第四章 图形的性质 第20节 图形的认识
■考点1.直线、线段、射线
基本事实
(1)直线的基本事实:经过两点 一条直线.
(2)线段的基本事实:两点之间, 最短.
■考点2.角、角平分线
1..概念
(1)角:有公共端点的两条射线组成的图形.
(2)角平分线:在角的内部,以角的顶点为端点把这个角分成两个相等的角的射线
2.角的度量 1°= ′,1′= '',1°= ''
3.余角和补角
(1) 余角:∠1+∠2= ?∠1与∠2互为余角;
(2) 补角:∠1+∠2= ?∠1与∠2互为补角.
(3)性质:同角(或等角)的余角相等;同角(或等角)的补角相等.
■考点3.立体图形展开图
正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题。
■考点4.相交线、平行线
1.三线八角 (1)同位角:形如”F”;(2)内错角:形如“Z”;(3)同旁内角:形如“U”.
2.对顶角、邻补角
(1)概念:两条直线相交后所得的只有一个公共顶点而没有公共边的两个角叫做对顶角.
(2)性质:对顶角 ,邻补角之和为180°.
3.垂线
(1)概念:两条直线互相垂直,其中的一条直线叫做另一条直线的垂线.
(2)性质:①过一点 一条直线与已知直线垂直.
② 最短.
(3)点到直线的距离:直线外一点到这条直线的 的长度
4.平行线
(1)平行线的性质与判定
①同位角相等
②内错角相等
③ 两直线平行
(2)平行公理及其推论
①经过直线外一点, 一条直线与已知直线平行.
②平行于同一条直线的两直线 .
■考点5.命题与证明
(1)概念:对某一事件作出正确或不正确判断的语句(或式子)叫做命题,正确的命题称为真命题;错误的命题称为假命题.21世纪教育网版权所有
(2)命题的结构:由题设和结论两部分组成,命题常写成"如果p,那么q"的形式,其中p是题设,q是结论.21·世纪*教育网
(3)证明:从一个命题的题设出发,通过推理来判断命题是否成立的过程.证明一个命题是假命题时,只要举出一个反例署名命题不成立就可以了.www-2-1-cnjy-com
■考点1.直线、线段、射线
◇典例:
【2016?台湾】如图(一),OP为一条拉直的细线,A、B两点在OP上,且OA:AP =1:3,OB:BP =3:5.若先固定B点,将OB折向BP,使得OB重迭在BP上,如图(二),再从图(二) 的A点及与A点重迭处一起剪开,使得细线分成三段,则此三段细线由小到大的长度比为何?( )
A.1:1:1 B.1:1:2 C.1:2:2 D.1:2:5
【分析】根据题意可以设出线段OP的长度,从而根据比值可以得到图一中各线段的长,根据题意可以求出折叠后,再剪开各线段的长度,从而可以求得三段细线由小到大的长度比,本题得以解决.
解:设OP的长度为8a,
∵OA:AP=1:3,OB:BP=3:5,
∴OA=2a,AP=6a,OB=3a,BP=5a,
又∵先固定B点,将OB折向BP,使得OB重迭在BP上,如图(二),再从图(二) 的A点及与A点重迭处一起剪开,使得细线分成三段,
∴这三段从小到大的长度分别是:2a、2a、4a,
∴此三段细线由小到大的长度比为:2a:2a:4a=1:1:2,
故选B.
【点评】本题考查比较线段的长短,解题的关键是理解题意,求出各线段的长度.
◆变式训练
【2017?北京】如图所示,点P到直线l的距离是( )
A.线段PA的长度 B.线段PB的长度 C.线段PC的长度 D.线段PD的长度
■考点2.角、角平分线
◇典例
【2017?常德】若一个角为75°,则它的余角的度数为( )
A.285° B.105° C.75° D.15°
【考点】余角和补角.
【分析】依据余角的定义列出算式进行计算即可.
解:它的余角=90°-75°=15°,故选D.
