【备考2019】中考数学一轮复习学案 第22节 全等三角形(原卷+解析卷)

文档属性

名称 【备考2019】中考数学一轮复习学案 第22节 全等三角形(原卷+解析卷)
格式 zip
文件大小 1.4MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2018-11-18 20:17:48

文档简介


第四章 图形的性质 第22节 全等三角形
全等图形:能够完全重合的两个图形叫做 .
注:能够完全重合即形状、大小完全相同.
全等三角形:能够完全重合的两个三角形叫做 三角形
■考点1全等三角形的性质
(1)全等三角形的对应边、对应角相等.
(2)全等三角形的对应角平分线、对应中线、对应高相等.
(3)全等三角形的周长等、面积等.
失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角.
■考点2.三角形全等的判定
一般三角形全等 SSS(三边对应相等)

SAS(两边和它们的夹角对应相等)

ASA(两角和它们的夹角对应相等)

AAS(两角和其中一个角的对边对应相等)

直角三角形全等
(1)斜边和一条直角边对应相等(HL)
(2)证明两个直角三角形全等同样可以用SAS,ASA和AAS.

失分点警示
如图,SSA和AAA不能判定两个三角形全等.

■考点3.全等三角形的运用
(1)利用全等证明角、边相等或求线段长、求角度:将特征的边或角放到两个全等的三角
形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行
条件.
(2)全等三角形中的辅助线的作法:
①直接连接法:如图①,连接公共边,构造全等.
②倍长中线法:用于证明线段的不等关系,如图②,由SAS可得△ACD≌△EBD,则AC=BE.在△ABE中,AB+BE>AE,即 .www-2-1-cnjy-com
③截长补短法:适合证明线段的和差关系,如图③、④.
■考点1全等三角形的性质
◇典例:
如图,≌,,,,则的度数为______.
【考点】三角形内角和定理,全等三角形的性质
【分析】首先利用三角形内角和计算出∠BAC,再计算出∠BAD的度数,然后再根据全等三角形的性质可得答案.
解:∵,,
∴∠BAC=180°-70°-26°=84°.
∵,
∴∠BAD=84°-30°=54°.
∵≌,
∴∠BAC=∠DAE,
∴∠EAC=∠BAD=54°.
故答案为:54°.
【点睛】本题考查了三角形内角和定理和全等三角形的性质,主要利用了全等三角形对应角相等,熟记性质是解题的关键.
◆变式训练
(2016?厦门)如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=(  )
A.∠B B.∠A C.∠EMF D.∠AFB
■考点2.三角形全等的判定
◇典例
【2017黑龙江】如图,BC∥EF,AC∥DF,添加一个条件   ,使得△ABC≌△DEF.
【考点】全等三角形的判定.
【分析】本题要判定△ABC≌△DEF,易证∠A=∠EDF,∠ABC=∠E,故添加AB=DE、BC=EF或AC=DF根据ASA、AAS即可解题.
解:∵BC∥EF,
∴∠ABC=∠E,
∵AC∥DF,
∴∠A=∠EDF,
∵在△ABC和△DEF中,,
∴△ABC≌△DEF,
同理,BC=EF或AC=DF也可证△ABC≌△DEF.
故答案为AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可).
◆变式训练
1.【2017娄底】如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是   .
【2018菏泽】如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.
■考点3.全等三角形的运用
◇典例:
【2015?义乌】如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是(  )
A.SAS B.ASA C.AAS D.SSS
【考点】全等三角形的应用.
【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.
解:在△ADC和△ABC中,
, ∴△ADC≌△ABC(SSS), ∴∠DAC=∠BAC, 即∠QAE=∠PAE. 故选:D.
◆变式训练
【2018永州】现有A、B两个大型储油罐,它们相距2km,计划修建一条笔直的输油管道,使得A、B两个储油罐到输油管道所在直线的距离都为0.5km,输油管道所在直线符合上述要求的设计方案有   种.
【2018成都】如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是(  )
A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC
【2018贵州】下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是(  )
A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙
【2018南京】如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为(  )
A.a+c B.b+c C.a﹣b+c D.a+b﹣c
【2017?黔西南州】四边形ABCD中,AB=CD,AB∥CD,则下列结论中错误的是(  )
A.∠A=∠C B.AD∥BC C.∠A=∠B D.对角线互相平分
【2018临沂】如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是(  )
A. B.2 C.2 D.
【2018甘孜】如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是   .(只需写一个,不添加辅助线)
【2018牡丹江】如图,AC=BC,请你添加一对边或一对角相等的条件,使AD=BE.你所添加的条件是   .
【2018衢州】如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是   (只需写一个,不添加辅助线).
【2018台州】如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.
【2018苏州】如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.
【2018安顺】如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD(  )
A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD
【2018河北】已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是(  )
A.作∠APB的平分线PC交AB于点C B.过点P作PC⊥AB于点C且AC=BC
C.取AB中点C,连接PC D.过点P作PC⊥AB,垂足为C
【2018滨州】如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为(  )
A.4 B.3 C.2 D.1
【2018黑龙江】如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为(  )
A.15 B.12.5 C.14.5 D.17
【2017?滨州】如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,
若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为(  )
A.4 B.3 C.2 D.1
【2017?鄂州】如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E
为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为(  )
A. B. C. D.
【2018怀化】如图,AC=DC,BC=EC,请你添加一个适当的条件:   ,使得△ABC≌△DEC.
【2018荆州】已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC即为所求.上述作图用到了全等三角形的判定方法,这个方法是   .
【2017?娄底】如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,
点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是
______________(用含m的代数式表示).

