求得分大于6分的概率.
[解] (1)从袋中随机摸4个球的情况为
1红3黑,2红2黑,3红1黑,4红,
分别得分为5分,6分,7分,8分.
故X的可能取值为5,6,7,8.
P(X=5)==,
P(X=6)==,
P(X=7)==,
P(X=8)==.
故所求分布列为
X
5
6
7
8
P
(2)根据随机变量X的分布列,可以得到得分大于6分的概率为P(X>6)=P(X=7)+P(X=8)
=+=.
课时分层作业(十一) 条件概率
(建议用时:40分钟)
[基础达标练]
一、选择题
1.下列说法正确的是( )
【导学号:95032146】
A.P(B|A)<P(AB)
B.P(B|A)=是可能的
C.0<P(B|A)<1
D.P(A|A)=0
B [由条件概率公式P(B|A)=及0≤P(A)≤1知P(B|A)≥P(AB),故A选项错误;当事件A包含事件B时,有P(AB)=P(B),此时P(B|A)=,故B选项正确,由于0≤P(B|A)≤1,P(A|A)=1,故C,D选项错误.故选B.]
2.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )
A.0.8 B.0.75
C.0.6 D.0.45
A [已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P==0.8.]
3.从1,2,3,4,5中任取2个不同的数,事件A:“取到的2个数之和为偶数”,事件B:“取到的2个数均为偶数”,则P(B|A)等于( )
【导学号:95032147】
A. B.
C. D.
B [P(A)==,P(AB)==,由条件概率的计算公式得P(B|A)===.故选B.]
4.在10个形状大小均相同的球中有7个红球和3个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为( )
A. B.
C. D.
D [法一:(定义法)设第一次摸到的是红球为事件A,则P(A)=,设第二次摸得红球为事件B,则P(AB)==.
故在第一次摸得红球的条件下第二次也摸得红球的概率为P(B|A)==.
法二:(直接法)第一次抽到红球,则还剩下9个,红球有6个,所以第二次也摸到红球的概率为=.]
5.某种电子元件用满3 000小时不坏的概率为,用满8 000小时不坏的概率为.现有一只此种电子元件,已经用满3 000小时不坏,还能用满8 000小时的概率是( )
【导学号:95032148】
A. B.
C. D.
B [记事件A:“用满3 000小时不坏”,P(A)=;记事件B:“用满8 000小时不坏”,P(B)=.因为B?A,所以P(AB)=P(B)=.
故P(B|A)===÷=.]
二、填空题
6.已知P(A)=0.2,P(B)=0.18,P(AB)=0.12,则P(A|B)=________,P(B|A)=________.
[P(A|B)===;P(B|A)===.]
7.在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次再取到不合格品的概率为________.
【导学号:95032149】
[第一次取到不合格品后,还剩99件产品,其中4件不合格品,则第二次再取到不合格品的概率为P=.]
8.设A,B为两个事件,若事件A和B同时发生的概率为,在事件A发生的条件下,事件B发生的概率为,则事件A发生的概率为________.
[由题意知P(AB)=,
P(B|A)=,
∴P(A)===.]
三、解答题
9.甲、乙两个袋子中,各放有大小、形状和个数相同的小球若干.每个袋子中标号为0的小球为1个,标号为1的2个,标号为2的n个.从一个袋子中任取两个球,取到的标号都是2的概率是.
(1)求n的值;
(2)从甲袋中任取两个球,已知其中一个的标号是1的条件下,求另一个标号也是1的概率.
[解] (1)由题意得:==,解得n=2.
(2)记“其中一个标号是1”为事件A,“另一个标号是1”为事件B,所以P(B|A)===.
10.有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一个球;若第一次取得标有字母B的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验成功.求试验成功的概率.
【导学号:95032150】
[解] 设A={从第一个盒子中取得标有字母A的球}.
B={从第一个盒子中取得标有字母B的球},
R={第二次取出的球是红球},
W={第二次取出的球是白球}.
则容易求得P(A)=,P(B)=,
P(R|A)=,
P(W|A)=,
P(R|B)=,
P(W|B)=.
事件“试验成功”表示为RA∪RB,又事件RA与事件RB互斥,故由概率的加法公式,得
P(RA∪RB)
=P(RA)+P(RB)
=P(R|A)·P(A)+P(R|B)·P(B)
=×+×=.
[能力提升练]
一、选择题
1.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是( )
A. B.
C. D.
D [一个家庭中有两个小孩只有4种可能:(男,男),(男,女),(女,男),(女,女).
记事件A为“其中一个是女孩”,事件B为“另一个是女孩”,则A={(男,女),(女,男),(女,女)},B={(男,女),(女,男),(女,女)},AB={(女,女)}.
于是可知P(A)=,P(AB)=.问题是求在事件A发生的情况下,事件B发生的概率,即求P(B|A),由条件概率公式,得P(B|A)==.]
2.某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率是,在第一次闭合出现红灯的条件下第二次闭合还出现红灯的概率是,则两次闭合都出现红灯的概率为( )
【导学号:95032151】
A. B.
C. D.
A [记第一次闭合出现红灯为事件A,第二次闭合出现红灯为事件B,则P(A)=,P(B|A)=,所以P(AB)=P(B|A)·P(A)=×=.]
二、填空题
3.袋中有6个黄色的乒乓球,4个白色的乒乓球,做不放回抽样,每次抽取一球,取两次,则第二次才能取到黄球的概率为________.
[记“第一次取到白球”为事件A,“第二次取到黄球”为事件B,“第二次才能取到黄球”为事件C,所以P(C)=P(AB)=P(A)P(B|A)=×=.]
4.先后掷两次骰子(骰子的六个面上分别有1,2,3,4,5,6个点),落在水平桌面后,记正面朝上的点数分别为x,y,设事件A为“x+y为偶数”,事件B为“x,y中有偶数且x≠y”,则概率P(B|A)=________.
【导学号:95032152】
[根据题意,若事件A为“x+y为偶数”发生,则x,y两个数均为奇数或均为偶数,共有2×3×3=18个基本事件,
∴事件A的概率为P(A)==.
而A,B同时发生,基本事件有“2+4”,“2+6”,“4+2”,“4+6”,“6+2”,“6+4”一共6个基本事件,因此事件A,B同时发生的概率为P(AB)==.
因此,在事件A发生的条件下,B发生的概率为P(B|A)=.]
三、解答题
5.甲箱的产品中有5个正品和3个次品,乙箱的产品中有4个正品和3个次品.
(1)从甲箱中任取2个产品,求这2个产品都是次品的概率.
(2)若从甲箱中任取2个产品放入乙箱中,然后再从乙箱中任取一个产品,求取出的这个产品是正品的概率.
[解] (1)从甲箱中任取2个产品的事件数为C=28,这2个产品都是次品的事件数为C=3.所以这2个产品都是次品的概率为.
(2)设事件A为“从乙箱中取一个正品”,事件B1为“从甲箱中取出2个产品都是正品”,事件B2为“从甲箱中取出1个正品1个次品”,事件B3为“从甲箱中取出2个产品都是次品”,则事件B1、事件B2、事件B3彼此互斥.
P(B1)==,
P(B2)==,
P(B3)==,
P(A|B1)=,
P(A|B2)=,P(A|B3)=,
所以P(A)=P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A|B3)
=×+×+×=.
课时分层作业(十二) 事件的相互独立性
(建议用时:40分钟)
1.有以下三个问题:
①掷一枚骰子一次,事件M:“出现的点数为奇数”,事件N:“出现的点数为偶数”;
②抛掷3枚质地均匀的硬币,M={既有正面向上又有反面向上},N={至多有一个反面向上};
③分别抛掷2枚相同的硬币,事件M:“第1枚为正面”,事件N:“两枚结果相同”.
这三个问题中,M,N是相互独立事件的有( )
【导学号:95032158】
A.3个 B.2个 C.1个 D.0个
B [①中,M,N是互斥事件;②中,P(M)=1-=,P(N)=1-=,P(MN)=P(M)·P(N)
所以M,N是相互独立事件;③中,P(M)=,
P(N)=,P(MN)=,P(MN)=P(M)P(N),因此M,N是相互独立事件.]
2.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击,则他们同时中靶的概率是( )
A. B.
C. D.
A [P甲==,P乙=,所以P=P甲·P乙=.]
3.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( )
【导学号:95032159】
A. B. C. D.
A [问题等价为两类:第一类,第一局甲赢,其概率P1=;第二类,需比赛2局,第一局甲负,第二局甲赢,其概率P2=×=.故甲队获得冠军的概率为P1+P2=.]
4.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是( )
【导学号:95032160】
A. B.
C. D.
C [依题意得P(A)=,P(B)=,事件A,B中至少有一件发生的概率等于1-P(·)=1-P()·P()=1-×=.]
5.设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是( )
【导学号:95032161】
A. B. C. D.
D [由P(A )=P(B ),得P(A)P()=P(B)·P(),即P(A)[1-P(B)]=P(B)[1-P(A)],
∴P(A)=P(B).又P( )=,
∴P()=P()=,∴P(A)=.]
二、填空题
6.在甲盒内的200个螺杆中有160个是A型,在乙盒内的240个螺母中有180个是A型.若从甲、乙两盒内各取一个,则能配成A型螺栓的概率为________.
【导学号:95032162】
[“从200个螺杆中,任取一个是A型”记为事件B.“从240个螺母中任取一个是A型”记为事件C,则P(B)=,P(C)=.
∴P(A)=P(BC)=P(B)·P(C)=·=.]
7.两个人通过某项专业测试的概率分别为,,他们一同参加测试,则至多有一人通过的概率为________.
【导学号:95032163】
[二人均通过的概率为×=,
∴至多有一人通过的概率为1-=.]
8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.
0.128 [此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128.]
三、解答题
9.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险的概率为0.3.设各车主购买保险相互独立.
(1)求该地的1位车主至少购买甲、乙两种保险中的1种的概率;
(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.
【导学号:95032164】
[解] 记A表示事件:该地的1位车主购买甲种保险;
B表示事件:该地的1位车主购买乙种保险;
C表示事件:该地的1位车主至少购买甲、乙两种保险中的一种;
D表示事件:该地的1位车主甲、乙两种保险都不购买;
E表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买.
(1)P(A)=0.5,P(B)=0.3,C=A+B,
P(C)=P(A+B)=P(A)+P(B)=0.8.
(2)D=,P(D)=1-P(C)=1-0.8=0.2,
P(E)=0.8×0.2×0.8+0.8×0.8×0.2+0.2×0.8×0.8=0.384.
10.某城市有甲、乙、丙3个旅游景点,一位游客游览这3个景点的概率分别是0.4,0.5,0.6,且游客是否游览哪个景点互不影响,用ξ表示该游客离开该城市时游览的景点数与没有游览的景点数之差的绝对值,求ξ的分布列.
【导学号:95032165】
[解] 设游客游览甲、乙、丙景点分别记为事件A1,A2,A3,已知A1,A2,A3相互独立,且P(A1)=0.4,P(A2)=0.5,P(A3)=0.6,游客游览的景点数可能取值为0,1,2,3,相应的游客没有游览的景点数可能取值为3,2,1,0,所以ξ的可能取值为1,3.
则P(ξ=3)=P(A1·A2·A3)+P(1·2·3)
=P(A1)·P(A2)·P(A3)+P(1)·P(2)·P(3)
=0.4×0.5×0.6+0.6×0.5×0.4=0.24.
P(ξ=1)=1-0.24=0.76.
所以分布列为:
ξ
1
3
P
0.76
0.24
课时分层作业(十三) 独立重复试验与二项分布
(建议用时:40分钟)
[基础达标练]
1.在某次试验中,事件A出现的概率为p,则在n次独立重复试验中出现k次的概率为( )
A.1-pk B.(1-p)kpn-k
C.1-(1-p)k D.C(1-p)kpn-k
D [出现1次的概率为1-p,由二项分布概率公式可得出现k次的概率为C(1-p)kpn-k.]
2.假设流星穿过大气层落在地面上的概率为,现有流星数量为5的流星群穿过大气层有2个落在地面上的概率为( )
【导学号:95032171】
A. B.
C. D.
B [此问题相当于一个试验独立重复5次,有2次发生的概率,所以P=C··=.]
