第三章函数 第14节 一次函数
■考点1. 一次函数的定义
?形如y=_ __(k、b为常数,k_____)的函数叫做一次函数。当b_ ___时,函数y=_ ___ (k____)叫做正比例函数。?
注意:理解一次函数概念应注意下面两点:?
(1)解析式中自变量x的次数是_ __次
?⑵自变量X的系数为常数
? (3)正比例函数是特殊的一次函数,一次函数包含正比例函数
■考点2.一次函数的图象及性质
(1)正比例函数()的图象是经过点 和 的一条直线;一次函数()的图象是经过(,)和(,)两点的一条直线。
(2) -次函数()的图象与性质
k,b符号
K>0
k<0
b>0
b<0
b=0
b>0
b<0
b=0
大致
图象
经过象限
一、二、三
一、三、四
一、三
一、二、四
二、三、四
二、四
图象性质
y随x的增大而
y随x的增大而
■考点3.用待定系数法求一次函数解析式:
(1)关键:确定一次函数()中的字母与的值。
(2)步骤:①设一次函数表达式;
②根据已知条件将,的对应值代人表达式;
③解关于,的方程或方程组;
④确定表达式。
■考点4.两直线的位置关系(设两直线,):
(1)两个一次函数y=k1x+b 和y=k2x+b图象的交点坐标. 二元一次方程组 的解
(2)两直线平行: ();
(3)两直线垂直:。
■考点5.一次函数图象的平移
规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.
②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.即“上加下减”
若向左平移h单位,则x值增大h;若向右平移h单位,则x值减小h.即“左加右减”
■考点6.一次函数与一元一次方程,一元一次不等式和二元一次方程组的关系
(1) -次函数与一元一次方程:
一次函数()的图象与轴交点的横坐标是 时一元一次方程的解,与轴交点的纵坐标是 时一元一次方程的解。21教育名师原创作品
(2) -次函数与一元一次不等式:
()或()的解集即一次函数图象位于轴上方或下方时相应的取值范围,反之也成立。
(3)-次函数与二元一次方程组:
两条直线的交点坐标即为两个一次函数解析式所组成的二元一次方程组的解,反之根据以二元一次方程组的解为坐标的焦是对应两直线的交点。
■考点1:一次函数的图象与性质
◇典例:
【2017辽宁沈阳】在平面直角坐标系中,一次函数y=x﹣1的图象是( )A. B. C. D.
【考点】一次函数的图象.
【分析】观察一次函数解析式,确定出k与b的符号,利用一次函数图象及性质判断即可.
解:一次函数y=x﹣1,
其中k=1,b=﹣1,
其图象为
,
故选B
【2018上海】如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而 .(填“增大”或“减小”)
【考点】一次函数图象上点的坐标特征,一次函数的性质
【分析】根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论.
解:∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),
∴0=k+3,
∴k=﹣3,
∴y的值随x的增大而减小.
故答案为:减小.
◆变式训练
(2017?泰安)已知一次函数y=kx-m-2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是( )
A.k<2,m>0 B.k<2,m<0 C.k>2,m>0 D.k<0,m<0
(2017?大庆)对于函数y=2x-1,下列说法正确的是( )
A.它的图象过点(1,0) B.y值随着x值增大而减小
C.它的图象经过第二象限 D.当x>1时,y>0
■考点2:用待定系数法求一次函数解析式:
◇典例
(2015浙江湖州)已知y是x的一次函数,当x=3时,y=1;当x=?2时,y=?4,求这
个一次函数的解析式.
【答案】y=x—2.
【分析】设这个一次函数的解析式为y=kx+b, 分别将x=3,y=1和x=?2,y=?4分别代入y=kx+b得方程组,解这个方程组即可求得k、b的值,也就求得了函数的解析式.
【解析】设这个一次函数的解析式为y=kx+b, 将x=3,y=1和x=?2,y=?4分别代入y=kx+b得,,
解这个方程组得,.
∴所求一次函数的解析式为y=x—2.
【点评】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.
◆变式训练
【2016温州】如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )
A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+10
【考点】待定系数法求一次函数解析式;矩形的性质.
【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据题意可得到x、y之间的关系式,可得出答案.
【2016?厦门】已知一次函数y=kx+2,当x=-1时,y=1,求此函数的解析式,并在平面
直角坐标系中画出此函数图象.
■考点3:两直线的位置关系
◇典例:
【2016·陕西】已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在( )【出处:21教育名师】
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【考点】两条直线相交或平行问题.
【分析】根据k的符号来求确定一次函数y=kx+b的图象所经过的象限,然后根据b的情况即可求得交点的位置.
解:∵一次函数y=kx+5中k>0,
∴一次函数y=kx+5的图象经过第一、二、三象限.