【2017?新疆】如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,
下列结论中: ①∠ABC=∠ADC; ②AC与BD相互平分; ③AC,BD分别平分四边形ABCD的两组对角; ④四边形ABCD的面积S= AC?BD. 正确的是 ______________(填写所有正确结论的序号)
11.【2018柳州】如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.
12.【2018昆明】如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.
13.【2018衡阳】如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.
(1)求证:△ABE≌△DCE;
(2)当AB=5时,求CD的长.
14.【2018咸宁】已知:∠AOB.
求作:∠A'O'B',使∠A'O′B'=∠AOB
(1)如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D;
(2)如图2,画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;
(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧交于点D′;
(4)过点D′画射线O′B',则∠A'O'B'=∠AOB.
根据以上作图步骤,请你证明∠A'O'B′=∠AOB.
15.【2018桂林】如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.
(1)求证:ΔABC≌DEF;
(2)若∠A=55°,∠B=88°,求∠F的度数.

第四章 图形的性质 第22节 全等三角形
全等图形:能够完全重合的两个图形叫做 全等图形 .
注:能够完全重合即形状、大小完全相同.
全等三角形:能够完全重合的两个三角形叫做 全等 三角形
■考点1全等三角形的性质
(1)全等三角形的对应边、对应角相等.
(2)全等三角形的对应角平分线、对应中线、对应高相等.
(3)全等三角形的周长等、面积等.
失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角.
■考点2.三角形全等的判定
一般三角形全等 SSS(三边对应相等)

SAS(两边和它们的夹角对应相等)

ASA(两角和它们的夹角对应相等)

AAS(两角和其中一个角的对边对应相等)

直角三角形全等
(1)斜边和一条直角边对应相等(HL)
(2)证明两个直角三角形全等同样可以用 SAS,ASA和AAS.

失分点警示
如图,SSA和AAA不能判定两个三角形全等.