3.在4次独立重复试验中事件出现的概率相同.若事件A至少发生1次的概率为,则事件A在1次试验中出现的概率为( )
A. B.
C. D.
A [设所求概率为p,则1-(1-p)4=,得p=.]
4.某单位6个员工借助互联网开展工作,每天每个员工上网的概率是0.5(相互独立),则一天内至少3人同时上网的概率为( )
【导学号:95032172】
A. B.
C. D.
C [每天上网人数X~B(6,0.5),
∴P(X≥3)=P(X=3)+P(X=4)+P(X=5)+P(X=6)
=(C+C+C+C)·=.]
5.若随机变量ξ~B,则P(ξ=k)最大时,k的值为( )
A.1或2 B.2或3
C.3或4 D.5
A [依题意P(ξ=k)=C××,k=0,1,2,3,4,5.
可以求得P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,P(ξ=3)=,P(ξ=4)=,P(ξ=5)=.故当k=2或1时,P(ξ=k)最大.]
二、填空题
6.下列说法正确的是________.(填序号)
①某同学投篮的命中率为0.6,他10次投篮中命中的次数X是一个随机变量,且X~B(10,0.6);
②某福彩的中奖概率为p,某人一次买了8张,中奖张数X是一个随机变量,且X~B(8,p);
③从装有5个红球、5个白球的袋中,有放回地摸球,直到摸出白球为止,则摸球次数X是随机变量,且X~B.
【导学号:95032173】
①② [①②显然满足独立重复试验的条件,而③虽然是有放回地摸球,但随机变量X的定义是直到摸出白球为止,也就是说前面摸出的一定是红球,最后一次是白球,不符合二项分布的定义.]
7.设X~B(4,p),且P(X=2)=,那么一次试验成功的概率p等于________.
或 [P(X=2)=Cp2(1-p)2=,
即p2(1-p)2=·,解得p=或p=.]
8.在等差数列{an}中,a4=2,a7=-4,现从{an}的前10项中随机取数,每次取出一个数,取后放回,连续抽取3次,假定每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为______.(用数字作答)
【导学号:95032174】
[由已知可求通项公式为an=10-2n(n=1,2,3,…),其中a1,a2,a3,a4为正数,a5=0,a6,a7,a8,a9,a10为负数,∴从中取一个数为正数的概率为=,取得负数的概率为.
∴取出的数恰为两个正数和一个负数的概率为C××=.]
三、解答题
9.某市医疗保险实行定点医疗制度,按照“就近就医,方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在地区有A,B,C三家社区医院,并且他们的选择相互独立.设4名参加保险人员选择A社区医院的人数为X,求X的分布列.
[解] 由已知每位参加保险人员选择A社区的概率为,4名人员选择A社区即4次独立重复试验,
即X~B,所以P(X=k)=C··(k=0,1,2,3,4),所以X的分布列为
X
0
1
2
3
4
P
10.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2分钟.
(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(2)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列.
【导学号:95032175】
[解] (1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A,因为事件A等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A的概率为
P(A)=××=.
(2)由题意,可得ξ可以取的值为0,2,4,6,8(单位:分钟),
事件“ξ=2k”等价于事件“该学生在路上遇到k次红灯”(k=0,1,2,3,4),
∴P(ξ=2k)=C(k=0,1,2,3,4),
即P(ξ=0)=C××=;
P(ξ=2)=C××=;
P(ξ=4)=C××=;
P(ξ=6)=C××=;
P(ξ=8)=C××=.
∴ξ的分布列是
ξ
0
2
4
6
8
P
[能力提升练]
一、选择题
1.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是( )
A.0.216 B.0.36
C.0.432 D.0.648
D [甲获胜有两种情况,一是甲以2∶0获胜,此时p1=0.62=0.36;二是甲以2∶1获胜,此时p2=C×0.6×0.4×0.6=0.288,故甲获胜的概率p=p1+p2=0.648.]
2.位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是.则原点P移动5次后位于点(2,3)的概率为( )
【导学号:95032176】
A. B.C×
C.C× D.C×C×
B [质点每次只能向上或向右移动,且概率均为,所以移动5次可看成做了5次独立重复试验.质点P移动5次后位于点(2,3)(即质点在移动过程中向右移动2次,向上移动3次)的概率为C××=C×.]
二、填空题
3.设随机变量X~B(2,p),Y~B(3,p),若P(X≥1)=,则P(Y=2)=________.
[P(X≥1)=1-P(X=0)=1-(1-p)2=,
∴p=,
∴P(Y=2)=C··=.]
4.口袋里放有大小相同的两个红球和一个白球,有放回地每次摸取一个球,定义数列{an}:an=如果Sn为数列{an}的前n项和,那么S5=3的概率为________.
[由题意知有放回地摸球为独立重复试验,且试验次数为5,这5次中有1次摸得红球.每次摸取红球的概率为,所以S5=3时,概率为C×·=.]
三、解答题
5.“石头、剪刀、布”是一种广泛流传于我国民间的古老游戏,其规则是:用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势1次记为1次游戏,“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”;双方出示的手势相同时,不分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的.
(1)求在1次游戏中玩家甲胜玩家乙的概率;
(2)若玩家甲、乙双方共进行了3次游戏,其中玩家甲胜玩家乙的次数记作随机变量X,求X的分布列.
【导学号:95032177】
[解] (1)玩家甲、乙双方在1次游戏中出示手势的所有可能结果是(石头,石头),(石头,剪刀),(石头,布),(剪刀,石头),(剪刀,剪刀),(剪刀,布),(布,石头),(布,剪刀),(布,布),共有9个基本事件.玩家甲胜玩家乙的基本事件分别是(石头,剪刀),(剪刀,布),(布,石头),共有3个.
所以在1次游戏中玩家甲胜玩家乙的概率P=.
(2)X的可能取值分别为0,1,2,3,X~B,
则P(X=0)=C·=,
P(X=1)=C··=,
P(X=2)=C··=,
P(X=3)=C·=.
X的分布列如下:
X
0
1
2
3
P
课时分层作业(十四) 离散型随机变量的均值
(建议用时:40分钟)
[基础达标练]
一、选择题
1.设随机变量X~B(40,p),且E(X)=16,则p等于( )
A.0.1 B.0.2
C.0.3 D.0.4
D [∵E(X)=16,∴40p=16,∴p=0.4.]
2.今有两台独立工作在两地的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达台数为X,则E(X)为( )
【导学号:95032184】
A.0.765 B.1.75
C.1.765 D.0.22
B [X的取值为0,1,2,
∴P(X=0)=0.1×0.15=0.015,
P(X=1)=0.9×0.15+0.1×0.85=0.22,
P(X=2)=0.9×0.85=0.765,
E(X)=0×0.015+1×0.22+2×0.765=1.75.]
3.已知Y=5X+1,E(Y)=6,则E(X)的值为( )
A. B.5
C.1 D.31
C [因为E(Y)=E(5X+1)=5E(X)+1=6,所以E(X)=1.]
4.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为( )
A.100 B.200
C.300 D.400
B [记“不发芽的种子数为ξ”,则ξ~B(1 000,0.1),所以E(ξ)=1 000×0.1=100,而X=2ξ,故E(X)=E(2ξ)=2E(ξ)=200,故选B.]
5.口袋中有编号分别为1,2,3的三个大小和形状相同的小球,从中任取2个,则取出的球的最大编号X的期望为( )
【导学号:95032185】
A. B.
C.2 D.
D [X=2,3.所以P(X=2)==,P(X=3)==,所以E(X)=2×+3×=.]
二、填空题
6.篮球运动员在比赛中每次罚球命中得1分,不命中得0分.已知他命中的概率为0.8,则罚球一次得分X的期望是________.
0.8 [因为P(X=1)=0.8,P(X=0)=0.2,所以E(X)=1×0.8+0×0.2=0.8.]
7.某射手射击所得环数X的分布列如下:
X
7
8
9
10
P
x
0.1
0.3
y
已知X的均值E(X)=8.9,则y的值为________.
0.4 [由题意得
即,解得]
8.对某个数学题,甲解出的概率为,乙解出的概率为,两人独立解题.记X为解出该题的人数,则E(X)=________.
【导学号:95032186】
[P(X=0)=×=,
P(X=1)=×+×=,
P(X=2)=×=,E(X)==.]
三、解答题
9.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.若厂家发给商家20件产品,其中有3件不合格.按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数X的分布列及均值E(X).
[解] X可能的取值为0,1,2.
P(X=0)==,
P(X=1)==,
P(X=2)==.
∴X的分布列为:
X
0
1
2
P
E(X)=0×+1×+2×=.
10.端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.
(1)求三种粽子各取到1个的概率;
(2)设X表示取到的豆沙粽个数,求X的分布列与均值.
【导学号:95032187】
[解] (1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)==.
(2)X的所有可能值为0,1,2,且
P(X=0)==,P(X=1)==,
P(X=2)==.
综上知,X的分布列为
X
0
1
2
P
故E(X)=0×+1×+2×=.
[能力提升练]
一、选择题
1.某船队若出海后天气好,可获得5 000元;若出海后天气坏,将损失2 000元;若不出海也要损失1 000元.根据预测知天气好的概率为0.6,则出海的期望效益是( )
A.2 000元 B.2 200元
C.2 400元 D.2 600元
B [出海的期望效益E(ξ)=5 000×0.6+(1-0.6)×(-2 000)=3 000-800=2 200(元).]
二、填空题
2.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=,则随机变量X的均值E(X)=________.
[由P(X=0)=(1-p)(1-p)=,
可得p= ,从而
P(X=1)=·+·C=,
P(X=2)=·C+·=,
P(X=3)=·=.
所以E(X)=0×+1×+2×+3×==.]
3.一个均匀小正方体的六个面中,三个面上标有数字0,两个面上标有数字1,一个面上标有数字2.将这个小正方体抛掷2次,则向上的数之积的数学期望是________.
【导学号:95032188】
[随机变量X的取值为0,1,2,4,
P(X=0)===,
P(X=1)===,
P(X=2)===,
P(X=4)==,
因此,向上的数字之积的数学期望是
E(X)=0×+1×+2×+4×=.]
4.设离散型随机变量X可能的取值为1,2,3,P(X=k)=ak+b(k=1,2,3).又X的均值E(X)=3,则a+b=________.
- [因为P(X=1)=a+b,P(X=2)=2a+b,P(X=3)=3a+b,
所以E(X)=1×(a+b)+2×(2a+b)+3×(3a+b)=3,
所以14a+6b=3. ①
又因为(a+b)+(2a+b)+(3a+b)=1,
所以6a+3b=1. ②
由①②可知a=,b=-,所以a+b=-.]
三、解答题
5.若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).
在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.
(1)写出所有个位数字是5的“三位递增数”;
(2)若甲参加活动,求甲得分X的分布列和数学期望E(X).
【导学号:95032189】
[解] (1)个位数字是5的“三位递增数”有125,135,145,235,245,345.
(2)由题意知,全部“三位递增数”的个数为C=84,随机变量X的取值为:0,-1,1,因此,
P(X=0)==,
P(X=-1)==,
P(X=1)=1--=.
所以X的分布列为
X
0
-1
1
P
则E(X)=0×+(-1)×+1×=.
课时分层作业(十五) 离散型随机变量的方差
(建议用时:40分钟)
[基础达标练]
一、选择题
1.设随机变量X的分布列为P(X=k)=pk(1-p)1-k(k=0,1),则E(X)和D(X)的值分别为( )
A.0和1 B.p和p2
C.p和1-p D.p和(1-p)p
D [由题意知随机变量X满足两点分布,∴E(X)=p,D(X)=(1-p)p.]
2.已知随机变量ξ满足P(ξ=1)=0.3,P(ξ=2)=0.7,则E(ξ)和D(ξ)的值分别为( )
【导学号:95032196】
A.0.6和0.7 B.1.7和0.09
C.0.3和0.7 D.1.7和0.21
D [E(ξ)=1×0.3+2×0.7=1.7,D(ξ)=(1.7-1)2×0.3+(1.7-2)2×0.7=0.21.]