又∵一次函数y=k′x+7中k′<0,
∴一次函数y=k′x+7的图象经过第一、二、四象限.
∵5<7,
∴这两个一次函数的图象的交点在第一象限,
故选A.
【2018南通】函数y=﹣x的图象与函数y=x+1的图象的交点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【考点】两条直线相交或平行问题
【分析】根据题目中的函数解析式可以求得这两个函数的交点坐标,从而可以解答本题.
解:,
解得,,
∴函数y=﹣x的图象与函数y=x+1的图象的交点是(,),
故函数y=﹣x的图象与函数y=x+1的图象的交点在第二象限,
故选:B.
【点评】本题考查两条直线相交或平行问题,解答本题的关键是明确题意,求出两个函数的交点坐标,利用函数的思想解答.
◆变式训练
【2017?大连】在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为______________(用含m的代数式表示).
■考点4. 一次函数图象与几何变换
◇典例:【2017广安】已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 .
【考点】一次函数图象与几何变换.
【分析】直接利用关于x轴对称点的性质得出P′点坐标,再求出k的值,再利用一次函数平移的性质得出答案.2·1·c·n·j·y
解:∵点P(1,2)关于x轴的对称点为P′,
∴P′(1,﹣2),
∵P′在直线y=kx+3上,
∴﹣2=k+3,
解得:k=﹣5,
则y=﹣5x+3,
∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣5x+5.
故答案为:y=﹣5x+5.
◆变式训练
【2018娄底】将直线y=2x﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )
A.y=2x﹣4 B.y=2x+4 C.y=2x+2 D.y=2x﹣2
■考点5.一次函数与一元一次方程,一元一次不等式和二元一次方程组的关系
◇典例:
【2018定西】如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为 .
【考点】一次函数与一元一次不等式
【分析】先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.
解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),
∴﹣4=﹣n﹣2,解得n=2,
∴P(2,﹣4),
又∵y=﹣x﹣2与x轴的交点是(﹣2,0),
∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.
故答案为﹣2<x<2.
【点评】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.
◆变式训练
【2018呼和浩特】若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣l上,则常数b=( )
A. B.2 C.﹣1 D.1
【2018常州】一个正比例函数的图象经过(2,﹣1),则它的表达式为( )
A.y=﹣2x B.y=2x C. D.
【2018玉林】等腰三角形底角与顶角之间的函数关系是( )
A.正比例函数 B.一次函数 C.反比例函数 D.二次函数
【2017?上海】如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是(?? )
A.?k>0,且b>0????B.?k<0,且b>0????C.?k>0,且b<0????D.?k<0,且b<0
【2018抚顺】一次函数y=﹣x﹣2的图象经过( )
A.第一、二、三象限 B.第一、二、四象限
C.第一、三,四象限 D.第二、三、四象限
【2017福建】若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是( )
A.3 B.4 C.5 D.6
【2018济宁】在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1 y2.(填“>”“<”“=”)
【2017?株洲】如图示直线y= x+ 与x轴、y轴分别交于点A、B,当直线绕着点
A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度为________.
【2018淮安】如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形AnBnCnDn的面积是 .
【2017广西】如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).
(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;
(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.
【2016北京】如图,在平面直角坐标系xOy中,过点A(-6,0)的直线l1与直线l2:y
=2x相交于B(m,4).
(1)求直线l1的表达式;
(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C、D,当点C位于点D上方时,写出n的取值范围.【来源:21·世纪·教育·网】
【2017?绥化】在同一平面直角坐标系中,直线y=4x+1与直线y=﹣x+b的交点不可能在(?? )
A.?第一象限???B.?第二象限???C.?第三象限???D.?第四象限
【2017?乌鲁木齐】一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等
式kx+b>0的解集是(?? )
A.?x<2????B.?x<0?????C.?x>0???D.?x>2
【2018湘潭】若b>0,则一次函数y=﹣x+b的图象大致是( )
A. B. C. D.
【2018贵阳】一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为( )
A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)
【2018葫芦岛】如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为( )
A.x>﹣2 B.x<﹣2 C.x>4 D.x<4
【2018丽水】某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是( )
A.每月上网时间不足25h时,选择A方式最省钱
B.每月上网费用为60元时,B方式可上网的时间比A方式多
C.每月上网时间为35h时,选择B方式最省钱
D.每月上网时间超过70h时,选择C方式最省钱
【2018东营】在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为 .
【2018包头】如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为( )
A. B. C. D.2
【2018十堰】如图,直线y=kx+b交x轴于点A,交y轴于点B,则不等式x(kx+b)<0的解集为 .
(2017?孝感)如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),
且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为________.
三.解答题
【2018上海】一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.
(1)求y关于x的函数关系式;(不需要写定义域)
(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?