■考点3.全等三角形的运用
(1)利用全等证明角、边相等或求线段长、求角度:将特征的边或角放到两个全等的三角
形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行
条件.
(2)全等三角形中的辅助线的作法:
①直接连接法:如图①,连接公共边,构造全等.
②倍长中线法:用于证明线段的不等关系,如图②,由SAS可得△ACD≌△EBD,则AC=BE.在△ABE中,AB+BE>AE,即AB+AC>2AD.www-2-1-cnjy-com
③截长补短法:适合证明线段的和差关系,如图③、④.
■考点1全等三角形的性质
◇典例:
如图,≌,,,,则的度数为______ .
【考点】三角形内角和定理,全等三角形的性质
【分析】首先利用三角形内角和计算出∠BAC,再计算出∠BAD的度数,然后再根据全等三角形的性质可得答案.
解:∵,,
∴∠BAC=180°-70°-26°=84°.
∵,
∴∠BAD=84°-30°=54°.
∵≌,
∴∠BAC=∠DAE,
∴∠EAC=∠BAD=54°.
故答案为:54°.
【点睛】本题考查了三角形内角和定理和全等三角形的性质,主要利用了全等三角形对应角相等,熟记性质是解题的关键.
◆变式训练
(2016?厦门)如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=(  )
A.∠B B.∠A C.∠EMF D.∠AFB
【考点】全等三角形的性质.
【分析】由全等三角形的性质:对应角相等即可得到问题的选项.
解:∵△ABF与△DCE全等,点A与点D,点B与点C是对应顶点, ∴∠DCE=∠B, 故选A.
■考点2.三角形全等的判定
◇典例
【2017黑龙江】如图,BC∥EF,AC∥DF,添加一个条件   ,使得△ABC≌△DEF.
【考点】全等三角形的判定.
【分析】本题要判定△ABC≌△DEF,易证∠A=∠EDF,∠ABC=∠E,故添加AB=DE、BC=EF或AC=DF根据ASA、AAS即可解题.
解:∵BC∥EF,
∴∠ABC=∠E,
∵AC∥DF,
∴∠A=∠EDF,
∵在△ABC和△DEF中,,
∴△ABC≌△DEF,
同理,BC=EF或AC=DF也可证△ABC≌△DEF.
故答案为AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可).
◆变式训练
1.【2017娄底】如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是   .
【考点】直角三角形全等的判定.
【分析】根据:斜边与直角边对应相等的两个直角三角形全等,使Rt△ABC≌Rt△DCB,添加的条件是:AB=DC.
解:∵斜边与直角边对应相等的两个直角三角形全等,
∴在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,使Rt△ABC≌Rt△DCB,添加的条件是:AB=DC.
故答案为:AB=DC.
【2018菏泽】如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.
【考点】全等三角形的判定与性质
【分析】结论:DF=AE.只要证明△CDF≌△BAE即可;
解:结论:DF=AE.
理由:∵AB∥CD,
∴∠C=∠B,
∵CE=BF,
∴CF=BE,∵CD=AB,
∴△CDF≌△BAE,
∴DF=AE.
【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.
■考点3.全等三角形的运用
◇典例:
【2015?义乌】如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是(  )
A.SAS B.ASA C.AAS D.SSS
【考点】全等三角形的应用.
【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.
解:在△ADC和△ABC中,
, ∴△ADC≌△ABC(SSS), ∴∠DAC=∠BAC, 即∠QAE=∠PAE. 故选:D.
◆变式训练
【2018永州】现有A、B两个大型储油罐,它们相距2km,计划修建一条笔直的输油管道,使得A、B两个储油罐到输油管道所在直线的距离都为0.5km,输油管道所在直线符合上述要求的设计方案有   种.
【考点】点到直线的距离;全等三角形的应用
【分析】根据点A、B的可以在直线的两侧或异侧两种情形讨论即可;
解:输油管道所在直线符合上述要求的设计方案有4种,如图所示;
故答案为4.
【点评】本题考查整体﹣应用与设计,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
【2018成都】如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是(  )
A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC
【考点】全等三角形的判定与性质
【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.
解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;
B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;
C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;
D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;
故选:C.
【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.
【2018贵州】下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是(  )
A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙
【考点】全等三角形的判定
【分析】根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.
解:乙和△ABC全等;理由如下:
在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,
所以乙和△ABC全等;
在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,
所以丙和△ABC全等;
不能判定甲与△ABC全等;
故选:B.
【点评】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
【2018南京】如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为(  )
A.a+c B.b+c C.a﹣b+c D.a+b﹣c
【考点】全等三角形的判定与性质
【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b﹣c;
解:∵AB⊥CD,CE⊥AD,BF⊥AD,
∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,
∴∠A=∠C,∵AB=CD,
∴△ABF≌△CDE,
∴AF=CE=a,BF=DE=b,
∵EF=c,
∴AD=AF+DF=a+(b﹣c)=a+b﹣c,
故选:D.
【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
(2017?黔西南州)四边形ABCD中,AB=CD,AB∥CD,则下列结论中错误的是(  )
A.∠A=∠C B.AD∥BC C.∠A=∠B D.对角线互相平分
【考点】全等三角形的判定与性质;平行四边形的判定与性质.
【分析】由AB=CD,AB∥CD,推出四边形ABCD是平行四边形,推出∠DAB=∠DCB,AD∥BC,OA=OC,OB=OD,由此即可判断.
解:如图,∵AB=CD,AB∥CD, ∴四边形ABCD是平行四边形, ∴∠DAB=∠DCB,AD∥BC,OA=OC,OB=OD, ∴选项A、B、D正确, 故选C
【2018临沂】如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是(  )
A. B.2 C.2 D.
【考点】全等三角形的判定和性质
【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.
解:∵BE⊥CE,AD⊥CE,
∴∠E=∠ADC=90°,
∴∠EBC+∠BCE=90°.
∵∠BCE+∠ACD=90°,
∴∠EBC=∠DCA.
在△CEB和△ADC中,