◆变式训练
【2018德州】如图,将一副三角尺按不同的位置摆放,下列摆放方式中与互余的是( )
A. 图① B. 图② C. 图③ D. 图④
■考点3.立体图形展开图
◇典例:
【2017湖北】如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是( )
A.传 B.统 C.文 D.化案】
【考点】专题:正方体相对两个面上的文字.
【分析】利用正方体及其表面展开图的特点解题.
解:这是一个正方体的平面展开图,共有六个面,其中面“扬”与“统”相对,面“弘”与面“文”相对,“传”与面“化”相对.
故选:C.
◆变式训练
【2017长春】下列图形中,可以是正方体表面展开图的是( )
A. B. C. D.
■考点4.相交线、平行线
◇典例:
1.【2018邵阳】如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为( )
A.20° B.60° C.70° D.160°
【考点】对顶角、邻补角
【分析】根据对顶角相等解答即可.
解:∵∠AOD=160°,
∴∠BOC=∠AOD=160°,
故选:D.
【点评】此题考查对顶角、邻补角,关键是根据对顶角相等解答.
2.【2017?玉林】如图,直线a,b被c所截,则∠1与∠2是( )
A.同位角 B.内错角 C.同旁内角 D.邻补角
【考点】同位角、内错角、同旁内角;对顶角、邻补角.
【分析】由内错角的定义(两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角)进行解答.【来源:21·世纪·解:如图所示,
两条直线a、b被直线c所截形成的角中,∠1与∠2都在a、b直线的之间,并且在直线c的两旁,所以∠1与∠2是内错角.故选:B.
◆变式训练
1.【2017贺州】下列各图中,∠1与∠2互为邻补角的是( )
A. B. C. D.
2.【2017?枣庄】如图,将一副三角板和一张对边平行的纸条按下列方式摆放,
两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )
A.15° B.22.5° C.30° D.45°
■考点4.命题与证明
◇典例:
【2018永州】下列命题是真命题的是( )
A.对角线相等的四边形是矩形
B.对角线互相垂直的四边形是菱形
C.任意多边形的内角和为360°
D.三角形的中位线平行于第三边,并且等于第三边的一半
【考点】命题与定理
【分析】根据矩形的判定方法对A进行判断;根据菱形的判定方法对B进行判断;根据多边形的内角和对C进行判断;根据三角形中位线性质对D进行判断.
解:A、对角线相等的平行四边形是矩形,所以A选项为假命题;
B、对角线互相垂直的平行四边形是菱形,所以B选项为假命题;
C、任意多边形的外角和为360°,所以C选项为假命题;
D、三角形的中位线平行于第三边且等于第三边的一半,所以D选项为真命题.
故选:D.
【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理.
◆变式训练
【2018广安】下列命题中:
①如果a>b,那么a2>b2
②一组对边平行,另一组对边相等的四边形是平行四边形
③从圆外一点可以引圆的两条切线,它们的切线长相等
④关于x的一元二次方程ax2+2x+1=0有实数根,则a的取值范围是a≤1
其中真命题的个数是( )
A.1 B.2 C.3 D.4
【2018北京】下列几何体中,是圆柱的为( )
A. B. C. D.
2.【2018长沙】将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是( )
A. B. C. D.
【2018湖北】如图是某个几何体的展开图,该几何体是( )
A.三棱柱 B.三棱锥 C.圆柱 D.圆锥
【2018大庆】将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是( )
A.庆 B.力 C.大 D.魅
【2018南京】用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:
①可能是锐角三角形;
②可能是直角三角形;
③可能是钝角三角形;
④可能是平行四边形.
其中所有正确结论的序号是( )
A.①② B.①④ C.①②④ D.①②③④
【2018杭州】若线段AM,AN分别是△ABC的BC边上的高线和中线,则( )
A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN
【2018怀化】下列命题是真命题的是( )
A.两直线平行,同位角相等
B.相似三角形的面积比等于相似比
C.菱形的对角线相等
D.相等的两个角是对顶角
【2018吉林】如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是( )
A.10° B.20° C.50° D.70°
【2018贵州】若∠α=35°,则∠α的补角为 度.
【2018北京】用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a= ,b= ,c= .
【2018重庆B卷】如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.