(2017·台州)如图,直线 : 与直线 : 相交于点P(1,b)
(1)求b,m的值
(2)垂直于x轴的直线 与直线 , 分别相交于C,D,若线段CD长为2,求a的值
【2018无锡】如图,平面直角坐标系中,已知点B的坐标为(6,4).
(1)请用直尺(不带刻度)和圆规作一条直线AC,它与x轴和y轴的正半轴分别交于点A和点C,且使∠ABC=90°,△ABC与△AOC的面积相等.(作图不必写作法,但要保留作图痕迹.)
(2)问:(1)中这样的直线AC是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC,并写出与之对应的函数表达式.
【2018淮安】如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.
(1)求k、b的值;
(2)若点D在y轴负半轴上,且满足S△COD=S△BOC,求点D的坐标.
【2018重庆】如图,在平面直角坐标系中,直线l1:y=x与直线l2交点A的横坐标为2,将直线l1沿y轴向下平移4个单位长度,得到直线l3,直线l3与y轴交于点B,与直线l2交于点C,点C的纵坐标为﹣2.直线l2与y轴交于点D.
(1)求直线l2的解析式;
(2)求△BDC的面积.
第三章函数 第14节 一次函数
■考点1. 一次函数的定义
?形如y=__y=kx+b_____(k、b为常数,k_≠0_____)的函数叫做一次函数。当b_=0____时,函数y=_kx___(k__≠0__)2-1-c-n-j-y
叫做正比例函数。?
注意:理解一次函数概念应注意下面两点:?
⑴解析式中自变量x的次数是_1__次
?⑵自变量X的系数为常数
? (3)正比例函数是特殊的一次函数,一次函数包含正比例函数
■考点2.一次函数的图象及性质
(1)正比例函数()的图象是经过点(0,0)和(1,) 的一条直线;一次函数()的图象是经过(,)和(,)两点的一条直线。
(2) -次函数()的图象与性质
k,b符号
K>0
k<0
b>0
b<0
b=0
b>0
b<0
b=0
大致
图象
经过象限
一、二、三
一、三、四
一、三
一、二、四
二、三、四
二、四
图象性质
y随x的增大而增大
y随x的增大而减小
■考点3.用待定系数法求一次函数解析式:
(1)关键:确定一次函数()中的字母与的值。
(2)步骤:①设一次函数表达式;
②根据已知条件将,的对应值代人表达式;
③解关于,的方程或方程组;
④确定表达式。
■考点4.两直线的位置关系(设两直线,):
(1)两个一次函数y=k1x+b 和y=k2x+b图象的交点坐标. 二元一次方程组 的解
(2)两直线平行: ();
(3)两直线垂直:。
■考点5.一次函数图象的平移
规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.
②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.即“上加下减”
若向左平移h单位,则x值增大h;若向右平移h单位,则x值减小h.即“左加右减”
■考点6.一次函数与一元一次方程,一元一次不等式和二元一次方程组的关系
(1) -次函数与一元一次方程:
一次函数()的图象与轴交点的横坐标是时一元一次方程的解,与轴交点的纵坐标是时一元一次方程的解。【版权所有:21教育】
(2) -次函数与一元一次不等式:
()或()的解集即一次函数图象位于轴上方或下方时相应的取值范围,反之也成立。
(3)-次函数与二元一次方程组:
两条直线的交点坐标即为两个一次函数解析式所组成的二元一次方程组的解,反之根据以二元一次方程组的解为坐标的焦是对应两直线的交点。
■考点1:一次函数的图象与性质
◇典例:
【2017辽宁沈阳】在平面直角坐标系中,一次函数y=x﹣1的图象是( )A. B. C. D.
【考点】一次函数的图象.
【分析】观察一次函数解析式,确定出k与b的符号,利用一次函数图象及性质判断即可.
解:一次函数y=x﹣1,
其中k=1,b=﹣1,
其图象为
,
故选B
【2018上海】如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而 .(填“增大”或“减小”)
【考点】一次函数图象上点的坐标特征,一次函数的性质
【分析】根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论.
解:∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),
∴0=k+3,
∴k=﹣3,
∴y的值随x的增大而减小.
故答案为:减小.
◆变式训练
(2017?泰安)已知一次函数y=kx-m-2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是( )
A.k<2,m>0 B.k<2,m<0 C.k>2,m>0 D.k<0,m<0
【考点】一次函数的性质.
【分析】由一次函数y=kx-m-2x的图象与y轴的负半轴相交且函数值y随自变量x的增大而减小,可得出k-2<0、-m<0,解之即可得出结论.
解:∵一次函数y=kx-m-2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,∴k-2<0,-m<0,∴k<2,m>0.故选A.
(2017?大庆)对于函数y=2x-1,下列说法正确的是( )
A.它的图象过点(1,0) B.y值随着x值增大而减小
C.它的图象经过第二象限 D.当x>1时,y>0
【考点】一次函数的性质.
