第四章 图形的性质第31节 尺规作图
■考点1.网格作图:利用平移、旋转、轴对称、中心对称、位似在网格中作图称为网格作图
■考点2.尺规作图
(1)尺规作图的定义:
在几何里把限定用没有刻度的直尺和圆规来画图,称为尺规作图,最基本最常用的尺规作图,称为基本作图.
(2)五种基本尺规作图:①作一条线段等于已知线段;②作一个角等于已知角:③作一个角的角平分线:④作线段的垂直平分线:⑤经过一点作已知直线的垂线.
(3)尺规作图的步骤:
①已知:写出已知的线段和角,画出图形:
②求作:求作什么图形,它符合什么条件,一一具体化:
③作法:应用五种基本作图,叙述时不需要重述基本作图的过程,但图中必须保留基本作图的痕迹:
④证明:为了验证所作图形的正确性,把图作出后,根据有关的定义、定理等并结合作法证明所作图形完全符合题设条件,
⑤对所作图形下结论.
(4)作三角形:①已知三边作三角形;②已知两边及其夹角作三角形:③已知两角及其夹边作三角形:④已知底边及底边上的高作等腰三角形.
(5)探究如何过一点、两点和不在同一直线上的三点作圆.
■考点1.网格作图
◇典例:
【2017佳木斯】如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.
(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.
(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.
【考点】 作图﹣旋转变换; 作图﹣轴对称变换.
【分析】根据题意画出相应的三角形,确定出所求点坐标即可.
解:(1)画出△ABC关于y轴对称的△A1B1C1,如图所示,此时A1的坐标为(﹣2,2);
(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,如图所示,此时A2的坐标为(4,0);
(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,如图所示,此时A3的坐标为(﹣4,0).
◆变式训练
【2017?温州】在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.
(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;
(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.
■考点2.尺规作图
◇典例
【2017孝感】如图,已知矩形ABCD(AB<AD).
(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;
①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;
②作∠DAE的平分线交CD于点F;
③连接EF;
(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为 .
【分析】(1)根据题目要求作图即可;
(2)由(1)知AE=AD=10、∠DAF=∠EAF,可证△DAF≌△EAF得∠D=∠AEF=90°,即可得∠FEC=∠BAE,从而由tan∠FEC=tan∠BAE=可得答案.
解:(1)如图所示;
(2)由(1)知AE=AD=10、∠DAF=∠EAF,
∵AB=8,
∴BE==6,
在△DAF和△EAF中,
∵,
∴△DAF≌△EAF(SAS),
∴∠D=∠AEF=90°,
∴∠BEA+∠FEC=90°,
又∵∠BEA+∠BAE=90°,
∴∠FEC=∠BAE,
∴tan∠FEC=tan∠BAE===,
故答案为:.
【点评】本题主要考查作图﹣基本作图及全等三角形的判定与性质、解直角三角形,熟练掌握角平分线的尺规作图和全等三角形的判定与性质是解题的关键.
◆变式训练
【2017赤峰】已知平行四边形ABCD.
(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);
(2)在(1)的条件下,求证:CE=CF.
1.【2018河北】尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;
Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.
如图是按上述要求排乱顺序的尺规作图:
则正确的配对是( )
A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
C.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
2.【2018宜昌】尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是( )
A. B. C. D.
3.【2018湖州】尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:
①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;
②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;
③连结OG.
问:OG的长是多少?
大臣给出的正确答案应是( )
A.r B.(1+)r C.(1+)r D.r
4.(2017?自贡)如图,13个边长为1的小正方形,排列形式如图,把它们分割,使分割
后能拼成一个大正方形.请在如图所示的网格中(网格的边长为1)中,用直尺作出这个大正方形.
5.(2017?荆州)如图,在5×5的正方形网格中有一条线段AB,点A与点B均在格点上.请
在这个网格中作线段AB的垂直平分线.要求:①仅用无刻度直尺,且不能用直尺中的直角;②保留必要的作图痕迹.21世纪教育网版权所有
6.【2017?济宁】如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴
于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是 .
7.【2018荆州】已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC即为所求.上述作图用到了全等三角形的判定方法,这个方法是 .
8.【2017北京】如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程: .
9.【2018兰州】如图,在Rt△ABC中.
(1)利用尺规作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;
(2)利用尺规作图,作出(1)中的线段PD.
(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)
10.【2018温州】如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.
