15.2 分式的运算
15.2.1 分式的乘除
第1课时 分式的乘除
【知识与技能】
掌握分式的乘除法运算法则,能进行分式的乘除法运算.
【过程与方法】
在经历探索、类比、归纳的过程中,理解并掌握分式的乘除法运算法则.
【情感态度】
在类比分数乘除法运算法则获得分式乘除法法则中,让学生体验由数到式的数学发展过程,激发学生学习兴趣,增强求知欲.
【教学重点】
理解并掌握分式乘除法运算法则,能用它来进行分式乘除法运算.
【教学难点】
运用分式乘除法运算法则解决一些实际应用问题,进一步增强数学应用能力.
一、情境导入,初步认识
观察下列算式:
由上述算式,我们知道,分数的乘法法则是 ;
分数的除法法则是 .
思考 类比分数的乘除法法则,你能说出分式的乘除法法则吗?
【教学说明】让学生直接由分数的乘除法运算法则感知分式的乘除法法则,可激发学生的学习兴趣,增强求知欲.教师讲课前,先让学生完成“自主预习”.
二、思考探究,获取新知
类比分数的乘除法运算,可以发现分式的乘除法也有相同的运算法则.
乘法法则:分式乘分式,把分子的积作为积的分子,分母的积作为积的分母,用式子可表示为: .
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子可表示为: .
【教学说明】分式的乘除法则可由学生类比分数得到结论,让学生在合作交流中感受新知;教师不必直接给出结论.在教学时,教师可进一步地展示下面的一些问题,帮助学生加深理解.
问题
【教学说明】在教学时,上述三个问题教师可延时展示给学生,让学生逐一思考,获得结论.教师巡视,对有困难的学生适时给予指导,同时分别选派2~3名学生上黑板演示,师生共同评析.在问题1中,着重于除式是整式情形,这时应引导学生先将整式看作分母为1的式子来参与计算;问题中侧重于运算结果应予以约分化简,必须是最简分式时才算运算结束;问题3侧重于分式的分母、分子是多项式情形,此时应注重于分解因式,以便于约分化简,整个过程都应是学生自主探究,合作交流来完成的.
三、典例精析,掌握新知
【分析】本题是分式乘除法,分子、分母是多项式的应先把多项式分解因式再运用法则,而分式乘除法实质就是约分.
【教学说明】本例仍由学生自主探究,抽学生回答,教师适时点拨,师生共同寻求解题方法,完成解题过程.在完成之后,教师可引导学生做P138练习第2、3题,在这个过程中,仍可让学生举手回答,教师予以点评.
四、运用新知,深化理解
1.一个水平放置的长方体容器,其容积为V,底面的长为a,宽为b,当容器内的水占容积的m、n时,水面的高为多少?
2.大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?
【教学说明】这两个题可由学生自主探究,获得结论,教师应关注学生将实际问题转化成分式模型的能力及是否能正确运用分式乘除法法则来完成解答.
【答案】可参见教材P135问题1、问题2的解答.
五、师生互动,课堂小结
运用分式乘除法法则解决具体问题时有哪些需要注意的问题?谈谈你的看法,与同伴交流.
1.布置作业:从教材“习题15.2”中选取.
2.完成练习册中本课时的练习.
分式的乘除不是特别难上的课,主要是要让学生掌握方法.拿乘法来说,其方法有两种:一种是先约分再乘;另一种是先乘再约分.一般应这样处理:如果分子分母全是单项式,就用先乘后约分的方法;如果分子分母含有可分解因式的多项式,就先约分后相乘.当然两种方法并不一定非得有固定的模式,你觉得哪种容易接受就选择哪种.并且在约分时应教给学生一个不容易错的方法,就是约分后把每个约好的式子写在原来的上(分子)下(分母)方,不约的照抄,最后就看写着结果再相乘,既不容易漏乘,也不容易多乘.分式除法可转变为分式乘法后再按上述方法进行.
在教学方法上,教师应努力结合现实的问题情境,引导学生理解分式乘除的意义.由于练习计算是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合,创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出算式.
第2课时 分式的乘除混合运算与分式的乘方
【知识与技能】
1.掌握分式的乘除法法则,能用它们进行分式的乘除混合运算.
2.理解分式乘方的意义,能进行有关分式乘方的运算.
【过程与方法】
通过对具体问题的探究思考,感受分式乘除混合运算、分式乘方运算方法,进一步增强类比的数学思想方法的理解.
【情感态度】
进一步增强学生的数学计算能力,发展严密的数学思维能力,增强数学学习兴趣.
【教学重点】
分式乘除、乘方混合运算能力.
【教学难点】
分式乘方法则的理解和运用.
一、情境导入,初步认识
问题分式乘除法运算法则是什么?如何进行分式乘除法混合运算呢?
试一试
参见教材P138例4.
想一想
小明同学在计算÷·时,其过程如下:原式=÷1=,你认为他的计算正确吗?说说你的理由,与同伴交流.
【教学说明】
教师延时展示上述三个问题,让学生自主探究,加深对分式乘除法法则的理解,体会分式乘除法混合运算方法.教师对学生的结论给予恰当评析,肯定学生的成绩,对出现的疑问给予鼓励,帮助他们形成正确认知.教师讲课前,先让学生完成“自主预习”.
二、思考探究,获取新知
思考参见教材P138“思考”.
【归纳结论】参见教材P138最后一段.
【教学说明】教师提出问题,由学生自主探究,发现规律,形成认知,从而感受分式乘方的意义.
试一试 计算:
【教学说明】选派两名同学上黑板计算,其余同学在座位上自主探究.教师巡视,最后全班同学一道对两位同学的演示结果进行评析,教师应对学生的解答进行详细讲解,帮助学生完善认知.
【归纳结论】分式的乘方,就是把分式的分子、分母各自乘方.
三、典例精析,掌握新知
例计算:
(1)参见教材P139例5第(2)小题;
(2)参见教材P139练习第2题第(2)小题.
【分析】分式的乘除、乘方混合运算,应先算乘方,再算乘除,能约分的一定要约分.
【教学说明】教学时,教师应对一些学生易出现错误的地方予以强调,如(-c2d)2=-c4d2或c2d2,(-3c)3=-9c3等错误,引起学生注意.
四、运用新知,深化理解
1.参见教材P139“练习”第1题.
2.计算:
(1)参见教材P139“练习”第2题第(1)小题;
(2)参见教材P146第3题第(4)小题.
【教学说明】
学生独立完成这些小题,然后相互交流,有时间的话,教师予以评价,让学生查漏补缺,巩固新知.
五、师生互动,课堂小结
本节课所学习的主要知识是什么?有哪些需要特别注意的地方?谈谈你的看法,并与同伴交流.
1.布置作业:从教材“习题15.2”中选取.
2.完成练习册中本课时的练习.
由于前面学生已对分式的乘除法有一定的了解,所以本课时的教学可采用类比的方法进行,一方面类比整式的乘除混合运算,另一方面类比前面分式的乘除.教学时,教师要起引导作用,引导学生自主发现和解决问题.