【2017南京】不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )
A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥
【2018烟台】由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为( )
A.9 B.11 C.14 D.18
【2018常州】下列图形中,哪一个是圆锥的侧面展开图?( )
A. B. C. D.
【考点】几何体的展开图
【2018临安】马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示) .
【2017河池】如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是( )
A.60° B.90° C.120° D.150°
【2018河北】如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为( )
A.北偏东30° B.北偏东80° C.北偏西30° D.北偏西50°
【2018日照】一个角是70°39′,则它的余角的度数是 .
【2018无锡】命题“四边相等的四边形是菱形”的逆命题是 .
【2018湘潭】如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为 .(任意添加一个符合题意的条件即可)
【2018苏州】如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为 °.
【2017桂林】如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB= .
【2018北京】下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.
已知:直线l及直线l外一点P.
求作:直线PQ,使得PQ∥l.
作法:如图,
①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;
②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;
③作直线PQ.所以直线PQ就是所求作的直线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵AB= ,CB= ,
∴PQ∥l( )(填推理的依据).
【2018益阳】如图,AB∥CD,∠1=∠2.求证:AM∥CN.
【2018重庆】如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.
【2018宿迁】如图,在□ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H,求证:AG=CH.
第四章 图形的性质 第20节 图形的认识
■考点1.直线、线段、射线
基本事实
(1)直线的基本事实:经过两点有且只有一条直线.
(2)线段的基本事实:两点之间,线段最短.
■考点2.角、角平分线
1..概念
(1)角:有公共端点的两条射线组成的图形.
(2)角平分线:在角的内部,以角的顶点为端点把这个角分成两个相等的角的射线
2.角的度量 1°=60′,1′=60'',1°=3600''
3.余角和补角
(1) 余角:∠1+∠2= 900 ?∠1与∠2互为余角;
(2) 补角:∠1+∠2= 1800 ?∠1与∠2互为补角.
(3)性质:同角(或等角)的余角相等;同角(或等角)的补角相等.
■考点3.立体图形展开图
正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题。
■考点4.相交线、平行线
1.三线八角 (1)同位角:形如”F”;(2)内错角:形如“Z”;(3)同旁内角:形如“U”.
2.对顶角、邻补角
(1)概念:两条直线相交后所得的只有一个公共顶点而没有公共边的两个角叫做对顶角.
(2)性质:对顶角相等,邻补角之和为180°.
3.垂线
(1)概念:两条直线互相垂直,其中的一条直线叫做另一条直线的垂线.
(2)性质:①过一点有且只有一条直线与已知直线垂直.
②垂线段最短.
(3)点到直线的距离:直线外一点到这条直线的垂线段的长度
4.平行线
(1)平行线的性质与判定
①同位角相等 两直线平行
②内错角相等 两直线平行
③同旁内角互补 两直线平行
(2)平行公理及其推论
①经过直线外一点,有且只有一条直线与已知直线平行.
②平行于同一条直线的两直线平行.
■考点5.命题与证明
(1)概念:对某一事件作出正确或不正确判断的语句(或式子)叫做命题,正确的命题称为真命题;错误的命题称为假命题.21教育网
(2)命题的结构:由题设和结论两部分组成,命题常写成"如果p,那么q"的形式,其中p是题设,q是结论.www-2-1-cnjy-com
(3)证明:从一个命题的题设出发,通过推理来判断命题是否成立的过程.证明一个命题是假命题时,只要举出一个反例署名命题不成立就可以了.
■考点1.直线、线段、射线
◇典例:
【2016?台湾】如图(一),OP为一条拉直的细线,A、B两点在OP上,且OA:AP =1:3,OB:BP =3:5.若先固定B点,将OB折向BP,使得OB重迭在BP上,如图(二),再从图(二) 的A点及与A点重迭处一起剪开,使得细线分成三段,则此三段细线由小到大的长度比为何?( )
A.1:1:1 B.1:1:2 C.1:2:2 D.1:2:5
【分析】根据题意可以设出线段OP的长度,从而根据比值可以得到图一中各线段的长,根据题意可以求出折叠后,再剪开各线段的长度,从而可以求得三段细线由小到大的长度比,本题得以解决.