(1)画出一个面积最小的?PAQB.
(2)画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.
选择题
1.【2018南通】如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为( )
A.30° B.35° C.70° D.45°
【2018安顺】已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是
( )
A. B. C. D.
【2018河南】如图,已知?AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为( )
A.(﹣1,2) B.(,2) C.(3﹣,2) D.(﹣2,2)
【2018湖州】尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:
①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;
②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;
③连结OG.
问:OG的长是多少?
大臣给出的正确答案应是( )
A.r B.(1+)r C.(1+)r D.r
【2018巴中】如图,在Rt△ABC中,∠C=90°,按下列步骤作图:①以点B为圆心,适当长为半径画弧,与AB,BC分别交于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧交于点P;③作射线BP交AC于点F;④过点F作FG⊥AB于点G.下列结论正确的是( )
A.CF=FG B.AF=AG C.AF=CF D.AG=FG
【2018潍坊】如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:
(1)作线段,分别以为圆心,以长为半径作弧,两弧的交点为;
(2)以为圆心,仍以长为半径作弧交的延长线于点;
(3)连接
下列说法不正确的是( )
A. B. C. 点是的外心 D.
填空题
【2018通辽】如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD的面积为 .
【2018益阳】如图,在△ABC中,AB=5,AC=4,BC=3.按以下步骤作图:
①以A为圆心,任意长为半径作弧,分别交AB,AC于点M,N;
②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点E;
③作射线AE;
④以同样的方法作射线BF.
AE交BF于点O,连接OC,则OC= .
【2017威海】如图,A点的坐标为(﹣1,5),B点的坐标为(3,3),C点的坐标为(5,3),D点的坐标为(3,﹣1),小明发现:线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是 .
【2017?成都】如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长
为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为 .21cnjy.com
解答题
【2017福建】如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)
【2018攀枝花】已知△ABC中,∠A=90°.
(1)请在图1中作出BC边上的中线(保留作图痕迹,不写作法);
(2)如图2,设BC边上的中线为AD,求证:BC=2AD.
【2018宁波】在5×3的方格纸中,△ABC的三个顶点都在格点上.
(1)在图1中画出线段BD,使BD∥AC,其中D是格点;
(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.
【2018金华】如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.
【2018福建】求证:相似三角形对应边上的中线之比等于相似比.
要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;
②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.
第四章 图形的性质第31节 尺规作图
■考点1.网格作图:利用平移、旋转、轴对称、中心对称、位似在网格中作图称为网格作图
■考点2.尺规作图
(1)尺规作图的定义:
在几何里把限定用没有刻度的直尺和圆规来画图,称为尺规作图,最基本最常用的尺规作图,称为基本作图.
(2)五种基本尺规作图:①作一条线段等于已知线段;②作一个角等于已知角:③作一个角的角平分线:④作线段的垂直平分线:⑤经过一点作已知直线的垂线.
(3)尺规作图的步骤:
①已知:写出已知的线段和角,画出图形:
②求作:求作什么图形,它符合什么条件,一一具体化:
③作法:应用五种基本作图,叙述时不需要重述基本作图的过程,但图中必须保留基本作图的痕迹:
④证明:为了验证所作图形的正确性,把图作出后,根据有关的定义、定理等并结合作法证明所作图形完全符合题设条件,
⑤对所作图形下结论.
(4)作三角形:①已知三边作三角形;②已知两边及其夹角作三角形:③已知两角及其夹边作三角形:④已知底边及底边上的高作等腰三角形.
(5)探究如何过一点、两点和不在同一直线上的三点作圆.
■考点1.网格作图
◇典例:
【2017佳木斯】如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.
(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.
(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.
【考点】 作图﹣旋转变换; 作图﹣轴对称变换.
【分析】根据题意画出相应的三角形,确定出所求点坐标即可.
解:(1)画出△ABC关于y轴对称的△A1B1C1,如图所示,此时A1的坐标为(﹣2,2);
(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,如图所示,此时A2的坐标为(4,0);
(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,如图所示,此时A3的坐标为(﹣4,0).
◆变式训练
【2017?温州】在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.
(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;
(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.
【考点】作图—应用与设计作图.
【分析】(1)设P(x,y),由题意x+y=2,求出整数解即可解决问题;
(2)设P(x,y),由题意x2+42=4(4+y),求出整数解即可解决问题;
解:(1)设P(x,y),由题意x+y=2,
∴P(2,0)或(1,1)或(0,2)不合题意舍弃,
△PAB如图所示.