∴△CEB≌△ADC(AAS),
∴BE=DC=1,CE=AD=3.
∴DE=EC﹣CD=3﹣1=2
故选:B.
【点评】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解决问题的关键,学会正确寻找全等三角形,属于中考常考题型.
【2018甘孜】如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是   .(只需写一个,不添加辅助线)
【考点】全等三角形的判定
【分析】由已知AB=BC,及公共边BD=BD,可知要使△ABD≌△CBD,已经具备了两个S了,然后根据全等三角形的判定定理,应该有两种判定方法①SAS,②SSS.所以可添∠ABD=∠CBD或AD=CD.
解:答案不唯一.
①∠ABD=∠CBD.
在△ABD和△CBD中,
∵,
∴△ABD≌△CBD(SAS);
②AD=CD.
在△ABD和△CBD中,
∵,
∴△ABD≌△CBD(SSS).
故答案为:∠ABD=∠CBD或AD=CD.
【点评】本题主要考查了全等三角形的判定定理,能灵活运用判定进行证明是解此题的关键.熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.
【2018牡丹江】如图,AC=BC,请你添加一对边或一对角相等的条件,使AD=BE.你所添加的条件是   .
【考点】全等三角形的判定与性质
【分析】根据全等三角形的判定解答即可.
解:因为AC=BC,∠C=∠C,所以添加∠A=∠B或∠ADC=∠BEC或CE=CD,
可得△ADC与△BEC全等,利用全等三角形的性质得出AD=BE,
故答案为:∠A=∠B或∠ADC=∠BEC或CE=CD.
【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
【2018衢州】如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是   (只需写一个,不添加辅助线).
【考点】全等三角形的判定.
【分析】根据等式的性质可得BC=EF,根据平行线的性质可得∠B=∠E,再添加AB=ED可利用SAS判定△ABC≌△DEF.
解:添加AB=ED,
∵BF=CE,
∴BF+FC=CE+FC,
即BC=EF,
∵AB∥DE,
∴∠B=∠E,
在△ABC和△DEF中,
∴△ABC≌△DEF(SAS),
故答案为:AB=ED.
【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
【2018台州】如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.
【考点】全等三角形的判定与性质
【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以AB=CD,证明△ABO与△CDO全等,所以有OB=OC.
证明:在Rt△ABC和Rt△DCB中