解:设OP的长度为8a,
∵OA:AP=1:3,OB:BP=3:5,
∴OA=2a,AP=6a,OB=3a,BP=5a,
又∵先固定B点,将OB折向BP,使得OB重迭在BP上,如图(二),再从图(二) 的A点及与A点重迭处一起剪开,使得细线分成三段,
∴这三段从小到大的长度分别是:2a、2a、4a,
∴此三段细线由小到大的长度比为:2a:2a:4a=1:1:2,
故选B.
【点评】本题考查比较线段的长短,解题的关键是理解题意,求出各线段的长度.
◆变式训练
【2017?北京】如图所示,点P到直线l的距离是( )
A.线段PA的长度 B.线段PB的长度 C.线段PC的长度 D.线段PD的长度
【考点】点到直线的距离.
【分析】根据点到直线的距离是垂线段的长度,可得答案.
解:由题意,得点P到直线l的距离是线段PB的长度,故选:B.
■考点2.角、角平分线
◇典例
【2017?常德】若一个角为75°,则它的余角的度数为( )
A.285° B.105° C.75° D.15°
【考点】余角和补角.
【分析】依据余角的定义列出算式进行计算即可.
解:它的余角=90°-75°=15°,故选D.
◆变式训练
【2018德州】如图,将一副三角尺按不同的位置摆放,下列摆放方式中与互余的是( )
A. 图① B. 图② C. 图③ D. 图④
【考点】余角和补角
【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.
解:图①,∠α+∠β=180°﹣90°,互余;
图②,根据同角的余角相等,∠α=∠β;
图③,根据等角的补角相等∠α=∠β;
图④,∠α+∠β=180°,互补.
故选A.
【点睛】本题考查了余角和补角,是基础题,熟记概念与性质是解题的关键.
■考点3.立体图形展开图
◇典例:
【2017湖北】如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是( )
A.传 B.统 C.文 D.化案】
【考点】专题:正方体相对两个面上的文字.
【分析】利用正方体及其表面展开图的特点解题.
解:这是一个正方体的平面展开图,共有六个面,其中面“扬”与“统”相对,面“弘”与面“文”相对,“传”与面“化”相对.
故选:C.
◆变式训练
【2017长春】下列图形中,可以是正方体表面展开图的是( )
A. B. C. D.
【考点】几何体的展开图.
【分析】观察选项中的图形,确定出作为正方体表面展开图的即可.
解:下列图形中,可以是正方体表面展开图的是
,
故选D
■考点4.相交线、平行线
◇典例:
1.【2018邵阳】如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为( )
A.20° B.60° C.70° D.160°
【考点】对顶角、邻补角
【分析】根据对顶角相等解答即可.
解:∵∠AOD=160°,
∴∠BOC=∠AOD=160°,
故选:D.
【点评】此题考查对顶角、邻补角,关键是根据对顶角相等解答.
2.【2017?玉林】如图,直线a,b被c所截,则∠1与∠2是( )
A.同位角 B.内错角 C.同旁内角 D.邻补角
【考点】同位角、内错角、同旁内角;对顶角、邻补角.
【分析】由内错角的定义(两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角)进行解答.【来源:21·世纪·解:如图所示,
两条直线a、b被直线c所截形成的角中,∠1与∠2都在a、b直线的之间,并且在直线c的两旁,所以∠1与∠2是内错角.故选:B.
◆变式训练
1.【2017贺州】下列各图中,∠1与∠2互为邻补角的是( )
A. B. C. D.
【考点】对顶角、邻补角.
【分析】根据邻补角的定义作出判断即可.
解:根据邻补角的定义可知:只有D图中的是邻补角,其它都不是.
故选:D.
2.【2017?枣庄】如图,将一副三角板和一张对边平行的纸条按下列方式摆放,
两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )
A.15° B.22.5° C.30° D.45°
【考点】平行线的性质.
【分析】过A点作AB∥a,利用平行线的性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°.
解:如图,过A点作AB∥a,
∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选:A.