【分析】根据一次函数的性质进行计算即可.
解:A、把x=1代入解析式得到y=1,即函数图象经过(1,1),不经过点(1,0),故本选项错误;
B、函数y=2x-1中,k=2>0,则该函数图象y值随着x值增大而增大,故本选项错误;
C、函数y=2x-1中,k=2>0,b=-1<0,则该函数图象经过第一、三、四象限,故本选项错误;
D、当x>1时,2x-1>1,则y>1,故y>0正确,故本选项正确.
故选:D.
■考点2:用待定系数法求一次函数解析式:
◇典例
(2015浙江湖州)已知y是x的一次函数,当x=3时,y=1;当x=?2时,y=?4,求这
个一次函数的解析式.
【答案】y=x—2.
【分析】设这个一次函数的解析式为y=kx+b, 分别将x=3,y=1和x=?2,y=?4分别代入y=kx+b得方程组,解这个方程组即可求得k、b的值,也就求得了函数的解析式.
【解析】设这个一次函数的解析式为y=kx+b, 将x=3,y=1和x=?2,y=?4分别代入y=kx+b得,,
解这个方程组得,.
∴所求一次函数的解析式为y=x—2.
【点评】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.
◆变式训练
【2016温州】如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )
A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+10
【考点】待定系数法求一次函数解析式;矩形的性质.
【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据题意可得到x、y之间的关系式,可得出答案.
解:
设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,
∵P点在第一象限,
∴PD=y,PC=x,
∵矩形PDOC的周长为10,
∴2(x+y)=10,
∴x+y=5,即y=﹣x+5,
故选C.
【2016?厦门】已知一次函数y=kx+2,当x=-1时,y=1,求此函数的解析式,并在平面
直角坐标系中画出此函数图象.
【考点】待定系数法求一次函数解析式;一次函数的图象.
【分析】(1)把点的坐标代入函数解析式得到一元一次方程,求解即可得到k的值,写出解析式即可.(2)先求出与两坐标轴的交点,再根据两点确定一条直线作出图象.
解:(1)将x=-1,y=1代入一次函数解析式:y=kx+2,可得1=-k+2,解得k=1∴一次函数的解析式为:y=x+2; (2)当x=0时,y=2;当y=0时,x=-2,所以函数图象经过(0,2);(-2,0),此函数图象如图所示,【来源:21cnj*y.co*m】
■考点3:两直线的位置关系
◇典例:
【2016·陕西】已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在( )【出处:21教育名师】
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【考点】两条直线相交或平行问题.
【分析】根据k的符号来求确定一次函数y=kx+b的图象所经过的象限,然后根据b的情况即可求得交点的位置.
解:∵一次函数y=kx+5中k>0,
∴一次函数y=kx+5的图象经过第一、二、三象限.
又∵一次函数y=k′x+7中k′<0,
∴一次函数y=k′x+7的图象经过第一、二、四象限.
∵5<7,
∴这两个一次函数的图象的交点在第一象限,
故选A.
【2018南通】函数y=﹣x的图象与函数y=x+1的图象的交点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【考点】两条直线相交或平行问题
【分析】根据题目中的函数解析式可以求得这两个函数的交点坐标,从而可以解答本题.
解:,
解得,,
∴函数y=﹣x的图象与函数y=x+1的图象的交点是(,),
故函数y=﹣x的图象与函数y=x+1的图象的交点在第二象限,
故选:B.
【点评】本题考查两条直线相交或平行问题,解答本题的关键是明确题意,求出两个函数的交点坐标,利用函数的思想解答.
◆变式训练
【2017?大连】在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为______________(用含m的代数式表示).
【考点】两条直线相交或平行问题.
【分析】由点的坐标特征得出线段AB∥y轴,当直线y=2x+b经过点A时,得出b=m-6;当直线y=2x+b经过点B时,得出b=m-4;即可得出答案.
解:∵点A、B的坐标分别为(3,m)、(3,m+2),
∴线段AB∥y轴,
当直线y=2x+b经过点A时,6+b=m,则b=m-6;
当直线y=2x+b经过点B时,6+b=m+2,则b=m-4;
∴直线y=2x+b与线段AB有公共点,则b的取值范围为m-6≤b≤m-4;
故答案为:m-6≤b≤m-4.
■考点4. 一次函数图象与几何变换
◇典例:【2017广安】已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 .
【考点】一次函数图象与几何变换.
【分析】直接利用关于x轴对称点的性质得出P′点坐标,再求出k的值,再利用一次函数平移的性质得出答案.2·1·c·n·j·y
解:∵点P(1,2)关于x轴的对称点为P′,
∴P′(1,﹣2),
∵P′在直线y=kx+3上,
∴﹣2=k+3,
解得:k=﹣5,
则y=﹣5x+3,
∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣5x+5.