(2)设P(x,y),由题意x2+42=4(4+y),
整数解为(2,1)或(0,0)等,△PAB如图所示.
■考点2.尺规作图
◇典例
【2017孝感】如图,已知矩形ABCD(AB<AD).
(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;
①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;
②作∠DAE的平分线交CD于点F;
③连接EF;
(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为 .
【分析】(1)根据题目要求作图即可;
(2)由(1)知AE=AD=10、∠DAF=∠EAF,可证△DAF≌△EAF得∠D=∠AEF=90°,即可得∠FEC=∠BAE,从而由tan∠FEC=tan∠BAE=可得答案.
解:(1)如图所示;
(2)由(1)知AE=AD=10、∠DAF=∠EAF,
∵AB=8,
∴BE==6,
在△DAF和△EAF中,
∵,
∴△DAF≌△EAF(SAS),
∴∠D=∠AEF=90°,
∴∠BEA+∠FEC=90°,
又∵∠BEA+∠BAE=90°,
∴∠FEC=∠BAE,
∴tan∠FEC=tan∠BAE===,
故答案为:.
【点评】本题主要考查作图﹣基本作图及全等三角形的判定与性质、解直角三角形,熟练掌握角平分线的尺规作图和全等三角形的判定与性质是解题的关键.
◆变式训练
【2017赤峰】已知平行四边形ABCD.
(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);
(2)在(1)的条件下,求证:CE=CF.
【考点】作图—基本作图;平行四边形的性质.
【分析】(1)作∠BAD的平分线交直线BC于点E,交DC延长线于点F即可;
(2)先根据平行四边形的性质得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠4.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠4,据此可得出结论.
解:(1)如图所示,AF即为所求;
(2)∵四边形ABCD是平行四边形,
∴AB∥DC,AD∥BC,
∴∠1=∠2,∠3=∠4.
∵AF平分∠BAD,
∴∠1=∠3,
∴∠2=∠4,
∴CE=CF.
1.【2018河北】尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;
Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.
如图是按上述要求排乱顺序的尺规作图:
则正确的配对是( )
A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
C.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
【考点】基本作图-直线的垂线作法
【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.
解:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;
Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.
如图是按上述要求排乱顺序的尺规作图:
则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.
故选:D.
【点评】此题主要考查了基本作图,正确掌握基本作图方法是解题关键.
2.【2018宜昌】尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是( )
A. B. C. D.
【考点】垂线;作图—基本作图
【分析】根据过直线外一点向直线作垂线即可.
已知:直线AB和AB外一点C.
求作:AB的垂线,使它经过点C.
作法:(1)任意取一点K,使K和C在AB的两旁.
(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.
(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,
(4)作直线CF.
直线CF就是所求的垂线.
故选:B.
【点评】此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.
3.【2018湖州】尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:
①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;
②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;
③连结OG.
问:OG的长是多少?
大臣给出的正确答案应是( )
A.r B.(1+)r C.(1+)r D.r
【考点】正多边形和圆;作图—复杂作图
【分析】如图连接CD,AC,DG,AG.在直角三角形即可解决问题;
解:如图连接CD,AC,DG,AG.
∵AD是⊙O直径,
∴∠ACD=90°,
在Rt△ACD中,AD=2r,∠DAC=30°,
∴AC=r,
∵DG=AG=CA,OD=OA,
∴OG⊥AD,
∴∠GOA=90°,
∴OG===r,
故选:D.
【点评】本题考查作图﹣复杂作图,正多边形与圆的关系,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
4.(2017?自贡)如图,13个边长为1的小正方形,排列形式如图,把它们分割,使分割
后能拼成一个大正方形.请在如图所示的网格中(网格的边长为1)中,用直尺作出这个大正方形.
【考点】作图—应用与设计作图.
【分析】直接根据阴影部分面积得出正方形边长,进而得出答案.
解:如图所示:所画正方形即为所求.
5.(2017?荆州)如图,在5×5的正方形网格中有一条线段AB,点A与点B均在格点上.请
在这个网格中作线段AB的垂直平分线.要求:①仅用无刻度直尺,且不能用直尺中的直角;②保留必要的作图痕迹.21世纪教育网版权所有
【考点】作图—应用与设计作图;线段垂直平分线的性质.