∴Rt△ABC≌Rt△DCB(HL),
∴∠OBC=∠OCB,
∴BO=CO.
【点评】此题主要考查了全等三角形的判定,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.
【2018苏州】如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.
【考点】全等三角形的判定和性质、平行线的性质
【分析】由全等三角形的性质SAS判定△ABC≌△DEF,则对应角∠ACB=∠DFE,故证得结论.
证明:∵AB∥DE,
∴∠A=∠D,
∵AF=DC,
∴AC=DF.
∴在△ABC与△DEF中,

∴△ABC≌△DEF(SAS),
∴∠ACB=∠DFE,
∴BC∥EF.
【点评】本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.
【2018安顺】如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD(  )
A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD
【考点】全等三角形的判定
【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.
解:∵AB=AC,∠A为公共角,
A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;
B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;
C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;
D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.
故选:D.
【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.
【2018河北】已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是(  )
A.作∠APB的平分线PC交AB于点C B.过点P作PC⊥AB于点C且AC=BC
C.取AB中点C,连接PC D.过点P作PC⊥AB,垂足为C
【考点】全等三角形的判定,线段垂直平分线的判定
【分析】利用判断三角形全等的方法判断即可得出结论.
解:A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;
C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;
D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,
B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;
故选:B.
【点评】此题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.
【2018滨州】如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为(  )
A.4 B.3 C.2 D.1
【考点】全等三角形的判定与性质;角平分线的性质.
【分析】如图作PE⊥OA于E,PF⊥OB于F.只要证明△POE≌△POF,△PEM≌△PFN,即可一一判断.
解:如图作PE⊥OA于E,PF⊥OB于F.
∵∠PEO=∠PFO=90°,
∴∠EPF+∠AOB=180°,
∵∠MPN+∠AOB=180°,
∴∠EPF=∠MPN,
∴∠EPM=∠FPN,
∵OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,
∴PE=PF,
在△POE和△POF中,