故答案为:y=﹣5x+5.
◆变式训练
【2018娄底】将直线y=2x﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )
A.y=2x﹣4 B.y=2x+4 C.y=2x+2 D.y=2x﹣2
【考点】一次函数图象与几何变换
【分析】根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解.
解:y=2(x﹣2)﹣3+3=2x﹣4.
化简,得
y=2x﹣4,
故选:A.
【点评】本题考查了一次函数图象与几何变换,牢记平移的规则“左加右减,上加下减”是解题的关键.
■考点5.一次函数与一元一次方程,一元一次不等式和二元一次方程组的关系
◇典例:
【2018定西】如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为 .
【考点】一次函数与一元一次不等式
【分析】先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.
解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),
∴﹣4=﹣n﹣2,解得n=2,
∴P(2,﹣4),
又∵y=﹣x﹣2与x轴的交点是(﹣2,0),
∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.
故答案为﹣2<x<2.
【点评】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.
◆变式训练
【2018呼和浩特】若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣l上,则常数b=( )
A. B.2 C.﹣1 D.1
【考点】一次函数与二元一次方程
【分析】直线解析式乘以2后和方程联立解答即可.
解:因为以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣l上,
直线解析式乘以2得2y=﹣x+2b﹣2,变形为:x+2y﹣2b+2=0
所以﹣b=﹣2b+2,
解得:b=2,
故选:B.
【点评】此题考查一次函数与二元一次方程问题,关键是直线解析式乘以2后和方程联立解答.
【2018常州】一个正比例函数的图象经过(2,﹣1),则它的表达式为( )
A.y=﹣2x B.y=2x C. D.
【考点】待定系数法求正比例函数的解析式
【分析】设该正比例函数的解析式为y=kx(k≠0),再把点(2,﹣1)代入求出k的值即可.
解:设该正比例函数的解析式为y=kx(k≠0),
∵正比例函数的图象经过点(2,﹣1),
∴2=﹣k,解得k=﹣2,
∴这个正比例函数的表达式是y=﹣2x.
故选:A.
【点评】本题考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.
【2018玉林】
等腰三角形底角与顶角之间的函数关系是( )
A.正比例函数 B.一次函数 C.反比例函数 D.二次函数
【考点】一次函数的定义
【分析】根据一次函数的定义,可得答案.
解:设等腰三角形的底角为y,顶角为x,由题意,得
y=﹣x+90°,
故选:B.
【2017?上海】如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是(?? )
A.?k>0,且b>0????B.?k<0,且b>0????C.?k>0,且b<0????D.?k<0,且b<0
【考点】一次函数的性质
【分析】根据一次函数的性质得出即可. 解:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选B.
【2018抚顺】一次函数y=﹣x﹣2的图象经过( )
A.第一、二、三象限 B.第一、二、四象限
C.第一、三,四象限 D.第二、三、四象限
【考点】一次函数的性质
【分析】根据一次函数y=kx+b(k≠0)中的k、b判定该函数图象所经过的象限.
解:∵﹣1<0,
∴一次函数y=﹣x﹣2的图象一定经过第二、四象限;
又∵﹣2<0,
∴一次函数y=﹣x﹣2的图象与y轴交于负半轴,
∴一次函数y=﹣x﹣2的图象经过第二、三、四象限;
故选:D.
【点评】本题考查了一次函数的性质.一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
【2017福建】若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是( )
A.3 B.4 C.5 D.6
【考点】一次函数图象上点的坐标特征; 一次函数图象与系数的关系.
【分析】根据题意列方程组得到k=n﹣4,由于0<k<2,于是得到0<n﹣4<2,即可得到结论.
解:依题意得:,
∴k=n﹣4,
∵0<k<2,
∴0<n﹣4<2,
∴4<n<6,
故选C.
【2018济宁】在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1 y2.(填“>”“<”“=”)
【考点】一次函数图象上点的坐标特征
【分析】根据一次函数的性质,当k<0时,y随x的增大而减小.
解:∵一次函数y=﹣2x+1中k=﹣2<0,
∴y随x的增大而减小,
∵x1<x2,
∴y1>y2.
故答案为:>.
【点评】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.
【2017?株洲】如图示直线y= x+ 与x轴、y轴分别交于点A、B,当直线绕着点
A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度为________. 【考点】一次函数图象与几何变换
【分析】先利用一次函数的解析式可确定A(﹣1,0),B(0, ),再利用正切的定义求出∠BAO=60°,利用勾股定理计算出AB=2,然后根据弧长公式计算. 解:当y=0时, x+ =0,解得x=﹣1,则A(﹣1,0),当x=0时,y= x+ = ,则B(0, ),在Rt△OAB中,∵tan∠BAO= = ,∴∠BAO=60°,∴AB= =2,∴当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度= = π.故答案为 π.21·cn·jy·com
【2018淮安】如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形AnBnCnDn的面积是 .