【分析】以AB为边作正方形ABCD,正方形ABEF,连接AC,BD交于O,连接AE,BF交于O′,过O,O′作直线OO′于是得到结论.21教育名师原创作品
解:如图所示,直线OO′即为所求.
6.【2017?济宁】如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴
于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是 .
【考点】作图—基本作图;坐标与图形性质;点到直线的距离.
【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.
解:根据作图方法可得,点P在第二象限角平分线上,
∴点P到x轴、y轴的距离相等,即|b|=|a|,
又∵点P(a,b)第二象限内,
∴b=﹣a,即a+b=0,
故答案为:a+b=0.
7.【2018荆州】已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC即为所求.上述作图用到了全等三角形的判定方法,这个方法是 .
【考点】全等三角形的判定;作图—基本作图
【分析】利用基本作图得到OM=ON,CM=CN,加上公共边OC,则可根据SSS证明三角形全等.
解:由作法①知,OM=ON,
由作法②知,CM=CN,
∵OC=OC,
∴△OCM≌△OCN(SSS),
故答案为:SSS.
【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定.
8.【2017北京】如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程: .
【考点】坐标与图形变化﹣旋转;坐标与图形变化﹣对称;坐标与图形变化﹣平移.
【分析】根据旋转的性质,平移的性质即可得到由△OCD得到△AOB的过程.
解:△OCD绕C点顺时针旋转90°,并向左平移2个单位得到△AOB(答案不唯一).
故答案为:△OCD绕C点顺时针旋转90°,并向左平移2个单位得到△AOB.
9.【2018兰州】如图,在Rt△ABC中.
(1)利用尺规作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;
(2)利用尺规作图,作出(1)中的线段PD.
(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)
【考点】点到直线的距离;作图—复杂作图
【分析】(1)由点P到AB的距离(PD的长)等于PC的长知点P在∠BAC平分线上,再根据角平分线的尺规作图即可得;
(2)根据过直线外一点作已知直线的垂线的尺规作图即可得.
解:(1)如图,点P即为所求;
(2)如图,线段PD即为所求.
【点评】本题考查作图﹣复杂作图、角平分线的性质定理等知识,解题的关键是熟练掌握基本作图,灵活运用所学知识解决问题,属于中考常考题型.
10.【2018温州】如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.
(1)画出一个面积最小的?PAQB.
(2)画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.
【考点】作图﹣轴对称变换;作图﹣旋转变换
【分析】(1)画出面积是4的格点平行四边形即为所求;
(2)画出以PQ为对角线的等腰梯形即为所求.
解:(1)如图①所示:
(2)如图②所示:
【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.
选择题
1.【2018南通】如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为( )
A.30° B.35° C.70° D.45°
【考点】基本作图-作角平分线,平行线的性质
【分析】直接利用平行线的性质结合角平分线的作法得出∠CAM=∠BAM=35°,即可得出答案.
解:∵AB∥CD,∠ACD=110°,
∴∠CAB=70°,
∵以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,
∴AP平分∠CAB,
∴∠CAM=∠BAM=35°,
∵AB∥CD,
∴∠CMA=∠MAB=35°.
故选:B.
【点评】此题主要考查了基本作图以及平行线的性质,正确得出∠CAM=∠BAM是解题关键.
2.【2018安顺】已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是
( )
A. B. C. D.
【考点】作图—复杂作图
【分析】利用线段垂直平分线的性质以及圆的性质分别分得出即可.
解:A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;
B、如图所示:此时PA=PC,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;
C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;
D、如图所示:此时BP=AP,故能得出PA+PC=BC,故此选项正确;
故选:D.
【点评】此题主要考查了复杂作图,根据线段垂直平分线的性质得出是解题关键.
3.【2018河南】如图,已知?AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为( )
A.(﹣1,2) B.(,2) C.(3﹣,2) D.(﹣2,2)
【考点】角平分线的作法,勾股定理,平行四边形的性质
【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).
解:∵?AOBC的顶点O(0,0),A(﹣1,2),
∴AH=1,HO=2,
∴Rt△AOH中,AO=,
由题可得,OF平分∠AOB,
∴∠AOG=∠EOG,
又∵AG∥OE,
∴∠AGO=∠EOG,
∴∠AGO=∠AOG,
∴AG=AO=,
∴HG=﹣1,
∴G(﹣1,2),
故选:A.
【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.