3.已知随机变量X服从二项分布,即X~B(n,p),且E(X)=7,D(X)=6,则p等于( )
A. B.
C. D.
A [np=7且np(1-p)=6,解得1-p=,∴p=.]
4.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c,且a,b,c∈(0,1).已知他投篮一次得分的均值为2,则+的最小值为( )
A. B.
C. D.
D [由题意,得3a+2b+0×c=2,即3a+2b=2,其中0<a<,0<b<1.又+==3+++≥+2=,当且仅当=,即a=2b时取等号.又3a+2b=2,故当a=,b=时,+取得最小值,为.故选D.]
5.甲、乙两个运动员射击命中环数ξ、η的分布列如下表.表中射击比较稳定的运动员是( )
【导学号:95032197】
环数k
8
9
10
P(ξ=k)
0.3
0.2
0.5
P(η=k)
0.2
0.4
0.4
A.甲 B.乙
C.一样 D.无法比较
B [由题中分布列可得:
E(ξ)=8×0.3+9×0.2+10×0.5=9.2
E(η)=8×0.2+9×0.4+10×0.4=9.2
D(ξ)=(8-9.2)2×0.3+(9-9.2)2×0.2+(10-9.2)2×0.5=0.76
D(η)=(8-9.2)2×0.2+(9-9.2)2×0.4+(10-9.2)2×0.4=0.56
∵E(ξ)=E(η),D(ξ)>D(η)
∴甲、乙两名运动员射击命中环数的平均数相等,而乙的成绩波动性较小,更稳定.]
二、填空题
6.一批产品中,次品率为,现连续抽取4次,其次品数记为X,则D(X)的值为________.
[由题意知X~B,所以D(X)=4××=.]
7.若事件在一次试验中发生次数的方差等于0.25,则该事件在一次试验中发生的概率为________.
0.5 [在一次试验中发生次数记为ξ,则ξ服从两点分布,则D(ξ)=p(1-p),所以p(1-p)=0.25,解得p=0.5.]
8.随机变量ξ的取值为0,1,2.若P(ξ=0)=,E(ξ)=1,则D(ξ)=________.
【导学号:95032198】
[设P(ξ=1)=a,P(ξ=2)=b,
则解得
所以D(ξ)=(0-1)2×+(1-1)2×+(2-1)2×=.]
三、解答题
9.已知随机变量X的分布列为
X
0
1
x
P
p
若E(X)=.
(1)求D(X)的值;
(2)若Y=3X-2,求D(Y)的值.
[解] 由++p=1,得p=.
又E(X)=0×+1×+x=,
所以x=2.
(1)D(X)=×+×+×==.
(2)因为Y=3X-2,所以D(Y)=D(3X-2)=9D(X)=5.
10.有三张形状、大小、质地完全一致的卡片,在每张卡片上写上0,1,2,现从中任意抽取一张,将其上数字记作x,然后放回,再抽取一张,其上数字记作y,令X=x·y.
求:(1)X所取各值的概率;
(2)随机变量X的均值与方差.
【导学号:95032199】
[解] (1)P(X=0)==;
P(X=1)==;
P(X=2)==;
P(X=4)==.
(2)X的分布列如下:
X
0
1
2
4
P
所以E(X)=0×+1×+2×+4×=1.
D(X)=(0-1)2×+(1-1)2×+(2-1)2×+(4-1)2×=.
[能力提升练]
一、选择题
1.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布ξ~B(10,0.6),则E(η)和D(η)的值分别是( )
A.6和2.4 B.2和2.4
C.2和5.6 D.6和5.6
B [由已知E(ξ)=10×0.6=6,D(ξ)=10×0.6×0.4=2.4.
因为ξ+η=8,所以η=8-ξ.
所以E(η)=-E(ξ)+8=2,D(η)=(-1)2D(ξ)=2.4.]
2.抛掷两个骰子,至少有一个4点或5点出现时,就说这次试验成功,则在10次试验中,成功次数X的均值和方差分别是( )
A., B.,
C., D.,
D [成功次数X服从二项分布,每次试验成功的概率为1-×=,故在10次试验中,成功次数X的均值E(X)=10×=,方差D(X)=10××=.]
3.随机变量ξ的分布列如下表,且E(ξ)=1.1,则D(ξ)=( )
【导学号:95032200】
ξ
0
1
x
P
p
A.0.36 B.0.52
C.0.49 D.0.68
C [先由随机变量分布列的性质求得p=.
由E(ξ)=0×+1×+x=1.1,得x=2.
所以D(ξ)=(0-1.1)2×+(1-1.1)2×+(2-1.1)2×=0.49.]
二、填空题
4.抛掷一枚均匀硬币n(3≤n≤8)次,正面向上的次数ξ服从二项分布B,若P(ξ=1)=,则方差D(ξ)=________.
[因为3≤n≤8,ξ服从二项分布B,且P(ξ=1)=,所以C··=,
即n=,解得n=6,
所以方差D(ξ)=np(1-p)=6××=.]
三、解答题
5.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图2-3-1所示.
图2-3-1
将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;
(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).
【导学号:95032201】
[解] (1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里有连续2天的日销售量不低于100个且另1天的日销售量低于50个.”因此
P(A1)=(0.006+0.004+0.002)×50=0.6,
P(A2)=0.003×50=0.15,
P(B)=0.6×0.6×0.15×2=0.108.
(2)X可能取的值为0,1,2,3,相应的概率为
P(X=0)=C(1-0.6)3=0.064,
P(X=1)=C·0.6(1-0.6)2=0.288,
P(X=2)=C·0.62(1-0.6)=0.432,
P(X=3)=C·0.63=0.216,
则X的分布列为
X
0
1
2
3
P
0.064
0.288
0.432
0.216
因为X~B(3,0.6),所以期望E(X)=3×0.6=1.8,
方差D(X)=3×0.6×(1-0.6)=0.72.
课时分层作业(十六) 正态分布
(建议用时:40分钟)
[基础达标练]
一、选择题
1.设两个正态分布N(μ1,σ)(σ1>0)和N(μ2,σ)(σ2>0)的密度函数图象如图2-4-2所示,则有( )
图2-4-2
A.μ1<μ2,σ1<σ2
B.μ1<μ2,σ1>σ2
C.μ1>μ2,σ1<σ2
D.μ1>μ2,σ1>σ2
A [根据正态分布的性质:对称轴方程x=μ,σ表示正态曲线的形状.由题图可得,选A.]
2.若随机变量X的密度函数为f(x)=,X在区间(-2,-1)和(1,2)内取值的概率分别为p1,p2,则p1,p2的关系为( )
A.p1>p2 B.p1
C.p1=p2 D.不确定
C [由正态曲线的对称性及题意知:μ=0,σ=1,所以曲线关于直线x=0对称,所以p1=p2.]
3.已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.8,则P(0<ξ<2)=( )
【导学号:95032208】
A.0.6 B.0.4
C.0.3 D.0.2
C [因为随机变量ξ服从正态分布N(2,σ2),
所以正态曲线关于直线x=2对称,
又P(ξ<4)=0.8.
∴P(ξ>4)=P(ξ<0)=0.2.
故P(0<ξ<2)=[1-P(ξ<0)-P(ξ>4)]=0.3.]
4.设X~N,则X落在(-3.5,-0.5]内的概率是( )
A.95.44% B.99.73%
C.4.56% D.0.26%
B [由X~N知μ=-2,σ=,P(-3.5<X≤-0.5)=P(-2-3×0.5<X≤-2+3×0.5)=0.997 3.]
5.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )
(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.27%,P(μ-2σ<ξ<μ+2σ)=95.45%.)
A.4.56% B.13.59%
C.27.18% D.31.74%
B [由正态分布的概率公式知P(-3<ξ<3)=0.682 7,P(-6<ξ<6)=0.954 5,
故P(3<ξ<6)=
==0.135 9=13.59%.]
二、填空题
6.若随机变量X~N(μ,σ2),则P(X≤μ)=________.
【导学号:95032209】
[由于随机变量X~N(μ,σ2),其正态密度曲线关于直线X=μ对称,故P(X≤μ)=.]
7.在某项测量中,测量结果X服从正态分布N(1,σ2)(σ>0),若X在(0,1]内取值的概率为0.4,则X在(0,2]内取值的概率为________.
0.8 [∵X~N(1,σ2),且P(0<X≤1)=0.4,∴P(0<X≤2=2P(0<X≤1)=0.8.]
8.工人制造的零件尺寸在正常情况下服从正态分布N(μ,σ2),在一次正常的试验中,取1 000个零件,不属于(μ-3σ,μ+3σ)这个尺寸范围的零件可能有__________________________________________________________个.
3 [因为P(μ-3σ≤ξ≤μ+3σ)=0.997 3,所以不属于区间(μ-3σ,μ+3σ)内的零点个数约为1 000×(1-0.997 3)=2.7≈3个.]
三、解答题
9.如图2-4-3所示是一个正态曲线,试根据该图象写出其正态分布的概率密度函数的解析式,求出总体随机变量的期望和方差.
图2-4-3
[解] 从给出的正态曲线可知,该正态曲线关于直线x=20对称,最大值是,所以μ=20.
由=,得σ=.
于是概率密度函数的解析式是
f(x)=·e,x∈(-∞,+∞),
总体随机变量的期望是μ=20,方差是σ2=()2=2.
10.在某次数学考试中,考生的成绩X服从一个正态分布,即X~N(90,100).
(1)试求考试成绩X位于区间(70,110)上的概率是多少?
(2)若这次考试共有2 000名学生,试估计考试成绩在(70,110)间的考生大约有多少人?
【导学号:95032210】
[解] 因为X~N(90,100),
所以μ=90,σ==10.
(1)由于X在区间(μ-2σ,μ+2σ)内取值的概率是0.954 5,
又该正态分布中,μ-2σ=90-2×10=70,μ+2σ=90+2×10=110,
于是考试成绩X位于区间(70,110)内的概率就是0.954 5.
(2)由(1)知P(70所以估计成绩在(70,110)间的考生大约为2 000×0.954 5=1 909(人).
[能力提升练]
一、选择题
1.在如图2-4-4所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为( )
图2-4-4
A.2 387 B.2 718
C.3 414 D.4 777
附:若X~N(μ,σ2),则P(μ-σP(μ-2σC [由P(-12.已知一次考试共有60名同学参加,考生的成绩X~N(110,25).据此估计,大约应有57人的分数在区间( )
【导学号:95032211】
A.(90,110]内 B.(95,125]内
C.(100,120]内 D.(105,115]内
C [=0.95,故可得大约应有57人的分数在区间(μ-2σ,μ+2σ]内,即在区间(110-2×5,110+2×5]内.
二、填空题
3.设随机变量X~N(μ,σ2),且P(X<1)=,P(X>2)=p,则P(0<X<1)=________.
-p [随机变量X~N(μ,σ2),可知随机变量服从正态分布,x=μ是图象的对称轴,可知P(x<1)=,P(x>2)=p,则P(0<x<1)=-p.]
4.已知正态总体的数据落在区间(-3,-1)里的概率和落在区间(3,5)里的概率相等,那么这个正态总体的数学期望为________.
1 [由题意知区间(-3,-1)与(3,5)关于直线x=μ对称,
因为区间(-3,-1)和区间(3,5)关于x=1对称,所以正态分布的数学期望为1.]
三、解答题
5.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
图2-4-5
(1)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中的数据用该组区间的中点值作代表);
(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.
①利用该正态分布,求P(187.8②某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用①的结果,求E(X).
附:≈12.2.
若Z~N(μ,σ2),则P(μ-σ【导学号:95032212】
[解] (1)抽取产品的质量指标值的样本平均数和样本方差s2分别为
=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,
s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.
(2)①由(1)知,Z~N(200,150),从而P(187.8②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 7,依题意知X~B(100,0.682 7),所以E(X)=100×0.682 7≈68.27.
课时分层作业(十七) 回归分析的基本思想及其初步应用
(建议用时:40分钟)
[基础达标练]
一、选择题
1.设有一个回归方程为=2-2.5x,则变量x增加一个单位时,( )
A.y平均增加2.5个单位 B.y平均增加2个单位
C.y平均减少2.5个单位 D.y平均减少2个单位
C [由回归方程知x增加一个单位,y平均减少2.5个单位.]