【考点】正方形的性质,一次函数图象上点的坐标特征
【分析】根据正比例函数的性质得到∠D1OA1=45°,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律解答.
解:∵直线l为正比例函数y=x的图象,
∴∠D1OA1=45°,
∴D1A1=OA1=1,
∴正方形A1B1C1D1的面积=1=()1﹣1,
由勾股定理得,OD1=,D1A2=,
∴A2B2=A2O=,
∴正方形A2B2C2D2的面积==()2﹣1,
同理,A3D3=OA3=,
∴正方形A3B3C3D3的面积==()3﹣1,
…
由规律可知,正方形AnBnCnDn的面积=()n﹣1,
故答案为:()n﹣1.
【点评】本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到∠D1OA1=45°,正确找出规律是解题的关键.
【2017广西】如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).
(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;
(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.
【考点】作图﹣轴对称变换;待定系数法求一次函数解析式;作图﹣平移变换.
【分析】(1)根据图形平移的性质画出△A1B1C1并写出点B1的坐标即可;
(2)连接AA2,作线段AA2的垂直平分线l,再作△ABC关于直线l对称的△A2B2C2即可.
解:(1)如图,△A1B1C1即为所求,B1(﹣2,﹣1);
(2)如图,△A2B2C2即为所求,直线l的函数解析式为y=﹣x.
【2016北京】如图,在平面直角坐标系xOy中,过点A(-6,0)的直线l1与直线l2:y
=2x相交于B(m,4).
(1)求直线l1的表达式;
(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C、D,当点C位于点D上方时,写出n的取值范围.【来源:21·世纪·教育·网】
【答案】解:(1)∵点B在直线l2上,∴4=2m,∴m=2,则B(2,4),设l1的表达式为y=kx+b,由A、B两点均在直线上得到,,解得:.
则直线l1的表达式为y=x+3.
(2)由图可知:C(+3,n),D(2n,n),由于点C在点D的上方,得到+3>2n,解得:n<2.
【2017?绥化】在同一平面直角坐标系中,直线y=4x+1与直线y=﹣x+b的交点不可能在(?? )
A.?第一象限???B.?第二象限???C.?第三象限???D.?第四象限 【考点】两条直线相交或平行问题
【分析】根据一次函数的性质确定两条直线所经过的象限可得结果. 解:直线y=4x+1过一、二、三象限; 当b>0时,直线y=﹣x+b过一、二、四象限,两直线交点可能在一或二象限;当b<0时,直线y=﹣x+b过二、三、四象限,两直线交点可能在二或三象限;综上所述,直线y=4x+1与直线y=﹣x+b的交点不可能在第四象限,故选D.
【2017?乌鲁木齐】一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等
式kx+b>0的解集是(?? )
A.?x<2????B.?x<0?????C.?x>0???D.?x>2 【考点】一次函数的图象,一次函数与一元一次不等式
【分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b>0的解集. 解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小, 所以当x<2时,函数值大于0,即关于x的不等式kx+b>0的解集是x<2.故选A.
【2018湘潭】若b>0,则一次函数y=﹣x+b的图象大致是( )
A. B. C. D.
【考点】一次函数的图象
【分析】根据一次函数的k、b的符号确定其经过的象限即可确定答案.
解:∵一次函数y=﹣x+b中k=﹣1<0,b>0,
∴一次函数的图象经过一、二、四象限,
故选:C.
【点评】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.
一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
【2018贵阳】一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为( )
A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)
【考点】一次函数的性质;一次函数图象上点的坐标特征
【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.
解:∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,
∴k>0,
A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合题意;
B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;
C、把点(2,2)代入y=kx﹣1得到:k=>0,符合题意;
D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意;
故选:C.
【点评】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.
【2018葫芦岛】如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为( )
A.x>﹣2 B.x<﹣2 C.x>4 D.x<4
【考点】一次函数与一元一次不等式
【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.
解:观察图象知:当x>﹣2时,kx+b>4,
故选:A.
【点评】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象进行解答.
【2018丽水】某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是( )
A.每月上网时间不足25h时,选择A方式最省钱
B.每月上网费用为60元时,B方式可上网的时间比A方式多
C.每月上网时间为35h时,选择B方式最省钱
D.每月上网时间超过70h时,选择C方式最省钱
【考点】函数的图象,待定系数法求一次函数解析式,一次函数图象上点的坐标特征
【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;
B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;
C、利用待定系数法求出:当x≥25时,yA与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时yA的值,将其与50比较后即可得出结论C正确;
D、利用待定系数法求出:当x≥50时,yB与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时yB的值,将其与120比较后即可得出结论D错误.