■考点4.命题与证明
◇典例:
【2018永州】下列命题是真命题的是( )
A.对角线相等的四边形是矩形
B.对角线互相垂直的四边形是菱形
C.任意多边形的内角和为360°
D.三角形的中位线平行于第三边,并且等于第三边的一半
【考点】命题与定理
【分析】根据矩形的判定方法对A进行判断;根据菱形的判定方法对B进行判断;根据多边形的内角和对C进行判断;根据三角形中位线性质对D进行判断.
解:A、对角线相等的平行四边形是矩形,所以A选项为假命题;
B、对角线互相垂直的平行四边形是菱形,所以B选项为假命题;
C、任意多边形的外角和为360°,所以C选项为假命题;
D、三角形的中位线平行于第三边且等于第三边的一半,所以D选项为真命题.
故选:D.
【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理.
◆变式训练
【2018广安】下列命题中:
①如果a>b,那么a2>b2
②一组对边平行,另一组对边相等的四边形是平行四边形
③从圆外一点可以引圆的两条切线,它们的切线长相等
④关于x的一元二次方程ax2+2x+1=0有实数根,则a的取值范围是a≤1
其中真命题的个数是( )
A.1 B.2 C.3 D.4
【考点】命题与定理
【分析】直接利用切线长定理以及平行四边形的判定和一元二次方程根的判别式分别判断得出答案.
解:①如果a>b,那么a2>b2,错误;
②一组对边平行,另一组对边相等的四边形是平行四边形,错误;
③从圆外一点可以引圆的两条切线,它们的切线长相等,正确;
④关于x的一元二次方程ax2+2x+1=0有实数根,则a的取值范围是a≤1且a≠0,故此选项错误.
故选:A.
【点评】此题主要考查了命题与定理,正确把握相关性质是解题关键.
【2018北京】下列几何体中,是圆柱的为( )
A. B. C. D.
【考点】立体图形
【分析】根据立体图形的定义及其命名规则逐一判断即可.
解:A、此几何体是圆柱体;
B、此几何体是圆锥体;
C、此几何体是正方体;
D、此几何体是四棱锥;
故选:A.
【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.
2.【2018长沙】将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是( )
A. B. C. D.
【考点】点、线、面、体
【分析】根据面动成体以及圆台的特点进行逐一分析,能求出结果.
解:绕直线l旋转一周,可以得到圆台,
故选:D.
【点评】本题考查立体图形的判断,关键是根据面动成体以及圆台的特点解答.
【2018湖北】如图是某个几何体的展开图,该几何体是( )
A.三棱柱 B.三棱锥 C.圆柱 D.圆锥
【考点】几何体的展开图
【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.
解:观察图形可知,这个几何体是三棱柱.
故选:A.
【点评】本题考查的是三棱柱的展开图,考法较新颖,需要对三棱柱有充分的理解.
【2018大庆】将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是( )
A.庆 B.力 C.大 D.魅
【考点】正方体的表面展开图
【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“建”与“力”是相对面,
“创”与“庆”是相对面,
“魅”与“大”是相对面.
故选:A.
【2018南京】用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:
①可能是锐角三角形;
②可能是直角三角形;
③可能是钝角三角形;
④可能是平行四边形.
其中所有正确结论的序号是( )
A.①② B.①④ C.①②④ D.①②③④
【考点】截一个几何体
【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形.
解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,而三角形只能是锐角三角形,不能是直角三角形和钝角三角形.
故选:B.
【点评】本题考查了正方体的截面,注意:正方体的截面的四种情况应熟记.
【2018杭州】若线段AM,AN分别是△ABC的BC边上的高线和中线,则( )
A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN
【考点】垂线段最短
【分析】根据垂线段最短解答即可.
解:因为线段AM,AN分别是△ABC的BC边上的高线和中线,
所以AM≤AN,
故选:D.
【点评】此题考查垂线段问题,关键是根据垂线段最短解答.
【2018怀化】下列命题是真命题的是( )
A.两直线平行,同位角相等
B.相似三角形的面积比等于相似比
C.菱形的对角线相等
D.相等的两个角是对顶角
【考点】命题与定理
【分析】根据平行线的性质、相似三角形的性质、菱形的性质、对顶角的概念判断即可.