2.对变量x,y进行回归分析时,依据得到的4个不同的回归模型画出残差图,则下列模型拟合精度最高的是( )
A [用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.]
3.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如表所示:
父亲身高x(cm)
174
176
176
176
178
儿子身高y(cm)
175
175
176
177
177
则y对x的线性回归方程为( )
【导学号:95032238】
A.=x-1 B.=x+1
C.=88+x D.=176
C [设y对x的线性回归方程为=x+,
=176,=176,检验得y=88+过点(,).]
4.变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则( )
A.r2<r1<0 B.0<r2<r1
C.r2<0<r1 D.r2=r1
C [画散点图,由散点图可知X与Y是正相关,则相关系数r1>0,U与V是负相关,相关系数r2<0,故选C.]
5.关于残差图的描述错误的是( )
A.残差图的横坐标可以是样本编号
B.残差图的横坐标也可以是解释变量或预报变量
C.残差点分布的带状区域的宽度越窄相关指数越小
D.残差点分布的带状区域的宽度越窄残差平方和越小
C [残差点分布的带状区域的宽度越宽,说明模型拟合精度越高,则残差平方和越小,此时,相关指数R2的值越大,故描述错误的是选项C.]
二、填空题
6.如图3-1-1四个散点图中,适合用线性回归模型拟合的两个变量的是________(填序号).
图3-1-1
①③ [由题图易知,①③两个图中的样本点在一条直线附近,因此适合用线性回归模型拟合.]
7.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程=0.67x+54.9.
零件数x(个)
10
20
30
40
50
加工时间Y(min)
62
75
81
89
现发现表中有一个数据模糊看不清,请你推断出该数据的值为________.
【导学号:95032239】
68 [由表知=30,设模糊不清的数据为m,则=(62+m+75+81+89)=,因为=0.67+54.9,
即=0.67×30+54.9,
解得m=68.]
8.若一个样本的总偏差平方和为80,残差平方和为60,则相关指数R2为________.
0.25 [回归平方和=总偏差平方和-残差平方和=80-60=20,故R2==0.25或R2=1-=0.25.]
三、解答题
9.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元)
8
8.2
8.4
8.6
8.8
9
销量y(件)
90
84
83
80
75
68
(1)求回归直线方程=x+,其中=-20,=-;
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
[解] (1)由于=(8+8.2+8.4+8.6+8.8+9)=8.5,
=(90+84+83+80+75+68)=80.
所以=-=80+20×8.5=250,从而回归直线方程为=-20x+250.
(2)设工厂获得的利润为L元,依题意得
L=x(-20x+250)-4(-20x+250)
=-20x2+330x-1 000
=-20+361.25.
当且仅当x=8.25时,L取得最大值.
故当单价定为8.25元时,工厂可获得最大利润.
10.在一段时间内,某淘宝网店一种商品的销售价格x元和日销售量y件之间的一组数据为:
价格x元
22
20
18
16
14
日销售量y件
37
41
43
50
56
求出y关于x的回归方程,并说明该方程拟合效果的好坏.
参考数据:iyi=3 992,=1 660.
【导学号:95032240】
[解] 作出散点图(此处略),观察散点图,可知这些点散布在一条直线的附近,故可用线性回归模型来拟合数据.
因为==18,
==45.4.
所以==-2.35,
=45.4-(-2.35)×18=87.7.
所以回归方程为=-2.35x+87.7.
yi-i与yi-的值如下表:
yi-i
1
0.3
-2.4
-0.1
1.2
yi-
-8.4
-4.4
-2.4
4.6
10.6
计算得(yi-i)2=8.3,
(yi-)2=229.2,
所以R2=1-≈0.964.
因为0.964很接近于1,所以该模型的拟合效果比较好.
[能力提升练]
一、选择题
1.如图3-1-2,5个(x,y)数据,去掉D(3,10)后,下列说法错误的是( )
图3-1-2
A.相关系数r变大
B.残差平方和变大
C.相关指数R2变大
D.解释变量x与预报变量y的相关性变强
B [由散点图知,去掉D后,x与y的相关性变强,且为正相关,所以r变大,R2变大,残差平方和变小.]
2.已知x与y之间的几组数据如下表:
x
1
2
3
4
5
6
y
0
2
1
3
3
4
假设根据上表数据所得线性回归直线方程为=x+,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y′=b′x+a′,则以下结论正确的是( )
【导学号:95032241】
A.>b′,>a′ B.>b′,<a′
C.<b′,>a′ D.<b′,<a′
C [过(1,0)和(2,2)的直线方程为y′=2x-2,
画出六点的散点图,回归直线的大概位置如图所示,
显然,b′>,>a′,故选C.]
二、填空题
3.甲、乙、丙、丁四位同学各自对A,B两变量的线性相关性进行分析,并用回归分析的方法分别求得相关指数R2与残差平方和Q(,)如下表:
甲
乙
丙
丁
R2
0.67
0.61
0.48
0.72
Q(,)
106
115
124
103
则能体现A,B两个变量有更强的线性相关性的为________.
丁 [丁同学所求得的相关指数R2最大,残差平方和Q(,)最小.此时A,B两变量线性相关性更强.]
4.某品牌服装专卖店为了解保暖衬衣的销售量y(件)与平均气温x(℃)之间的关系,随机统计了连续四旬的销售量与当旬平均气温,其数据如表:
时间
二月上旬
二月中旬
二月下旬
三月上旬
旬平均
气温x(℃)
3
8
12
17
旬销售
量y(件)
55
m
33
24
由表中数据算出线性回归方程=x+中的=-2,样本中心点为(10,38).
(1)表中数据m=__________.
(2)气象部门预测三月中旬的平均气温约为22 ℃,据此估计,该品牌的保暖衬衣在三月中旬的销售量约为__________件.
【导学号:95032242】
(1)40 (2)14 [(1)由=38,得m=40.
(2)由=- ,得=58,
故=-2x+58,
当x=22时,=14,
故三月中旬的销售量约为14件.]
三、解答题
5.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
图3-1-3
(xi-)2
(wi-)2
(xi-)(yi-)
(wi-)(yi-)
46.6
563
6.8
289.8
1.6
1 469
108.8
表中wi=,w]=wi.
(1)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(2)的结果回答下列问题:
①年宣传费x=49时,年销售量及年利润的预报值是多少?
②年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为=,=- .
[解] (1)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型.
(2)令w=,先建立y关于w的线性回归方程.
由于===68,
=- =563-68×6.8=100.6,
所以y关于w的线性回归方程为=100.6+68w,
因此y关于x的回归方程为=100.6+68.
(3)①由(2)知,当x=49时,
年销售量y的预报值=100.6+68=576.6,
年利润z的预报值=576.6×0.2-49=66.32.
②根据(2)的结果知,年利润z的预报值
=0.2(100.6+68)-x=-x+13.6+20.12.
所以当==6.8,即x=46.24时,取得最大值.
故年宣传费为46.24千元时,年利润的预报值最大.
课时分层作业(十八)独立性检验的基本思想及其初步应用
(建议用时:40分钟)
[基础达标练]
一、选择题
1.分类变量X和Y的列联表如下:
y1
y2
总计
x1
a
b
a+b
x2
c
d
c+d
总计
a+c
b+d
a+b+c+d
则下列说法正确的是( )
A.ab-bc越小,说明X与Y关系越弱
B.ad-bc越大,说明X与Y关系越强
C.(ad-bc)2越大,说明X与Y关系越强
D.(ad-bc)2越接近于0,说明X与Y关系越强
C [|ad-bc|越小,说明X与Y关系越弱,|ad-bc|越大,说明X与Y关系越强.]
2.下列关于等高条形图的叙述正确的是( )
【导学号:95032247】
A.从等高条形图中可以精确地判断两个分类变量是否有关系
B.从等高条形图中可以看出两个变量频数的相对大小
C.从等高条形图中可以粗略地看出两个分类变量是否有关系
D.以上说法都不对
C [在等高条形图中仅能粗略判断两个分类变量的关系,故A错.在等高条形图中仅能够找出频率,无法找出频数,故B错.]
3.通过对K2的统计量的研究得到了若干个临界值,当K2≤2.706时,我们认为( )
A.在犯错误的概率不超过0.05的前提下认为X与Y有关系
B.在犯错误的概率不超过0.01的前提下认为X与Y有关系
C.没有充分理由认为X与Y有关系
D.不能确定
C [∵K2≤2.706,∴没有充分理由认为X与Y有关系.]
4.下面是调查某地区男女学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图3-2-4中可以看出( )
图3-2-4
A.性别与喜欢理科无关
B.女生中喜欢理科的比为80%
C.男生比女生喜欢理科的可能性大些
D.男生不喜欢理科的比为60%
C [由题图知女生中喜欢理科的比为20%,男生不喜欢理科的比为40%,故A,B,D错误,C正确.男生比女生喜欢理科的可能性大些.]
5.假设有两个变量X与Y,它们的取值分别为x1,x2和y1,y2,其列联表为:
y1
y2
总计
x1
a
b
a+b
x2
c
d
c+d
总计
a+c
b+d
a+b+c+d
以下各组数据中,对于同一样本能说明X与Y有关系的可能性最大的一组为( )
A.a=50,b=40,c=30,d=20
B.a=50,b=30,c=40,d=20
C.a=20,b=30,c=40,d=50
D.a=20,b=30,c=50,d=40
D [当(ad-bc)2的值越大,随机变量K2=的值越大,可知X与Y有关系的可能性就越大.显然选项D中,(ad-bc)2的值最大.]
二、填空题
6.在对某小学的学生进行吃零食的调查中,得到如下表数据:
吃零食
不吃零食
总计
男学生
27
34
61
女学生
12
29
41
总计
39
63
102
根据上述数据分析,我们得出的K2的观测值k约为________.
【导学号:95032248】
2.334 [由公式可计算得k=≈2.334.]
7.在独立性检验中,统计量K2有两个临界值:3.841和6.635.当K2>3.841时,有95%的把握说明两个事件有关,当K2>6.635时,有99%的把握说明两个事件有关,当K2≤3.841时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2 000人,经计算K2=20.87.根据这一数据分析,我们有理由认为打鼾与患心脏病之间是________的(有关、无关).
有关 [K2=20.87>6.635,我们有99%的把握认为两者有关.]
8.下列关于K2的说法中,正确的有________.
①K2的值越大,两个分类变量的相关性越大;
②K2的计算公式是K2=;
③若求出K2=4>3.841,则有95%的把握认为两个分类变量有关系,即有5%的可能性使得“两个分类变量有关系”的推断出现错误;
④独立性检验就是选取一个假设H0条件下的小概率事件,若在一次试验中该事件发生了,这是与实际推断相抵触的“不合理”现象,则作出拒绝H0的推断.
③④ [对于①,K2的值越大,只能说明我们有更大的把握认为二者有关系,却不能判断相关性大小,故①错误;对于②,(ad-bc)应为(ad-bc)2,故②错;根据独立性检验的概念和临界值表知③,④正确.]
三、解答题
9.为了研究子女吸烟与父母吸烟的关系,调查了一千多名青少年及其家长,数据如下:
父母吸烟
父母不吸烟
总计
子女吸烟
237
83
320
子女不吸烟
678
522
1 200
总计
915
605
1 520
利用等高条形图判断父母吸烟对子女吸烟是否有影响?
[解] 等高条形图如图所示:
由图形观察可以看出父母吸烟者中子女吸烟的比例要比父母不吸烟者中子女吸烟的比例高,因此可以在某种程度上认为“子女吸烟与父母吸烟有关系”.
10.有人发现一个有趣的现象,中国人的邮箱里含有数字比较多,而外国人邮箱名称里含有数字比较少,为了研究国籍和邮箱名称里含有数字的关系,他收集了124个邮箱名称,其中中国人的64个,外国人的60个,中国人的邮箱中有43个含数字,外国人的邮箱中有27个含数字.
(1)根据以上数据建立2×2列联表;
(2)他发现在这组数据中,外国人邮箱里含数字的也不少,他不能断定国籍和邮箱名称里含有数字是否有关,你能帮他判断一下吗?