综上即可得出结论.
解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;
B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;
C、设当x≥25时,yA=kx+b,
将(25,30)、(55,120)代入yA=kx+b,得:
,解得:,
∴yA=3x﹣45(x≥25),
当x=35时,yA=3x﹣45=60>50,
∴每月上网时间为35h时,选择B方式最省钱,结论C正确;
D、设当x≥50时,yB=mx+n,
将(50,50)、(55,65)代入yB=mx+n,得:
,解得:,
∴yB=3x﹣100(x≥50),
当x=70时,yB=3x﹣100=110<120,
∴结论D错误.
故选:D.
【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.
【2018东营】在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为 .
【考点】轴对称﹣最短路线问题,坐标与图象变换,一次函数的性质
【分析】要使得MB﹣MA的值最大,只需取其中一点关于x轴的对称点,与另一点连成直线,然后求该直线x轴交点即为所求.
解:取点B关于x轴的对称点B′,则直线AB′交x轴于点M.点M即为所求.
设直线AB′解析式为:y=kx+b
把点A(﹣1,﹣1)B′(2,﹣7)代入
解得
∴直线AB′为:y=﹣2x﹣3,
当y=0时,x=﹣
∴M坐标为(﹣,0)
故答案为:(﹣,0)
【点评】本题考查轴对称﹣最短路线问题、坐标与图象变换,解答本题的关键是明确题意,利用三角形两边之差小于第三边和一次函数的性质解答.
【2018包头】如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为( )
A. B. C. D.2
【考点】两直线相交或平行问题
【分析】利用直线l1:y=﹣x+1,即可得到A(2,0)B(0,1),AB==3,过C作CD⊥OA于D,依据CD∥BO,可得OD=AO=,CD=BO=,进而得到C(,),代入直线l2:y=kx,可得k=.
解:直线l1:y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,
即A(2,0)B(0,1),
∴Rt△AOB中,AB==3,
如图,过C作CD⊥OA于D,
∵∠BOC=∠BCO,
∴CB=BO=1,AC=2,
∵CD∥BO,
∴OD=AO=,CD=BO=,
即C(,),
把C(,)代入直线l2:y=kx,可得
=k,
即k=,
故选:B.
【点评】本题主要考查了两直线相交或平行问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
【2018十堰】如图,直线y=kx+b交x轴于点A,交y轴于点B,则不等式x(kx+b)<0的解集为 .
【考点】一次函数与一元一次不等式
【分析】先把不等式x(kx+b)<0化为或,然后利用函数图象分别解两个不等式组.
解:不等式x(kx+b)<0化为或,
利用函数图象得为无解,的解集为﹣3<x<0,
所以不等式x(kx+b)<0的解集为﹣3<x<0.
故答案为﹣3<x<0.
【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
(2017?孝感)如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),
且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为________.
【考点】待定系数法求一次函数解析式,轴对称-最短路线问题
【分析】先作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,根据待定系数法求得平移后的直线为y=﹣x﹣2,进而得到点B的坐标以及点B'的坐标,再根据待定系数法求得直线AB'的解析式,即可得到点P的坐标.
解:如图所示,作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,设直线y=﹣x沿y轴向下平移后的直线解析式为y=﹣x+a,把A(2,﹣4)代入可得,a=﹣2,∴平移后的直线为y=﹣x﹣2,令x=0,则y=﹣2,即B(0,﹣2)∴B'(0,2),设直线AB'的解析式为y=kx+b,把A(2,﹣4),B'(0,2)代入可得,,解得 ,∴直线AB'的解析式为y=﹣3x+2,令y=0,则x= ,∴P( ,0),故答案为:( ,0).
三.解答题(共8题;共80分)
【2018上海】一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.
(1)求y关于x的函数关系式;(不需要写定义域)
(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?
【考点】一次函数的图象,一次函数图象上点的坐标特征
【分析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式,再根据一次函数图象上点的坐标特征即可求出剩余油量为5升时行驶的路程,此题得解.
解:(1)设该一次函数解析式为y=kx+b,
将(150,45)、(0,60)代入y=kx+b中,
,解得:,
∴该一次函数解析式为y=﹣x+60.
(2)当y=﹣x+60=8时,
解得x=520.
即行驶520千米时,油箱中的剩余油量为8升.
530﹣520=10千米,
油箱中的剩余油量为8升时,距离加油站10千米.
∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
(2017·台州)如图,直线 : 与直线 : 相交于点P(1,b)
(1)求b,m的值
(2)垂直于x轴的直线 与直线 , 分别相交于C,D,若线段CD长为2,求a的值
【考点】待定系数法求一次函数解析式,两条直线相交或平行问题 【分析】(1)把点P(1,b)分别代入l1和l2,得到b和m的值.(2)将直线x=a分别与直线l1、l2联立求出C和D的坐标,根据CD=2,列出关于a的方程求出a的值即可.