4.【2018湖州】尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:
①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;
②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;
③连结OG.
问:OG的长是多少?
大臣给出的正确答案应是( )
A.r B.(1+)r C.(1+)r D.r
【考点】正多边形和圆;作图—复杂作图
【分析】如图连接CD,AC,DG,AG.在直角三角形即可解决问题;
解:如图连接CD,AC,DG,AG.
∵AD是⊙O直径,
∴∠ACD=90°,
在Rt△ACD中,AD=2r,∠DAC=30°,
∴AC=r,
∵DG=AG=CA,OD=OA,
∴OG⊥AD,
∴∠GOA=90°,
∴OG===r,
故选:D.
【点评】本题考查作图﹣复杂作图,正多边形与圆的关系,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
5.【2018巴中】如图,在Rt△ABC中,∠C=90°,按下列步骤作图:①以点B为圆心,适当长为半径画弧,与AB,BC分别交于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧交于点P;③作射线BP交AC于点F;④过点F作FG⊥AB于点G.下列结论正确的是( )
A.CF=FG B.AF=AG C.AF=CF D.AG=FG
【考点】角平分线的性质;作图—复杂作图
【分析】根据作图的过程知道:EF是∠CBG的角平分线,根据角平分线的性质解答.
解:根据作图的步骤得到:EF是∠CBG的角平分线,
A、因为EF是∠CBG的角平分线,FG⊥AB,CF⊥BC,所以CF=FG,故本选项正确;
B、AF是直角△AFG的斜边,AF>AG,故本选项错误;
C、EF是∠CBG的角平分线,但是点F不一定是AC的中点,即AF与CF不一定相等,故本选项错误;
D、当Rt△ABC是等腰直角三角形时,等式AG=FG才成立,故本选项错误;
故选:A.
【点评】考查了作图﹣﹣复杂作图和角平分线的性质,根据作图的步骤推知EF是∠CBG的角平分线,是解题的关键.
【2018潍坊】如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:
(1)作线段,分别以为圆心,以长为半径作弧,两弧的交点为;
(2)以为圆心,仍以长为半径作弧交的延长线于点;
(3)连接
下列说法不正确的是( )
A. B. C. 点是的外心 D.
【考点】作图-基本作图,线段的垂直平分线的性质,三角形的外心
【分析】根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;
解:由作图可知:AC=AB=BC,
∴△ABC是等边三角形,
由作图可知:CB=CA=CD,
∴点C是△ABD的外心,∠ABD=90°,
BD=AB,
∴S△ABD=AB2,
∵AC=CD,
∴S△BDC=AB2,
故A、B、C正确,
故选D.
【点睛】本题考查作图-基本作图,线段的垂直平分线的性质,三角形的外心等知识,直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
填空题
【2018通辽】如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD的面积为 .
【考点】作图—基本作图,等边三角形的判定和性质
【分析】只要证明△ABD是等边三角形,推出BD=AD=DC,可得S△ADC=S△ABD即可解决问题;
解:由作图可知,MN垂直平分线段AC,
∴DA=DC,
∴∠C=∠DAC=30°,
∴∠ADB=∠C+∠DAC=60°,
∵AB=AD,
∴△ABD是等边三角形,
∴BD=AD=DC,
∴S△ADC=S△ABD=×62=9,
故答案为9.
【2018益阳】如图,在△ABC中,AB=5,AC=4,BC=3.按以下步骤作图:
①以A为圆心,任意长为半径作弧,分别交AB,AC于点M,N;
②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点E;
③作射线AE;
④以同样的方法作射线BF.
AE交BF于点O,连接OC,则OC= .
【考点】勾股定理的逆定理;作图—基本作图,三角形的内心
【分析】直接利用勾股定理的逆定理结合三角形内心的性质进而得出答案.
解:过点O作OD⊥BC,OG⊥AC,垂足分别为:D,G,
由题意可得:O是△ACB的内心,
∵AB=5,AC=4,BC=3,
∴BC2+AC2=AB2,
∴△ABC是直角三角形,
∴∠ACB=90°,
∴四边形OGCD是正方形,
∴DO=OG==1,
∴CO=.
故答案为:.
【点评】此题主要考查了基本作图以及三角形的内心,正确得出OD的长是解题关键.
【2017威海】如图,A点的坐标为(﹣1,5),B点的坐标为(3,3),C点的坐标为(5,3),D点的坐标为(3,﹣1),小明发现:线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是 .