【导学号:95032249】
[解] (1)2×2的列联表:
中国人
外国人
总计
有数字
43
27
70
无数字
21
33
54
总计
64
60
124
(2)假设“国籍和邮箱名称里与是否含有数字无关”.
由表中数据得k=≈6.201.
因为k>5.024,所以有理由认为假设“国籍和邮箱名称里与是否含有数字无关”是不合理的,即在犯错误的概率不超过0.025的前提下认为“国籍和邮箱名称里与是否含有数字有关”.
[能力提升练]
一、选择题
1.观察下列各图,其中两个分类变量x,y之间关系最强的是( )
A B
C D
D [在四幅图中,D图中两个深色条的高相差最明显,说明两个分类变量之间关系最强.]
2.某研究所为了检验某血清预防感冒的作用,把500名使用了该血清的志愿者与另外500名未使用该血清的志愿者一年中的感冒记录作比较,提出假设H:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K2≈3.918,经查临界值表知P(K2≥3.841)≈0.05.则下列叙述中正确的是( )
【导学号:95032250】
A.有95%的把握认为“这种血清能起到预防感冒的作用”
B.若有人未使用该血清,那么他一年中有95%的可能性得感冒
C.这种血清预防感冒的有效率为95%
D.这种血清预防感冒的有效率为5%
A [K2≈3.918>3.841,因此有95%的把握认为“这种血清能起到预防感冒的作用”,故选A.]
二、填空题
3.某班主任对全班50名学生作了一次调查,所得数据如表:
认为作业多
认为作业不多
总计
喜欢玩电脑游戏
18
9
27
不喜欢玩电脑游戏
8
15
23
总计
26
24
50
由表中数据计算得到K2的观测值k≈5.059,于是________(填“能”或“不能”)在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关.
不能 [查表知若要在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关,则临界值k0=6.635,本题中,k≈5.059<6.635,所以不能在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关.]
4.为研究某新药的疗效,给100名患者服用此药,跟踪调查后得下表中的数据:
无效
有效
总计
男性患者
15
35
50
女性患者
6
44
50
总计
21
79
100
设H:服用此药的效果与患者的性别无关,则K2的观测值k≈________(小数点后保留一位有效数字),从而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为________.
4.9 5% [由公式计算得K2的观测值k≈4.9.∵k>3.841,∴我们有95%的把握认为服用此药的效果与患者的性别有关,从而有5%的可能性出错.]
三、解答题
5.随着生活水平的提高,人们患肝病的越来越多,为了解中年人患肝病与经常饮酒是否有关,现对30名中年人进行了问卷调查得到如下列联表:
常饮酒
不常饮酒
合计
患肝病
2
不患肝病
18
合计
30
已知在全部30人中随机抽取1人,抽到肝病患者的概率为.
(1)请将上面的列联表补充完整,并判断是否有99.5%的把握认为患肝病与常饮酒有关?说明你的理由;
(2)现从常饮酒且患肝病的中年人(恰有2名女性)中,抽取2人参加电视节目,则正好抽到一男一女的概率是多少?
参考数据:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
【导学号:95032251】
[解] (1)设患肝病中常饮酒的人有x人,=,x=6.
常饮酒
不常饮酒
合计
患肝病
6
2
8
不患肝病
4
18
22
合计
10
20
30
由已知数据可求得
K2=≈8.523>7.879,
因此有99.5%的把握认为患肝病与常饮酒有关.
(2)设常饮酒且患肝病的男性为A,B,C,D,女性为E,F,则任取两人有AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15种.其中一男一女有AE,AF,BE,BF,CE,CF,DE,DF,共8种.故抽出一男一女的概率是P=.
课时分层作业(一)分类加法计数原理与分步乘法计数原理
(建议用时:40分钟)
一、选择题
1.某一数学问题可用综合法和分析法两种方法证明,有6名同学只会用综合法证明,有4名同学只会用分析法证明,现从这些同学中任选1名同学证明这个问题,不同的选法种数为( )
【导学号:95032007】
A.10 B.16
C.20 D.24
A [每一种方法都能证明该问题,根据分类加法计数原理,共有6+4=10种不同的选法.]
2.甲、乙两人从4门课程中各选修1门,则甲、乙所选的课程不相同的选法共有( )
A.6种 B.12种
C.30种 D.36种
B [∵甲、乙两人从4门课程中各选修1门,
∴由乘法原理,可得甲、乙所选的课程不相同的选法有4×3=12种.]
3.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为( )
【导学号:95032008】
A.40 B.16
C.13 D.10
C [根据直线与直线外一点可以确定一个平面,得:a上任一点与直线b确定一平面,共5个;b上任一点与直线a确定一平面,共8个,由分类加法计数原理得共有5+8=13个.]
4.有5列火车停在某车站并排的5条轨道上,若火车A不能停在第1轨道上,则5列火车的停车方法共有( )
【导学号:95032009】
A.96种 B.24种
C.120种 D.12种
A [先排第1轨道,有4种排法,第2,3,4,5轨道各有4,3,2,1种,由分步乘法计数原理知共有4×4×3×2×1=96种.]
5.晓芳有4件不同颜色的衬衣,3件不同花样的裙子,另有2套不同样式的连衣裙.“五一”节需选择一套服装参加歌舞演出,则李芳不同的选择穿衣服的方式有( )
【导学号:95032010】
A.24种 B.14种
C.10种 D.9种
B [首先分两类.第一类是穿衬衣和裙子,由分步乘法计数原理知共有4×3=12种,第二类是穿连衣裙有2种.所以由分类加法计数原理知共有12+2=14种穿衣服的方式.]
二、填空题
6.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)
14 [法一:数字2只出现一次的四位数有4个;数字2出现两次的四位数有6个,数字2出现三次的四位数有4个.故总共有4+6+4=14(个).
法二:由数字2,3组成的四位数共有24=16个.其中没有数字2的四位数只有1个,没有数字3的四位数也只有1个,故符合条件的四位数共有16-2=14(个).]
7.某班2018年元旦晚会原定的5个节目已排成节目单,开演前又增加了2个新节目,如果将这两个新节目插入原节目单中,那么不同的插法的种数为________.
【导学号:95032011】
42 [将第一个新节目插入5个节目排成的节目单中有6种插入方法,再将第二个新节目插入到刚排好的6个节目排成的节目单中有7种插入方法,利用分步乘法计数原理,共有插入方法:6×7=42(种).]
8.已知集合M={1,-2,3},N={-4,5,6,7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点共有________个.
17 [分两类:第1类,M中的元素作横坐标,N中的元素作纵坐标,则有3×3=9个在第一、二象限内的点;第2类,N中的元素作横坐标,M中的元素作纵坐标,则有4×2=8个在第一、二象限内的点.由分类加法计数原理,共有9+8=17个点在第一、二象限内.]
三、解答题
9.在一次中美贸易洽谈会上,我方有三名代表分别来自三个工厂,美方有4个代表也来自四个不同的工厂,见面时每人与对方代表握手一次,要求我方代表必须与对方代表签约,且只与一家代表签一次约,问这些人共握手几次?有多少不同的签约结果?
【导学号:95032012】
[解] (1)我方代表甲与对方握手4次,乙、丙也是各握手4次,共4+4+4=12次.
(2)我方代表甲有4种签约的可能.同样,乙、丙也有4种可能,完成签约看成分三步完成,
∴共有4×4×4=64种签约结果.
10.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人.
【导学号:95032013】
(1)从中任选1人去献血,有多少种不同的选法;
(2)从四种血型的人中各选1人去献血,有多少种不同的选法?
[解] 从O型血的人中选1人有28种不同的选法;
从A型血的人中选1人有7种不同的选法;
从B型血的人中选1人有9种不同的选法;
从AB型血的人中选1人有3种不同的选法.
(1)任选1人去献血,即无论选哪种血型的哪一个人,“任选1人去献血”这件事情都可以完成,所以用分类加法计数原理.有28+7+9+3=47种不同的选法.
(2)要从四种血型的人中各选1人,即从每种血型的人中各选出1人后,“各选1人去献血”这件事情才完成,所以用分步乘法计数原理.
有28×7×9×3=5 292种不同的选法.
课时分层作业(二)分类加法计数原理与分步乘法计数原理的应用
(建议用时:45分钟)
[基础达标练]
一、选择题
1.由数字0,1,2,3,4可组成无重复数字的两位数的个数是( )
A.25 B.20
C.16 D.12
C [分两步:先选十位,再选个位,可组成无重复数字的两位数的个数为4×4=16.]
2.某年级要从3名男生,2名女生中选派3人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有( )
A.6种 B.7种
C.8种 D.9种
D [可按女生人数分类:若选派一名女生,有2×3=6种;若选派2名女生,则有3种.由分类加法计数原理,共有9种不同的选派方法.]
3.由数字1,2,3,4组成的三位数中,各位数字按严格递增(如“134”)或严格递减(如“421”)顺序排列的数的个数是( )
【导学号:95032020】
A.4 B.8
C.16 D.24
B [由题意分析知,严格递增的三位数只要从4个数中任取3个,共有4种取法;同理严格递减的三位数也有4个,所以符合条件的数的个数为4+4=8.]
4.从1,2,3,4,5五个数中任取3个,可组成不同的等差数列的个数为( )
A.2 B.4
C.6 D.8
D [第一类,公差大于0,有①1,2,3,②2,3,4,③3,4,5,④1,3,5,共4个等差数列;第二类,公差小于0,也有4个.
根据分类加法计数原理可知,共有4+4=8个不同的等差数列.]
5.(a1+a2+a3+a4)·(b1+b2)·(c1+c2+c3)展开后共有不同的项数为( )
A.9 B.12
C.18 D.24
D [由分步乘法计数原理得共有不同的项数为4×2×3=24.故选D.]
二、填空题
6.小张正在玩“QQ农场”游戏,他计划从仓库里的玉米、土豆、茄子、辣椒、胡萝卜这5种种子中选出4种分别种植在四块不同的空地上(一块空地只能种植一种作物),若小张已决定在第一块空地上种茄子或辣椒,则不同的种植方案共有________种.
【导学号:95032021】
48 [当第一块地种茄子时,有4×3×2=24种不同的种法;当第一块地种辣椒时,有4×3×2=24种不同的种法,故共有48种不同的种植方案.]
7.如图1-1-6所示,从点A沿圆或三角形的边运动到点C,则不同的走法有________种.
图1-1-6
6 [由A直接到C有2种不同的走法,由A经点B到C有2×2=4种不同的走法.因此由分类加法计数原理共有2+4=6种不同走法.]
8.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有________种.
20 [分三类:若甲在周一,则乙丙有4×3=12种排法;
若甲在周二,则乙丙有3×2=6种排法;
若甲在周三,则乙丙有2×1=2种排法.
所以不同的安排方法共有12+6+2=20种.]
三、解答题
9.如图1-1-7所示,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且两端的格子的颜色也不同,不同的涂色方法共有多少种(用数字作答).
【导学号:95032022】
图1-1-7
[解] 不妨将图中的4个格子依次编号为①②③④,当①③同色时,有6×5×1×5=150种方法;当①③异色时,有6×5×4×4=480种方法.所以共有150+480=630种方法.
10.用数字1,2,3,4,5,6组成无重复数字的三位数,然后由小到大排成一个数列.
(1)求这个数列的项数;
(2)求这个数列中的第89项的值.
[解] (1)完成这件事需要分别确定百位、十位和个位数,可以先确定百位,再确定十位,最后确定个位,因此要分步相乘.
第一步:确定百位数,有6种方法.
第二步:确定十位数,有5种方法.
第三步:确定个位数,有4种方法.
根据分步乘法计数原理,共有
N=6×5×4=120个三位数.
所以这个数列的项数为120.
(2)这个数列中,百位是1,2,3,4的共有4×5×4=80个,
百位是5的三位数中,十位是1或2的有4+4=8个,
故第88个为526,故从小到大第89项为531.
[能力提升练]
一、选择题
1.把10个水果分成3份,要求每份至少一个,至多5个,则不同的分法种数是( )
A.5 B.6
C.4 D.3
C [由于分成3份,每份至少1个,至多5个,故有一份1个水果,则其余两份只能是一份5个,一份4个;有一份2个水果,则其余两份可能一份5个,一份3个,或两份都是4个;有一份3个水果,则其余两份只能是一份4个,一份3个.