解:两直线平行,同位角相等,A是真命题;
相似三角形的面积比等于相似比的平方,B是假命题;
菱形的对角线互相垂直,不一定相等,C是假命题;
相等的两个角不一定是对顶角,D是假命题;
故选:A.
【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
【2018吉林】如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是( )
A.10° B.20° C.50° D.70°
【考点】旋转的性质,平行线的判定
【分析】根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a旋转的度数.
解:如图.
∵∠AOC=∠2=50°时,OA∥b,
∴要使木条a与b平行,木条a旋转的度数至少是70°﹣50°=20°.
故选:B.
【点评】本题考查了旋转的性质,平行线的判定,根据同位角相等两直线平行求出旋转后∠2的同位角的度数是解题的关键.
【2018贵州】若∠α=35°,则∠α的补角为 度.
【考点】余角和补角
【分析】根据两个角的和等于180°,则这两个角互补计算即可.
解:180°﹣35°=145°,
则∠α的补角为145°,
故答案为:145.
【点评】本题考查的是余角和补角,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.
【2018北京】用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a= ,b= ,c= .
【考点】命题与定理
【分析】根据题意选择a、b、c的值即可.
解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),
∴命题“若a<b,则ac<bc”是错误的,
故答案为:1;2;﹣1.
【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
【2018重庆B卷】如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.
【考点】平行线的性质,三角形内角和定理
【分析】依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°﹣35°=20°.
解:∵∠EFG=90°,∠E=35°,
∴∠FGH=55°,
∵GE平分∠FGD,AB∥CD,
∴∠FHG=∠HGD=∠FGH=55°,
∵∠FHG是△EFH的外角,
∴∠EFB=55°﹣35°=20°.
【点评】考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.
【2017南京】不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )
A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥
【考点】认识立体图形.
【分析】根据四棱锥的特点,可得答案.
解:四棱锥的底面是四边形,侧面是四个三角形,
底面有四条棱,侧面有4条棱,
故选:D.
【2018烟台】由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为( )
A.9 B.11 C.14 D.18
【考点】几何体的表面积
【分析】由涂色部分面积是从上、前、右三个方向所涂面积相加,据此可得.
解:由图可知涂色部分是从上、前、右三个方向所涂面积相加,即涂色部分面积为4+4+3=11,
故选:B.
【点评】本题主要考查几何体的表面积,解题的关键是掌握涂色部分是从上、前、右三个方向所涂面积相加的结果.
【2018常州】下列图形中,哪一个是圆锥的侧面展开图?( )
A. B. C. D.
【考点】几何体的展开图
【分析】根据圆锥的侧面展开图的特点作答.
解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.
故选:B.
【点评】此题考查了几何体的展开图,注意圆锥的侧面展开图是扇形.
【2018临安】马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示) .
【考点】展开图折叠成几何体
【分析】由平面图形的折叠及正方体的展开图解题.
解:,
故答案为:
.
【点评】本题通过考查正方体的侧面展开图,展示了这样一个教学导向,教学中要让学生确实经历活动过程,而不要将活动层次停留于记忆水平.我们有些老师在教学“展开与折叠”时,不是去引导学生动手操作,而是给出几种结论,这样教出的学生肯定遇到动手操作题型时就束手无策了.
【2017河池】如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是( )
A.60° B.90° C.120° D.150°
【考点】角的概念.
【分析】根据点O在直线AB上,∠BOC=60°,即可得出∠AOC的度数.
解:∵点O在直线AB上,
∴∠AOB=180°,
又∵∠BOC=60°,
∴∠AOC=120°,
故选:C.
【2018河北】如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为( )
A.北偏东30° B.北偏东80° C.北偏西30° D.北偏西50°
【考点】方向角, 平行线的性质
【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.
解:如图,
AP∥BC,
∴∠2=∠1=50°.
∠3=∠4﹣∠2=80°﹣50°=30°,
此时的航行方向为北偏东30°,
故选:A.
【点评】本题考查了方向角,利用平行线的性质得出∠2是解题关键.
【2018日照】一个角是70°39′,则它的余角的度数是 .