【考点】坐标与图形变化﹣旋转.
【分析】分点A的对应点为C或D两种情况考虑:①当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,点E即为旋转中心;②当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,点M即为旋转中心.此题得解.
解:①当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,如图1所示,
∵A点的坐标为(﹣1,5),B点的坐标为(3,3),
∴E点的坐标为(1,1);
②当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,如图2所示,
∵A点的坐标为(﹣1,5),B点的坐标为(3,3),
∴M点的坐标为(4,4).
综上所述:这个旋转中心的坐标为(1,1)或(4,4).
故答案为:(1,1)或(4,4).
【2017?成都】如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长
为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为 .21cnjy.com
【考点】作图—基本作图 ,平行四边形的性质.
【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.
解:∵由题意可知,AQ是∠DAB的平分线,
∴∠DAQ=∠BAQ.
∵四边形ABCD是平行四边形,
∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,
∴∠DAQ=∠DQA,
∴△AQD是等腰三角形,
∴DQ=AD=3.
∵DQ=2QC,
∴QC=DQ=,
∴CD=DQ+CQ=3+=,
∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.
故答案为:15.
解答题
【2017福建】如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)
【考点】作图—基本作图.
【分析】根据角平分线的性质作出BQ即可.先根据垂直的定义得出∠ADB=90°,故∠BPD+∠PBD=90°.
再根据余角的定义得出∠AQP+∠ABQ=90°,根据角平分线的性质得出∠ABQ=∠PBD,再由∠BPD=∠APQ可知∠APQ=∠AQP,据此可得出结论.
解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.
证明:∵AD⊥BC,
∴∠ADB=90°,
∴∠BPD+∠PBD=90°.
∵∠BAC=90°,
∴∠AQP+∠ABQ=90°.
∵∠ABQ=∠PBD,
∴∠BPD=∠AQP.
∵∠BPD=∠APQ,
∴∠APQ=∠AQP,
∴AP=AQ.
【2018攀枝花】已知△ABC中,∠A=90°.
(1)请在图1中作出BC边上的中线(保留作图痕迹,不写作法);
(2)如图2,设BC边上的中线为AD,求证:BC=2AD.
【考点】作图—基本作图
【分析】(1)如图1,作BC的垂直平分线得到BC的中点D,从而得到BC边上的中线AD;
(2)延长AD到E,使ED=AD,连接EB、EC,如图2,通过证明四边形ABEC为矩形得到AE=BC,从而得到BC=2AD.
(1)解:如图1,AD为所作;
(2)证明:延长AD到E,使ED=AD,连接EB、EC,如图2,
∵CD=BD,AD=ED,
∴四边形ABEC为平行四边形,
∵∠CAB=90°,
∴四边形ABEC为矩形,
∴AE=BC,
∴BC=2AD.
【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了矩形的判定与性质.
【2018宁波】在5×3的方格纸中,△ABC的三个顶点都在格点上.
(1)在图1中画出线段BD,使BD∥AC,其中D是格点;
(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.
【考点】平行线的判定与性质;作图—应用与设计作图,平行四边形的性质
【分析】(1)将线段AC沿着AB方向平移2个单位,即可得到线段BD;
(2)利用2×3的长方形的对角线,即可得到线段BE⊥AC.
解:(1)如图所示,线段BD即为所求;
(2)如图所示,线段BE即为所求.
【点评】本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.
【2018金华】如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.
【考点】作图—应用与设计作图
【分析】利用数形结合的思想解决问题即可;
解:符合条件的图形如图所示:
【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
【2018福建】求证:相似三角形对应边上的中线之比等于相似比.
要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;
②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.
【考点】作图—复杂作图,相似三角形的判定与性质
【分析】(1)作∠A'B'C=∠ABC,即可得到△A'B′C′;
(2)依据D是AB的中点,D'是A'B'的中点,即可得到=,根据△ABC∽△A'B'C',即可得到=,∠A'=∠A,进而得出△A'C'D'∽△ACD,可得==k.
解:(1)如图所示,△A'B′C′即为所求;
(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,
求证:=k.
证明:∵D是AB的中点,D'是A'B'的中点,
∴AD=AB,A'D'=A'B',
∴==,
∵△ABC∽△A'B'C',
∴=,∠A'=∠A,
∵=,∠A'=∠A,
∴△A'C'D'∽△ACD,
∴==k.