∴共有1+2+1=4(种).]
2.如图1-1-8所示,花坛内有5个花池,有5种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则栽种方案最多有( )
【导学号:95032023】
图1-1-8
A.180种 B.240种
C.360种 D.420种
D [区域2,3,4,5地位相同(都与其他4个区域中的3个区域相邻),故应先种区域1,有5种种法,再种区域2,有4种种法,接着种区域3,有3种种法,种区域4时应注意:区域4与区域2同色时区域4有1种种法,此时区域5有3种种法;区域4与区域2不同色时区域4有2种种法,此时区域5有2种种法,故共有5×4×3×(3+2×2)=420种栽种方案.故选D.]
二、填空题
3.如图1-1-9的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L形,那么在由3×5个小方格组成的方格纸上可以画出不同位置的L形图案的个数为________.(注:其他方向的也是L形)
图1-1-9
32 [每四个小正方形图案都可画出四个不同的L形图案,该图中共有8个这样的小正方形.故可画出不同位置的L型图案的个数为4×8=32.]
4.平面内有7个点,其中有5个点在一条直线上,此外无三点共线,经过这7个点可连成不同直线的条数是________.
【导学号:95032024】
12 [设5个点所在直线为l,直线外两点为A,B.解决本题可分三类:
第一类,确定直线的两点都在直线l上时,确定的直线为l,只有这1条直线;
第二类,确定直线的两点中一点在l上,另一点不在l上时,可以分两步完成选这两个点的任务,第一步从共线的5点中选一个点,有5种选法,第二步,从A、B中选一个点,有2种选法,故共有5×2=10(条)直线;
第三类,确定直线的两点均不在l上,则只能是A、B两点,故能确定1条直线.
由分类加法计数原理,共可确定1+10+1=12(条)直线.]
三、解答题
5.某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图1-1-10所示的6个点A,B,C,A1,B1,C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有多少种?
【导学号:95032025】
图1-1-10
[解] 第一步,在点A1,B1,C1上安装灯泡,A1有4种方法,B1有3种方法,C1有2种方法,共有4×3×2=24(种)方法.
第二步,从A,B,C中选一个点安装第4种颜色的灯泡,有3种方法.
第三步,再给剩余的两个点安装灯泡,假设剩下的为B,C,若B与A1同色,则C只能选B1点颜色;
若B与C1同色,则C有A1,B1处两种颜色可选.故B,C选灯泡共有3种方法,由分步乘法计数原理可得,共有4×3×2×3×3=216(种)方法.
课时分层作业(三) 排列与排列数公式
(建议用时:40分钟)
[基础达标练]
一、选择题
1.下列问题属于排列问题的是( )
①从10个人中选2人分别去种树和扫地;
②从10个人中选2人去扫地;
③从班上30名男生中选出5人组成一个篮球队;
④从数字5,6,7,8中任取两个不同的数作logab中的底数与真数.
A.①④ B.①②
C.④ D.①③④
A [根据排列的概念知①④是排列问题.]
2.从2,3,5,7四个数中任选两个分别相除,则得到的结果有( )
【导学号:95032030】
A.6个 B.10个
C.12个 D.16个
C [符合题意的商有A=4×3=12.]
3.计算=( )
A.12 B.24
C.30 D.36
D [A=7×6A,A=6A,所以==36.]
4.给出下列4个等式:
①n!=;②A=nA;③A=;④A=,
其中正确的个数为( )
A.1 B.2
C.3 D.4
C [由排列数公式逐一验证,①②③成立,④不成立.故选C.]
5.若S=A+A+A+…+A,则S的个位数字是( )
【导学号:95032031】
A.0 B.3
C.5 D.8
B [∵A=120,∴n≥5时A的个位数都为零,∴1!+2!+3!+4!=1+2+6+24=33.
故S个位数字为3.]
二、填空题
6.集合P={x|x=A,m∈N*},则集合P中共有______个元素.
3 [因为m∈N*,且m≤4,所以P中的元素为A=4,A=12,A=A=24,即集合P中有3个元素.]
7.如果A=15×14×13×12×11×10,那么n=________,m=________.
【导学号:95032032】
15 6 [15×14×13×12×11×10=A,故n=15,m=6.]
8.现有8种不同的菜种,任选4种种在不同土质的4块地上,有________种不同的种法.(用数字作答)
1 680 [将4块不同土质的地看作4个不同的位置,从8种不同的菜种中
任选4种种在4块不同土质的地上,则本题即为从8个不同元素中任选4个元素的排列问题.所以不同的种法共有A=8×7×6×5=1 680(种).]
三、解答题
9.判断下列问题是否是排列问题.
(1)从2,3,5,7,9中任取两数作为对数的底数与真数,可得多少个不同的对数值?
(2)空间有10个点,任何三点不共线,任何四点不共面,则这10个点共可组成多少个不同的四面体?
(3)某班有10名三好学生,5名学困生,班委会决定选5名三好学生对5名学困生实行一帮一活动,共有多少种安排方式?
(4)若从10名三好学生中选出5名和5名学困生组成一个学习小组,共有多少种安排方式?
[解] (1)对数的底数与真数不同,所得的结果不同,是排列问题.
(2)四面体与四个顶点的顺序无关,不是排列问题.
(3)选出的5名三好学生与5名学困生进行一帮一活动与顺序有关,是排列问题.
(4)选出的5名三好学生与5名学困生组成一个学习小组与顺序无关,不是排列问题.
10.解方程:A=140A.
【导学号:95032033】
[解] 根据排列数的定义,x应满足,
解得x≥3,x∈N*.
根据排列数公式,原方程化为(2x+1)·2x·(2x-1)·(2x-2)=140x·(x-1)·(x-2).
因为x≥3,于是得(2x+1)(2x-1)=35(x-2),
即4x2-35x+69=0,
解得x=3或x=(舍去).
所以原方程的解为x=3.
[能力提升练]
一、选择题
1.满足不等式>12的n的最小值为( )
A.12 B.10 C.9 D.8
B [由排列数公式得>12,则(n-5)(n-6)>12,解得n>9或n<2(舍去).又n∈N*,所以n的最小值为10.]
2.若n∈N*且n<20,则(27-n)(28-n)…(34-n)=( )
A.A B.A
C.A D.A
D [由排列数公式定义知,上式=A,故选D.]
二、填空题
3.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言.(用数字作答)
1 560 [A=40×39=1 560.]
4.从集合{0,1,2,5,7,9,11}中任取3个元素分别作为直线方程Ax+By+C=0中的系数A,B,C,所得直线经过坐标原点的有________条.
【导学号:95032034】
30 [易知过原点的直线方程的常数项为0,则C=0,再从集合中任取两个非零元素作为系数A,B,有A种,而且其中没有相同的直线,所以符合条件的直线条数为A=30.]
三、解答题
5.规定A=x(x-1)…(x-m+1),其中x∈R,m为正整数,且A=1,这是排列数A(n,m是正整数,且m≤n)的一种推广.
(1)求A的值;
(2)确定函数f(x)=A的单调区间.
[解] (1)由已知得A=(-15)×(-16)×(-17)=-4 080.
(2)函数f(x)=A=x(x-1)(x-2)=x3-3x2+2x,则f′(x)=3x2-6x+2.
令f′(x)>0,得x>或x<,
所以函数f(x)的单调增区间为
,;
令f′(x)<0,得<x<,
所以函数f(x)的单调减区间为.
课时分层作业(四) 排列的综合应用
(建议用时:40分钟)
[基础达标练]
一、选择题
1.某天上午要排语文,数学,体育,计算机四节课,其中体育不排在第一节,那么这天上午课程表的不同排法共有( )
A.6种 B.9种
C.18种 D.24种
C [先排体育有A种,再排其他的三科有A种,共有3×6=18(种).]
2.6名同学排成一排,其中甲、乙两人必须在一起的不同排法共有( )
【导学号:95032039】
A.720 B.360
C.240 D.120
C [因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人,与其余四人全排列共有A种排法,但甲、乙两人之间有A种排法.
由分步乘法计数原理知,共有AA=240种不同的排法.]
3.用1,2,3,4,5这五个数字,组成没有重复数字的三位数,其中奇数的个数为( )
A.36 B.30
C.40 D.60
A [奇数的个位数字为1,3或5,所以个位数字的排法有A种,十位数字和百位数字的排法种数有A种,故奇数有A·A=3×4×3=36个.]
4.5人排成一排,其中甲,乙至少一人在两端的排法种数为( )
【导学号:95032040】
A.6 B.84
C.24 D.48
B [5人全排列有A种,甲,乙都不在两端的排法有AA种,共有A-AA=84种不同的排法.]
5.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lgb的不同值的个数是( )
A.9 B.10
C.18 D.20
C [从1,3,5,7,9这五个数中每次取出两个不同数的排列个数为A=20,但lg 1-lg 3=lg 3-lg 9,lg 3-lg 1=lg 9-lg 3,所以不同值的个数为20-2=18,故选C.]
二、填空题
6.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种.(用数字作答)
【导学号:95032041】
36 [分三步分别选出文娱委员、学习委员、体育委员,共有AAA=36种选法.]
7.从0,1,2,3这四个数中选三个不同的数作为函数f(x)=ax2+bx+c中的参数a,b,c,可组成不同的二次函数共有________个.
18 [若得到二次函数,则a≠0,a有A种选择,故二次函数有AA=3×3×2=18(个).]
8.在所有无重复数字的四位数中,千位上的数字比个位上的数字大2的数共有________个.
【导学号:95032042】
448 [千位数字比个位数字大2,有8种可能,即(2,0),(3,1),…,(9,7)前一个数为千位数字,后一个数为个位数字.其余两位无任何限制,所以共有8A=448个.]
三、解答题
9.一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单.
(1)3个舞蹈节目不排在开始和结尾,有多少种排法?
(2)前四个节目要有舞蹈节目,有多少种排法?
[解] (1)先从5个演唱节目中选两个排在首尾两个位置有A种排法,再将剩余的3个演唱节目,3个舞蹈节目排在中间6个位置上有A种排法,故共有不同排法AA=14 400种.
(2)先不考虑排列要求,有A种排列,其中前四个节目没有舞蹈节目的情况,可先从5个演唱节目中选4个节目排在前四个位置,然后将剩余四个节目排列在后四个位置,有AA种排法,所以前四个节目要有舞蹈节目的排法有A-AA=37 440种.
10.用0,1,2,3,4,5这六个数字:
(1)能组成多少个无重复数字的四位偶数;
(2)能组成多少个无重复数字且为5的倍数的五位数;
(3)能组成多少个比1 325大的四位数.
【导学号:95032043】
[解] (1)符合要求的四位偶数可分为三类:
第一类:0在个数时有A个;
第二类:2在个位时,首位从1,3,4,5中选定1个有A种,十位和百位从余下的数字中选,有A种,于是有A·A个;
第三类:4在个位时,与第二类同理,也有A·A个.
由分类加法计数原理知,共有四位偶数A+A·A+A·A=156(个).
(2)五位数中是5的倍数的数可分为两类:个位数上的数字是0的五位数有A个;个位数上的数字是5的五位数有A·A个.
故满足条件的五位数的个数共有A+A·A=216(个).
(3)比1 325大的四位数可分为三类:
第一类:形如2,3,4,5的数,共A·A个;
第二类:形如14,15,共A·A个;
第三类:形如134,135,共A·A个.
由分类加法计数原理知,比1 325大的四位数共有A·A+A·A+A·A=270(个).
[能力提升练]
一、选择题
1.3张卡片正反面分别标有数字1和2,3和4,5和7,若将3张卡片并列组成一个三位数,可以得到不同的三位数的个数为( )
A.30 B.48
C.60 D.96
B [“组成三位数”这件事,分2步完成:第1步,确定排在百位、十位、个位上的卡片,即为3个元素的一个全排列A;第2步,分别确定百位、十位、个位上的数字,各有2种方法.根据分步乘法计数原理,可以得到A×2×2×2=48个不同的三位数.]