∴△POE≌△POF,
∴OE=OF,
在△PEM和△PFN中,

∴△PEM≌△PFN,
∴EM=NF,PM=PN,故(1)正确,
∴S△PEM=S△PNF,
∴S四边形PMON=S四边形PEOF=定值,故(3)正确,
∵OM+ON=OE+ME+OF﹣NF=2OE=定值,故(2)正确,
MN的长度是变化的,故(4)错误,
故选B.
【2018黑龙江】如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为(  )
A.15 B.12.5 C.14.5 D.17
【考点】全等三角形的判定与性质
【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=×5×5=12.5,即可得出结论.
解:如图,过A作AE⊥AC,交CB的延长线于E,
∵∠DAB=∠DCB=90°,
∴∠D+∠ABC=180°=∠ABE+∠ABC,
∴∠D=∠ABE,
又∵∠DAB=∠CAE=90°,
∴∠CAD=∠EAB,
又∵AD=AB,
∴△ACD≌△AEB,
∴AC=AE,即△ACE是等腰直角三角形,
∴四边形ABCD的面积与△ACE的面积相等,
∵S△ACE=×5×5=12.5,
∴四边形ABCD的面积为12.5,
故选:B.
【点评】本题主要考查了全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
【2017?滨州】如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,
若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为(  )
A.4 B.3 C.2 D.1
【考点】全等三角形的判定与性质;角平分线的性质.
【分析】如图作PE⊥OA于E,PF⊥OB于F.只要证明△POE≌△POF,△PEM≌△PFN,即可一一判断.
解:如图作PE⊥OA于E,PF⊥OB于F.
∵∠PEO=∠PFO=90°, ∴∠EPF+∠AOB=180°, ∵∠MPN+∠AOB=180°, ∴∠EPF=∠MPN, ∴∠EPM=∠FPN, ∵OP平分∠AOB,PE⊥OA于E,PF⊥OB于F, ∴PE=PF, 在△POE和△POF中,
, ∴△POE≌△POF, ∴OE=OF, 在△PEM和△PFN中, ,
∴△PEM≌△PFN, ∴EM=NF,PM=PN,故(1)正确, ∴S△PEM=S△PNF, ∴S四边形PMON=S四边形PEOF=定值,故(3)正确, ∵OM+ON=OE+ME+OF-NF=2OE=定值,故(2)正确, MN的长度是变化的,故(4)错误, 故选B.
【2017?鄂州】如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E
为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为(  )
A. B. C. D.
【考点】全等三角形的判定与性质;三角形的面积.
【分析】如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T.由△BCF≌△GDF,推出BC=DG,BF=FG,由△FBC≌△FBH,△FAH≌△FAD,推出BC=BH,AD=AH,由题意AD=DC=4,设BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,可得(x+4)2=42+(4-x)2,推出x=1,推出BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,根据AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,可得42+z2=2y2??? ①,(5-y)2+y2=12+(4-z)2??? ②,由此求出y即可解决问题.
解:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T. ∵BC∥AG, ∴∠BCF=∠FDG, ∵∠BFC=∠DFG,FC=DF, ∴△BCF≌△GDF, ∴BC=DG,BF=FG, ∵AB=BC+AD,AG=AD+DG=AD+BC, ∴AB=AG,∵BF=FG, ∴BF⊥AF,∠ABF=∠G=∠CBF, ∵FH⊥BA,FC⊥BC, ∴FH=FC,易证△FBC≌△FBH,△FAH≌△FAD, ∴BC=BH,AD=AH, 由题意AD=DC=4,设BC=TD=BH=x, 在Rt△ABT中,∵AB2=BT2+AT2, ∴(x+4)2=42+(4-x)2, ∴x=1, ∴BC=BH=TD=1,AB=5, 设AK=EK=y,DE=z, ∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2, ∴42+z2=2y2??? ①, (5-y)2+y2=12+(4-z)2??? ② 由②得到25-10y+2y2=5-8z+z2??? ③, ①代入③可得z=?? ④ ④代入①可得y=(负根已经舍弃), ∴S△ABE=×5×=, 故选D.
【2018怀化】如图,AC=DC,BC=EC,请你添加一个适当的条件:   ,使得△ABC≌△DEC.
【考点】全等三角形的判定.
【分析】本题要判定△ABC≌△DEC,已知AC=DC,BC=EC,具备了两组边对应相等,利用SSS即可判定两三角形全等了.
解:添加条件是:AB=DE,
在△ABC与△DEC中,,
∴△ABC≌△DEC.
故答案为:AB=DE.本题答案不唯一.
【2018荆州】已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC即为所求.上述作图用到了全等三角形的判定方法,这个方法是   .
【考点】全等三角形的判定;作图—基本作图
【分析】利用基本作图得到OM=ON,CM=CN,加上公共边OC,则可根据SSS证明三角形全等.
解:由作法①知,OM=ON,
由作法②知,CM=CN,
∵OC=OC,
∴△OCM≌△OCN(SSS),
故答案为:SSS.
【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定.
【2017?娄底】如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,
点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是
______________(用含m的代数式表示).
【考点】全等三角形的判定与性质;等腰直角三角形.
【分析】先判断出∠ADE=∠BDF,进而判断出△ADE≌△BDF得出AE=BF,DE=DF,利用勾股定理求出EF即可得出结论.
解:如图,
连接BD,在等腰Rt△ABC中,点D是AC的中点, ∴BD⊥AC, ∴BD=AD=CD,∠DBC=∠A=45°,∠ADB=90°, ∵∠EDF=90°, ∴∠ADE=∠BDF, 在△ADE和△BDF中,
, ∴△ADE≌△BDF(ASA), ∴AE=BF,DE=DF, 在Rt△DEF中,DF=DE=m. ∴EF=DE=m, ∴△BEF的周长为BE+BF+EF=BE+AE+EF=AB+EF=2+m, 故答案为:(m+2)21·世纪*教育网
【2017?新疆】如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,
下列结论中: ①∠ABC=∠ADC; ②AC与BD相互平分; ③AC,BD分别平分四边形ABCD的两组对角; ④四边形ABCD的面积S= AC?BD. 正确的是 ______________(填写所有正确结论的序号)
【考点】全等三角形的判定与性质;线段垂直平分线的性质.
【分析】①证明△ABC≌△ADC,可作判断; ②③由于AB与BC不一定相等,则可知此两个选项不一定正确; ④根据面积和求四边形的面积即可.
解:①在△ABC和△ADC中, ∵
∴△ABC≌△ADC(SSS), ∴∠ABC=∠ADC, 故①结论正确; ②∵△ABC≌△ADC, ∴∠BAC=∠DAC, ∵AB=AD, ∴OB=OD,AC⊥BD, 而AB与BC不一定相等,所以AO与OC不一定相等, 故②结论不正确; ③由②可知:AC平分四边形ABCD的∠BAD、∠BCD, 而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角; 故③结论不正确; ④∵AC⊥BD, ∴四边形ABCD的面积S=S△ABD+S△BCD=BD?AO+BD?CO=BD?(AO+CO)=AC?BD. 故④结论正确; 所以正确的有:①④; 故答案为:①④.21*cnjy*com
11.【2018柳州】如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.
【考点】全等三角形的判定
【分析】依据两角及其夹边分别对应相等的两个三角形全等进行判断.
证明:∵在△ABC和△EDC中,