【考点】余角,度分秒的换算
【分析】依据余角的定义列出算式进行计算即可.
解:它的余角=90°﹣70°39′=19°21′.
故答案为:19°21′.
【点评】本题主要考查的是余角的定义以及度分秒的换算,掌握相关概念是解题的关键.
【2018无锡】命题“四边相等的四边形是菱形”的逆命题是 .
【考点】命题与定理
【分析】把一个命题的条件和结论互换就得到它的逆命题.
解:命题“四边相等的四边形是菱形”的逆命题是菱形的四条边相等,
故答案为:菱形的四条边相等.
【点评】本题考查的是命题和定理,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
【2018湘潭】如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为 .(任意添加一个符合题意的条件即可)
【考点】平行线的判定
【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断.
解:若∠A+∠ABC=180°,则BC∥AD;
若∠C+∠ADC=180°,则BC∥AD;
若∠CBD=∠ADB,则BC∥AD;
若∠C=∠CDE,则BC∥AD;
故答案为:∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(答案不唯一)
【点评】本题主要考查了平行线的判定,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.
【2018苏州】如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为 °.
【考点】平行线的性质,三角形外角性质
【分析】依据DE∥AF,可得∠BED=∠BFA,再根据三角形外角性质,即可得到∠BFA=20°+60°=80°,进而得出∠BED=80°.
解:如图所示,∵DE∥AF,
∴∠BED=∠BFA,
又∵∠CAF=20°,∠C=60°,
∴∠BFA=20°+60°=80°,
∴∠BED=80°,
故答案为:80.
【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.
【2017桂林】如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB= .
【考点】两点间的距离.
【分析】根据中点定义解答.
解:∵点C是线段AD的中点,若CD=1,
∴AD=1×2=2,
∵点D是线段AB的中点,
∴AB=2×2=4.
故答案为4.
【2018北京】下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.
已知:直线l及直线l外一点P.
求作:直线PQ,使得PQ∥l.
作法:如图,
①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;
②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;
③作直线PQ.所以直线PQ就是所求作的直线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵AB= ,CB= ,
∴PQ∥l( )(填推理的依据).
【考点】作图﹣复杂作图,平行线的判定和性质,三角形中位线定理
【分析】(1)根据题目要求作出图形即可;
(2)利用三角形中位线定理证明即可;
(1)解:直线PQ如图所示;
(2)证明:∵AB=AP,CB=CQ,
∴PQ∥l(三角形中位线定理).
故答案为:AP,CQ,三角形中位线定理;
【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
【2018益阳】如图,AB∥CD,∠1=∠2.求证:AM∥CN.
【考点】平行线的判定与性质
【分析】只要证明∠AEM=∠ECN,根据同位角相等两直线平行即可证明;
证明:∵AB∥CD,
∴∠EAB=∠ECD,
∵∠1=∠2,
∴∠EAM=∠ECN,
∴AM∥CN.
【点评】本题考查平行线的判定和性质,解题的关键是熟练掌握平行线的性质和判定,属于中考基础题.
【2018重庆】如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.
【考点】平行线的性质,三角形内角和定理
【分析】依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°﹣35°=20°.
解:∵∠EFG=90°,∠E=35°,
∴∠FGH=55°,
∵GE平分∠FGD,AB∥CD,
∴∠FHG=∠HGD=∠FGH=55°,
∵∠FHG是△EFH的外角,
∴∠EFB=55°﹣35°=20°.
【点评】考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.
【2018宿迁】如图,在□ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H,求证:AG=CH.
【考点】平行线的性质,全等三角形的判定与性质,平行四边形的性质
【分析】根据平行四边形的性质得AD∥BC,AD=BC,∠A=∠C,根据平行线的性质得∠E=∠F,再结合已知条件可得AF=CE,根据ASA得△CEH≌△AFG,根据全等三角形对应边相等得证.
证明:∵在□ABCD中,∴AD∥BC,AD=BC,∠A=∠C,
∴∠E=∠F,
又∵BE=DF,
∴AD+DF=CB+BE,
即AF=CE,
在△CEH和△AFG中,
,
∴△CEH≌△AFG,
∴CH=AG.