2.安排6名歌手演出的顺序时,要求歌手乙、丙均排在歌手甲的前面或者后面,则不同排法的种数是( )
A.180 B.240
C.360 D.480
D [不同的排法种数先全排列有A,甲、乙、丙的顺序有A,乙、丙都排在歌手甲的前面或者后面的顺序有甲乙丙,甲丙乙,乙丙甲,丙乙甲,4种顺序,所以不同排法的种数共有4×=480种.]
二、填空题
3.由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是________.
【导学号:95032044】
36 [将3,4两个数全排列,有A种排法,当1,2不相邻且不与5相邻时有A种方法,当1,2相邻且不与5相邻时有A·A种方法,故满足题意的数的个数为A(A+A·A)=36.]
4.把5件不同产品摆成一排,若产品A与产品B相邻, 且产品A与产品C不相邻,则不同的摆法有________种.
36 [先考虑产品A与B相邻,把A,B作为一个元素有A种摆法,而A,B可交换位置,所以有2A=48种摆法,又当A,B相邻又满足A,C相邻,有2A=12种摆法,故满足条件的摆法有48-12=36种.]
三、解答题
5.有4名男生、5名女生,全体排成一行,下列情形各有多少种不同的排法?
(1)甲不在中间也不在两端;
(2)甲、乙两人必须排在两端;
(3)女生互不相邻.
【导学号:95032045】
[解] (1)法一:元素分析法.先排甲有6种,再排其余人有A种,故共有6·A=241 920(种)排法.
法二:位置分析法.中间和两端有A种排法,包括甲在内的其余6人有A种排法,故共有A·A=336×720=241 920(种)排法.
法三:等机会法.9个人全排列有A种,甲排在每一个位置的机会都是均等的,依题意得,甲不在中间及两端的排法总数是A×=241 920(种).
法四:间接法.A-3·A=6A=241 920(种).
(2)先排甲、乙,再排其余7人.
共有A·A=10 080(种)排法.
(3)插空法.先排4名男生有A种方法,再将5名女生插空,有A种方法,故共有A·A=2 880(种)排法.
课时分层作业(五) 组合与组合数公式
(建议用时:40分钟)
[基础达标练]
一、选择题
1.下列四个问题属于组合问题的是( )
A.从4名志愿者中选出2人分别参加导游和翻译的工作
B.从0,1,2,3,4这5个数字中选取3个不同的数字,组成一个三位数
C.从全班同学中选出3名同学出席深圳世界大学生运动会开幕式
D.从全班同学中选出3名同学分别担任班长、副班长和学习委员
C [A、B、D项均为排列问题,只有C项是组合问题.]
2.已知平面内A,B,C,D,E,F这6个点中任何3点均不共线,则由其中任意3个点为顶点的所有三角形的个数为( )
【导学号:95032053】
A.3 B.20
C.12 D.24
B [C==20.]
3.若C=C,则x=( )
A.2 B.4
C.4或2 D.3
C [由组合数性质知,x=2或x=6-2=4.]
4.若A=12C,则n等于( )
A.8 B.5或6
C.3或4 D.4
A [A=n(n-1)(n-2),C=n(n-1),
所以n(n-1)(n-2)=12×n(n-1).
由n∈N*,且n≥3,解得n=8.]
5.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )
【导学号:95032054】
A.36种 B.48种
C.96种 D.192种
C [甲选修2门有C=6种选法,乙、丙各有C=4种选法.由分步乘法计数原理可知,共有6×4×4=96种选法.]
二、填空题
6.方程:C+C=C-C的解集为________.
{x|x=2} [由组合数公式的性质可知,解得x=1或x=2,代入方程检验得x=2满足方程,所以原方程的解为{x|x=2}.]
7.C+C+C+…+C的值等于________.
【导学号:95032055】
7 315 [原式=C+C+C+…+C=C+C+…+C=C+C=C=C=7 315.]
8.10个人分成甲、乙两组,甲组4人,乙组6人,则不同的分组种数为________.(用数字作答)
210 [从10人中任选出4人作为甲组,则剩下的人即为乙组,这是组合问题,共有C=210种分法.]
三、解答题
9.从1,2,3,4,5,6六个数字中任选3个后得到一个由这三个数组成的最小三位数,则可以得到多少个不同的这样的最小三位数?
【导学号:95032056】
[解] 从6个不同数字中任选3个组成最小三位数,相当于从6个不同元素中任选3个元素的一个组合,故所有不同的最小三位数共有C==20个.
10.求式子-=中的x.
[解] 原式可化为:-=,∵0≤x≤5,∴x2-23x+42=0,
∴x=21(舍去)或x=2,即x=2为原方程的解.
[能力提升练]
一、选择题
1.满足方程Cx2-x16=C的x值为( )
A.1,3,5,-7 B.1,3
C.1,3,5 D.3,5
B [由x2-x=5x-5或x2-x=16-(5x-5),得x=1,3,5,-7,只有x=1,3时满足组合数的意义.]
2.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型和乙型电视机各1台,则不同的取法共有( )
A.140种 B.84种
C.70种 D.35种
C [可分两类:第一类,甲型1台、乙型2台,有C·C=4×10=40(种)取法,第二类,甲型2台、乙型1台,有C·C=6×5=30(种)取法,共有70种不同的取法.]
二、填空题
3.按ABO血型系统学说,每个人的血型为A,B,O,AB四种之一,依血型遗传学,当且仅当父母中至少有一人的血
型是AB型时,子女一定不是O型,若某人的血型为O型,则父母血型所有可能情况有________种.
【导学号:95032057】
9 [父母应为A,B或O,CC=9种.]
4.已知==,则m与n的值为________.
14 34 [可得:
三、解答题
5.规定C=,其中x∈R,m是正整数,且C=1,这是组合数C(n,m是正整数,且m≤n)的一种推广.
(1)求C的值;
(2)组合数的两个性质:
①C=C;
②C+C=C是否都能推广到C(x∈R,m是正整数)的情形;若能推广,则写出推广的形式并给出证明,若不能,请说明理由.
【导学号:95032058】
[解] (1)C=
=-11 628.
(2)性质①不能推广,例如当x=时,有意义,但无意义.
性质②能推广,它的推广形式是
C+C=C,x∈R,m为正整数.
证明:当m=1时,
有C+C=x+1=C;
当m≥2时,
C+C=+
=
==C.
综上,性质②的推广得证.
课时分层作业(六) 组合的综合应用
(建议用时:40分钟)
[基础达标练]
一、选择题
1.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )
A.60种 B.70种
C.75种 D.150种
C [从6名男医生中选出2名有C种选法,从5名女医生中选出1名有C种选法,由分步乘法计数原理得不同的选法共有C·C=75种,故选C.]
2.圆上有10个点,过每三个点画一个圆内接三角形,则一共可以画的三角形个数为( )
【导学号:95032066】
A.720 B.360
C.240 D.120
D [确定三角形的个数为C=120.]
3.一个口袋中装有大小相同的6个白球和4个黑球,从中取2个球,则这2个球同色的不同取法有( )
A.27种 B.24种
C.21种 D.18种
C [分两类:一类是2个白球有C=15种取法,另一类是2个黑球有C=6种取法,所以共有15+6=21种取法.]
4.某龙舟队有9名队员,其中3人只会划左舷,4人只会划右舷,2人既会划左舷又会划右舷.现要选派划左舷的3人、右舷的3人共6人去参加比赛,则不同的选派方法共有( )
A.56种 B.68种
C.74种 D.92种
D [根据划左舷中有“多面手”人数的多少进行分类:划左舷中没有“多面手”的选派方法有CC种,有一个“多面手”的选派方法有CCC种,有两个“多面手”的选派方法有CC种,既共有20+60+12=92种不同的选派方法.]
5.将5名实习教师分配到高一年级的3个班实习,每班至少1人,最多2人,则不同的分配方案有( )
【导学号:95032067】
A.30种 B.90种
C.180种 D.270种
B [先将5名教师分成3组,有=15种分法,再将3组分配到3个不同班级有A=6种分法,故共有15×6=90种方案.]
二、填空题
6.4位同学每人从甲、乙、丙三门课程中选修1门,则恰有2人选修课程甲的不同选法共有________种.
24 [依题意,满足题意的选法共有C×2×2=24种.]
7.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有________种.
18 [因为先从3个信封中选一个放标号为1,2的卡片,有3种不同的选法,再从剩下的4个标号的卡片中选两个放入一个信封有C=6种,余下的放入最后一个信封,所以共有3C=18(种).]
8.将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内.每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入方法共有________种.(以数字作答)
【导学号:95032068】
240 [从10个球中任取3个,有C种方法.取出的3个球与其所在盒子的标号不一致的方法有2种.
∴共有2C种方法.即240种.]
三、解答题
9.在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件下,有多少种不同的选法?
(1)任意选5人;
(2)甲、乙、丙三人必须参加;
(3)甲、乙、丙三人不能参加;
(4)甲、乙、丙三人只能有1人参加;
(5)甲、乙、丙三人至少1人参加.
[解] (1)C=792种不同的选法.
(2)甲、乙、丙三人必须参加,只需从另外的9人中选2人,共有C=36种不同的选法.
(3)甲、乙、丙三人不能参加,只需从另外的9人中选5人,共有C=126种不同的选法.
(4)甲、乙、丙三人只能有1人参加,分两步,先从甲、乙、丙中选1人,有C=3种选法,再从另外的9人中选4人有C种选法,共有CC=378种不同的选法.
(5)法一:(直接法)可分为三类:
第一类,甲、乙、丙中有1人参加,共有CC种不同的选法;
第二类,甲、乙、丙中有2人参加,共有CC种不同的选法;
第三类,甲、乙、丙3人均参加,共有CC种不同的选法;
共有CC+CC+CC=666种不同的选法.
法二:(间接法)12人中任意选5人共有C种,甲、乙、丙三人不能参加的有C种,所以共有C-C=666种不同的选法.
10.有4个不同的球,4个不同的盒子,把球全部放入盒子内.
(1)共有几种放法?
(2)恰有2个盒子不放球,有几种放法?
【导学号:95032069】
[解] (1)44=256(种).
(2)恰有2个盒子不放球,也就是把4个不同的小球只放入2个盒子中,有两类放法;第一类,1个盒子放3个小球,1个盒子放1个小球,先把小球分组,有C种,再放
到2个小盒中有A种放法,共有CA种方法;第二类,2个盒子中各放2个小球有CC种放法,故恰有2个盒子不放球的方法共有CA+CC=84种放法.
[能力提升练]
一、选择题
1.某电视台连续播放5个广告,其中有3个不同的商业广告和2个不同的公益广告,要求最后播放的必须是公益广告,且2个公益广告不能连续播放,则不同的播放方式有( )
A.120种 B.48种
C.36种 D.18种
C [依题意,所求播放方式的种数为CCA=2×3×6=36.]
2.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有( )
【导学号:95032070】
A.16种 B.36种
C.42种 D.60种
D [(1)每城不超过1个项目,有A=24(种);(2)有1个城市投资2个项目,有CCC=36(种).
∴共有24+36=60(种)方案.]
二、填空题
3.以正方体的顶点为顶点的四面体共有________个.
58 [先从8个顶点中任取4个的取法为C种,其中,共面的4点有12个,则四面体的个数为C-12=58个.]
4.某科技小组有六名学生,现从中选出三人去参观展览,至少有一名女生入选的不同选法有16种,则该小组中的女生人数为________.
2 [设男生人数为x,则女生有(6-x)人.依题意C-C=16,即6×5×4=x(x-1)(x-2)+16×6,所以x(x-1)(x-2)=2×3×4,解得x=4,即女生有2人.]
三、解答题
5.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.
(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?
(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?
【导学号:95032071】
[解] (1)先排前4次测试,只能取正品,有A种不同测试方法,再从4件次品中选2件排在第5和第10的位置上测试,有CA=A种测法,再排余下4件的测试位置,有A种测法.
所以共有不同测试方法A·A·A=103 680种.
(2)第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现,所以共有不同测试方法C·C·A=576种.
课时分层作业(七) 二项式定理
(建议用时:40分钟)
[基础达标练]
一、选择题
1.化简多项式(2x+1)5-5(2x+1)4+10(2x+1)3-10(2x+1)2+5(2x+1)-1的结果是( )
A.(2x+2)5 B.2x5
C.(2x-1)5 D.32x5
D [原式=[(2x+1)-1]5=(2x)5=32x5.]