(1)解:把点P(1,b)代入y=2x+1,得b=2+1=3,把点P(1,3)代入y=mx+4,得m+4=3,∴m=-1.(2)解:直线x=a与直线l1的交点C为(a,2a+1),与直线l2的交点D为(a,-a+4).∵CD=2,∴|2a+1-(-a+4)|=2,即|3a-3|=2,∴3a-3=2或3a-3=-2,∴a=或a=. 21教育网
【2018无锡】如图,平面直角坐标系中,已知点B的坐标为(6,4).
(1)请用直尺(不带刻度)和圆规作一条直线AC,它与x轴和y轴的正半轴分别交于点A和点C,且使∠ABC=90°,△ABC与△AOC的面积相等.(作图不必写作法,但要保留作图痕迹.)
(2)问:(1)中这样的直线AC是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC,并写出与之对应的函数表达式.
【考点】待定系数法求一次函数解析式;作图—复杂作图
【分析】(1)①作线段OB的垂直平分线AC,满足条件,②作矩形OA′BC′,直线A′C′,满足条件;
(2)分两种情形分别求解即可解决问题;
(1)解:如图△ABC即为所求;
(2)解:这样的直线不唯一.
①作线段OB的垂直平分线AC,满足条件,此时直线的解析式为y=﹣x+.
②作矩形OA′BC′,直线A′C′,满足条件,此时直线A′C′的解析式为y=﹣x+4.
【点评】本题考查作图﹣复杂作图,待定系数法等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
【2018淮安】如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.
(1)求k、b的值;
(2)若点D在y轴负半轴上,且满足S△COD=S△BOC,求点D的坐标.
【考点】两条直线相交或平行问题,一次函数图象上点的坐标特征,待定系数法求一次函数解析式,三角形的面积
【分析】(1)利用一次函数图象上点的坐标特征可求出点C的坐标,根据点A、C的坐标,利用待定系数法即可求出k、b的值;
(2)利用一次函数图象上点的坐标特征可求出点B的坐标,设点D的坐标为(0,m)(m<0),根据三角形的面积公式结合S△COD=S△BOC,即可得出关于m的一元一次方程,解之即可得出m的值,进而可得出点D的坐标.
解:(1)当x=1时,y=3x=3,
∴点C的坐标为(1,3).
将A(﹣2,6)、C(1,3)代入y=kx+b,
得:,
解得:.
(2)当y=0时,有﹣x+4=0,
解得:x=4,
∴点B的坐标为(4,0).
设点D的坐标为(0,m)(m<0),
∵S△COD=S△BOC,即﹣m=××4×3,
解得:m=4,
∴点D的坐标为(0,4).
【点评】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出k、b的值;(2)利用三角形的面积公式结合结合S△COD=S△BOC,找出关于m的一元一次方程.
【2018重庆】如图,在平面直角坐标系中,直线l1:y=x与直线l2交点A的横坐标为2,将直线l1沿y轴向下平移4个单位长度,得到直线l3,直线l3与y轴交于点B,与直线l2交于点C,点C的纵坐标为﹣2.直线l2与y轴交于点D.
(1)求直线l2的解析式;
(2)求△BDC的面积.
【考点】一次函数图象与几何变换,待定系数法求直线的解析式,一次函数图象上点的坐标特征,三角形的面积
【分析】(1)把x=2代入y=x,得y=1,求出A(2,1).根据平移规律得出直线l3的解析式为y=x﹣4,求出B(0,﹣4)、C(4,﹣2).设直线l2的解析式为y=kx+b,将A、C两点的坐标代入,利用待定系数法即可求出直线l2的解析式;
(2)根据直线l2的解析式求出D(0,4),得出BD=8,再利用三角形的面积公式即可求出△BDC的面积.
解:(1)把x=2代入y=x,得y=1,
∴A的坐标为(2,1).
∵将直线l1沿y轴向下平移4个单位长度,得到直线l3,
∴直线l3的解析式为y=x﹣4,
∴x=0时,y=﹣4,
∴B(0,﹣4).
将y=﹣2代入y=x﹣4,得x=4,
∴点C的坐标为(4,﹣2).
设直线l2的解析式为y=kx+b,
∵直线l2过A(2,1)、C(4,﹣2),
∴,解得,
∴直线l2的解析式为y=﹣x+4;
(2)∵y=﹣x+4,
∴x=0时,y=4,
∴D(0,4).
∵B(0,﹣4),
∴BD=8,
∴△BDC的面积=×8×4=16.
【点评】本题考查了一次函数图象与几何变换,待定系数法求直线的解析式,一次函数图象上点的坐标特征,三角形的面积,正确求出求出直线l2的解析式是解题的关键.