∴△ABC≌△EDC(ASA).
【点评】本题主要考查了全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.
12.【2018昆明】如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.
【考点】全等三角形的判定与性质
【分析】根据ASA证明△ADE≌△ABC;
证明:(1)∵∠1=∠2,
∵∠DAC+∠1=∠2+∠DAC
∴∠BAC=∠DAE,
在△ABC和△ADE中,

∴△ADE≌△ABC(ASA)
∴BC=DE,
【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等
13.【2018衡阳】如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.
(1)求证:△ABE≌△DCE;
(2)当AB=5时,求CD的长.
【考点】全等三角形的判定与性质
【分析】(1)根据AE=DE,BE=CE,∠AEB和∠DEC是对顶角,利用SAS证明△AEB≌△DEC即可.
(2)根据全等三角形的性质即可解决问题.
(1)证明:在△AEB和△DEC中,

∴△AEB≌△DEC(SAS).
(2)解:∵△AEB≌△DEC,
∴AB=CD,
∵AB=5,
∴CD=5.
【点评】此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.
14.【2018咸宁】已知:∠AOB.
求作:∠A'O'B',使∠A'O′B'=∠AOB
(1)如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D;
(2)如图2,画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;
(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧交于点D′;
(4)过点D′画射线O′B',则∠A'O'B'=∠AOB.
根据以上作图步骤,请你证明∠A'O'B′=∠AOB.
【考点】全等三角形的判定与性质
【分析】由基本作图得到OD=OC=O′D′=O′C′,CD=C′D′,则根据“SSS“可证明△OCD≌△O′C′D′,然后利用全等三角形的性质可得到∠A'O'B′=∠AOB.
证明:由作法得OD=OC=O′D′=O′C′,CD=C′D′,
在△OCD和△O′C′D′中

∴△OCD≌△O′C′D′,
∴∠COD=∠C′O′D′,
即∠A'O'B′=∠AOB.
【点评】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.也考查了基本作图.
15.【2018桂林】如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.
(1)求证:ΔABC≌DEF;
(2)若∠A=55°,∠B=88°,求∠F的度数.
【考点】全等三角形的判定
【分析】(1)先证明AC=DF,再运用SSS证明△ABC≌△DEF;
(2)根据三角形内角和定理可求∠ACB=37°,由(1)知∠F=∠ACB,从而可得结论.
(1)∵AC=AD+DC, DF=DC+CF,且AD=CF
∴AC=DF
在△ABC和△DEF中,
∴△ABC≌△DEF(SSS)
(2)由(1)可知,∠F=∠ACB
∵∠A=55°,∠B=88°
∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°
∴∠F=∠ACB=37°
【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
同课章节目录