2.已知 的展开式的第4项等于5,则x等于( )
【导学号:95032078】
A. B.-
C.7 D.-7
B [T4=Cx4=5,则x=-.]
3.在的展开式中常数项是( )
A.-28 B.-7
C.7 D.28
C [Tk+1=C··=(-1)k·C··x,
当8-k=0,即k=6时,T7=(-1)6·C·=7.]
4.在的二项展开式中,x2的系数为( )
A.- B.
C.- D.
C [Tk+1=C·=(-1)k22k-6·Cx3-k,令3-k=2,则k=1,所以x2的系数为(-1)1×2-4×C=-,故选C.]
5.设a∈Z,且0≤a<13,若512 018+a能被13整除,则a=( )
【导学号:95032079】
A.0 B.1
C.11 D.12
D [512 018+a=(13×4-1)2 018+a,被13整除余1+a,结合选项可得a=12时,512 018+a能被13整除.]
二、填空题
6.(1-i)10(i为虚数单位)的二项展开式中第7项为________.
-210 [由通项公式得T7=C·(-i)6=-C=-210.]
7.(1+x)3+(1+x)4+…+(1+x)10展开式中x3的系数为________.
【导学号:95032080】
330 [x3的系数为C+C+C+…+C=C+C+C+…+C=C=330.]
8.如果的展开式中,x2项为第3项,则自然数n=________.
8 [Tk+1=C()n-k=Cx,由题意知k=2时,=2,所以n=8.]
三、解答题
9.化简:S=1-2C+4C-8C+…+(-2)nC(n∈N*).
[解] 将S的表达式改写为:S=C+(-2)C+(-2)2C+(-2)3C+…+(-2)nC=[1+(-2)]n=(-1)n.
∴S=(-1)n=.
10.记的展开式中第m项的系数为bm.
(1)求bm的表达式;
(2)若n=6,求展开式中的常数项;
(3)若b3=2b4,求n.
【导学号:95032081】
[解] (1)的展开式中第m项为C·(2x)n-m+1·=2n+1-m·C·xn+2-2m,
所以bm=2n+1-m·C.
(2)当n=6时,的展开式的通项为Tk+1=C·(2x)6-k·=26-k·C·x6-2k.
依题意,6-2k=0,得k=3,
故展开式中的常数项为T4=23·C=160.
(3)由(1)及已知b3=2b4,得2n-2·C=2·2n-3·C,从而C=C,即n=5.
[能力提升练]
一、选择题
1.在的展开式中,x的幂指数是整数的项共有( )
A.3项 B.4项
C.5项 D.6项
C [Tk+1=Cx·x=C·x,则k=0,6,12,18,24时,x的幂指数为整数,所以x的幂指数有5项是整数项.]
2.使(n∈N*)的展开式中含有常数项的最小的n为( )
【导学号:95032082】
A.4 B.5
C.6 D.7
B [Tk+1=C(3x)n-k=C3n-kx,当Tk+1是常数项时,n-k=0,当k=2,n=5时成立.]
二、填空题
3.若的展开式中x5的系数是-80,则实数a=________.
-2 [Tk+1=C·(ax2)5-k=C·a5-kx.令10-k=5,解得k=2.又展开式中x5的系数为-80,则有C·a3=-80,解得a=-2.]
4.对于二项式(n∈N*),有以下四种判断:
①存在n∈N*,展开式中有常数项;②对任意n∈N*,展开式中没有常数项;③对任意n∈N*,展开式中没有x的一次项;④存在n∈N*,展开式中有x的一次项.其中正确的是________.
①④ [二项式的展开式的通项公式为Tk+1=Cx4k-n,由通项公式可知,当n=4k(k∈N*)和n=4k-1(k∈N*)时,展开式中分别存在常数项和一次项.]
三、解答题
5.已知m,n∈N*,f(x)=(1+x)m+(1+x)n的展开式中x的系数为19,求x2的系数的最小值及此时展开式中x7的系数.
【导学号:95032083】
[解] 由题设知m+n=19,又m,n∈N*,
所以1≤m≤18.
x2的系数为C+C=(m2-m)+(n2-n)=m2-19m+171.
所以当m=9或10时,x2的系数的最小值为81,
此时x7的系数为C+C=156.
课时分层作业(八) “杨辉三角”与二项式系数的性质
(建议用时:40分钟)
一、选择题
1.展开式中的中间两项为( )
【导学号:95032090】
A.-Cx12,Cx12 B.Cx9,-Cx10
C.-Cx13,Cx9 D.Cx17,-Cx13
C [由二项式定理展开式的性质知中间两项为第六项和第七项.]
2.在(a+b)n的二项展开式中与第k项二项式系数相同的项是( )
A.第n-k项 B.第n-k-1项
C.第n-k+1项 D.第n-k+2项
D [第k项的二项式系数是C,由于C=C,第n-k+2项的二项式系数为C,所以(a+b)n的二项展开式中与第k项二项式系数相同的项是第n-k+2项,故选D.]
3.(1-x)13的展开式中系数最小的项为( )
【导学号:95032091】
A.第9项 B.第8项
C.第7项 D.第6项
B [展开式中共有14项,中间两项(第7、8项)的二项式系数最大.由于二项展开式中二项式的系数和项的系数满足:奇数项相等,偶数项互为相反数.故系数最小的项为第8项,系数最大的项为第7项.]
4.已知C+2C+22C+…+2nC=729,则C+C+C的值等于( )
A.64 B.32
C.63 D.31
B [由已知(1+2)n=3n=729,解得n=6,则C+C+C=C+C+C=×26=32.]
5.已知(1+2x)8展开式的二项式系数的最大值为a,系数的最大值为b,则的值为( )
【导学号:95032092】
A. B.
C. D.
A [a=C=70,设b=C2r,则得5≤r≤6,
所以b=C26=C26=7×28,所以=.]
二、填空题
6.如图1-3-1是一个类似杨辉三角的递推式,则第n行的首尾两个数均为________.
【导学号:95032093】
图1-3-1
2n-1 [由1,3,5,7,9,…,可知它们成等差数列,
所以an=2n-1.]
7.(a+)n的展开式中奇数项系数和为512,则展开式的第八项T8=________.
120a [C+C+C+…=2n-1=512=29,所以n=10,所以T8=Ca3()7=120a.]
8.在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的项的系数是________.
【导学号:95032094】
-121 [展开式中含x3的项的系数为
C(-1)3+C(-1)3+C(-1)3+C(-1)3=-121.]
三、解答题
9.求(1+x+x2)(1-x)10展开式中x4的系数.
[解] (1+x+x2)(1-x)10=(1-x3)·(1-x)9,要得到含x4的项,必须第一个因式中的1与(1-x)9展开式中的项C(-x)4作积,第一个因式中的-x3与(1-x)9展开式中的项C(-x)作积,故x4的系数是C+C=135.
10.对二项式(1-x)10,
(1)展开式的中间项是第几项?写出这一项;
(2)求展开式中各二项式系数之和;
(3)求展开式中除常数项外,其余各项的系数和.
【导学号:95032095】
[解] (1)展开式共11项,中间项为第6项,
T6=C(-x)5=-252x5;
(2)C+C+C+…+C=210=1024.
(3)设(1-x)10=a0+a1x+a2x2+…+a10x10
令x=1,得a0+a1+a2+…+a10=0
令x=0,得a0=1,
∴a1+a2+…+a10=-1.
课时分层作业(九) 离散型随机变量
(建议用时:40分钟)
一、选择题
1.给出下列四个命题:
①15秒内,通过某十字路口的汽车的数量是随机变量;
②在一段时间内,某候车室内候车的旅客人数是随机变量;
③一条河流每年的最大流量是随机变量;
④一个剧场共有三个出口,散场后某一出口退场的人数是随机变量.
其中正确的个数是( )
【导学号:95032122】
A.1 B.2 C.3 D.4
D [由随机变量定义可以直接判断①②③④都是正确的.故选D.]
2.已知下列随机变量:
①10件产品中有2件次品,从中任选3件,取到次品的件数X;
②6张奖券中只有2张有奖,从这6张奖券中随机的抽取3张,用X表示抽到有奖的奖券张数;
③某运动员在一次110米跨栏比赛中的成绩X;
④在体育彩票的抽奖中,一次摇号产生的号码数X.
其中X是离散型随机变量的是( )
A.①②③ B.②③④
C.①②④ D.③④
C [③中X的值可在某一区间内取值,不能一一列出,故不是离散型随机变量.]
3.将一枚均匀骰子掷两次,随机变量为( )
【导学号:95032123】
A.第一次出现的点数
B.第二次出现的点数
C.两次出现的点数之和
D.两次出现相同点的种数
C [选项A,B,D中出现的点数虽然是随机的,但是其取值所反映的结果,都不能整体反映本试验,C整体反映两次投掷的结果,可以预见两次出现的点数的和是2,3,4,5,6,7,8,9,10,11,12这十一种结果,但每掷一次之前都无法确定是哪一个,因此是随机变量.]
4.抛掷两枚骰子,所得点数之和记为ξ,那么ξ=4表示的随机试验的结果是( )
A.一枚是3点,一枚是1点
B.两枚都是2点
C.两枚都是4点
D.一枚是3点,一枚是1点或两枚都是2点
D [ξ=4可能出现的结果是一枚是3点,一枚是1点或两枚都是2点.]
5.袋中装有10个红球,5个黑球,每次随机抽取一个球,若取到黑球,则另换一个红球放回袋中,直到取到红球为止,若抽取的次数为X,则表示“放回5个红球”的事件为( )
【导学号:95032124】
A.X=4 B.X=5 C.X=6 D.X≤4
C [第一次取到黑球,则放回1个红球;第二次取到黑球,则再放回1个红球……共放了五回,第六次取到了红球,试验终止,故X=6.]
二、填空题
6.在一批产品中共12件,其中次品3件,每次从中任取一件,在取得合格品之前取出的次品数ξ的所有可能取值是________.
[解析] 可能第一次就取得合格品,也可能取完次品后才取得合格品.
[答案] 0,1,2,3
7.下列变量中,不是随机变量的是________(填序号).
【导学号:95032125】
①下一个交易日上证收盘指数;
②标准大气压下冰水混合物的温度;
③明日上课某班(共50人)请假同学的人数;
④小马登录QQ找小胡聊天,设
X=
[解析] 标准大气压下冰水混合物的温度是0℃,是一个确定的值,不是随机变量,①③④都是随机变量.
[答案] ②
8.在一次比赛中,需回答三个问题,比赛规则规定:每题回答正确得100分,回答不正确得-100分,则选手甲回答这三个问题的总得分ξ的所有可能取值是____________.
[解析] 可能回答全对,两对一错,两错一对,全错四种结果,相应得分为300分,100分,-100分,-300分.
[答案] 300,100,-100,-300
三、解答题
9.判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.
(1)某地“行风热线”某天接到电话的个数.
(2)新赛季,梅西在某场比赛中(90分钟),上场比赛的时间.
(3)对角线互相垂直且长度分别为6和8的四边形的面积.
(4)在一次书法作品评比中,设一、二、三等奖,小刚的一件作品获奖的等次.
【导学号:95032126】
[解] (1)接到电话的个数可能是0,1,2,…出现哪一个结果都是随机的,所以是随机变量.
(2)梅西在某场比赛中上场比赛的时间在[0,90]内,是随机的,所以是随机变量.
(3)对角线互相垂直且长度分别为6和8的四边形的面积是定值,所以不是随机变量.
(4)获奖的等次可能是一、二、三,出现哪一个结果都是随机的,所以是随机变量.
10.某篮球运动员在罚球时,命中1球得2分,不命中得0分,且该运动员在5次罚球中命中的次数ξ是一个随机变量.
(1)写出ξ的所有取值及每一个取值所表示的结果;
(2)若记该运动员在5次罚球后的得分为η,写出所有η的取值及每一个取值所表示的结果.
【导学号:95032127】
[解] (1)ξ可取0,1,2,3,4,5.表示5次罚球中分别命中0次,1次,2次,3次,4次,5次.
(2)η可取0,2,4,6,8,10.表示5次罚球后分别得0分,2分,4分,6分,8分,10分.