课件21张PPT。第七章 原子结构(1)序言、
1 原子的基本结构
2 原子结构的历史回顾
3 现代原子结构学说的实验基础
一、氢原子光谱与Bohr模型
1 氢原子光谱及Balmer实验定律
2 Bohr 模型及其局限性
二、微观粒子的运动规律
1 波粒二象形
2 波函数和电子云
3 四个量子数
三、波函数和电子云的空间图象
1 电子云径向分布图
2 波函数角度分布图原子结构 Atomic Structure历史发展
实验基础
(自学,普化原理和
atom-a.pdf)
基本结构
Particle Location Charge Mass(amu)
Proton Nucleus +1 1.0
Neutron Nucleus 0 1.0
Electron Around nucleus -1 0.00055 关键问题: 电子排布及其与化学性质之间的关系原子(Atom)电子和原子核:带正电原子核和电子,静电吸引。形成化学键时,电子运动发生改变,原子核不变。
核的结构:带正电质子和不带电中子。质子与中子强吸引作用与质子间静电排斥作用相对抗。Z增加,排斥作用占主导。稳定存在的元素的数目有限。
同位素:质子数相同中子数不同的原子。天然混合同位素组成元素,原子量有比例定。化学性质非常相似。
放射性:不稳定的核因发射高能粒子而分解。Z > 83 (Bi)的元素都具有放射性。许多放射性同位素应用于生化研究及医学诊断。
实验规律 (Balmer, Rydberg)
波数 = 1/?
= RH ? (1 / 22 – 1/ n2)
(n = 3, 4, 5,…)
RH = Rydberg 常数,
为1.0967758 ?107 (m-1)一、氢原子光谱与Bohr模型Bohr 模型:
?E = h? =hc/ ?
波数= ?E/(hc )= B/(hc) ? (1 / n12 – 1/ n22)
其中, B/(hc) = 1.0973731 ?107 (m-1) 与RH很相近。
(原子有确定的电子轨道,轨道能量是量子化的,电子跃迁吸收或发射能量)量子化概念Bohr模型的局限性:对多原子体系不适用,也不能解释光谱的精细结构,等等。
没有正确描述电子的微观状态。1、波粒二象性
1924,法国Louis de Broglie
能量 E = h?
动量 P = h/?
?E, P 粒性
?,? 波性
? De Broglie关系 ? = h / P = h / (mv)
?二、微观粒子的运动规律子弹,m = 2.5 × 10-2 Kg, v = 300 ms-1;
电子,me = 9.1×10-31 Kg, v = 5.9×10-5 ms-1;
?
波长:
子弹 ? = h / (mv) = 6.6×10-34 / (2.5 × 10-2 ? 300)
= 8.8 ? 10-35 (m) 可忽略,主要表现为粒性。
电子 ? = h / (mv)
= 6.6×10-34 / (9.1 × 10-31 ? 5.9×10-5)
= 12 ? 10-10 (m) = 1.2 nm
[例]:1927, 美国 C. Davisson and L. Germar
“几率波”电子衍射1926年,奥地利 Schr?dinger
?Schr?dinger 方程(对于单电子体系):
?2?/?x2 + ?2?/?y2 + ?2?/?z2 + 8?2m/h2(E-V)? = 0
? 其中,波函数?,反映了电子的波性;m,E,V,等反映了电子的粒性。
2、波函数(?)和 Schr?dinger方程 球坐标:x = r sin? cos?
y = y sin? sin?
z = r cos?
(?=0~180?,
?= 0~360?)几率密度( | ? |2 ):电子在原子空间上某点附近单位微体积内出现的几率。| ? |2 的物理意义: (1926年,德国, Born)
| ? |2 值大,表明单位体积内电子出现的几率大,即电荷密度大;| ? |2 值小,表明单位体积内电子出现的几率小,即电荷密度小。
电子在空间的几率分布,即| ? |2 在空间的分布称“电子云”。
波函数以及常数 n、 l、m 电子的运动状态可由Schr?dinger方程解得的波函数?来描述。为得到合理解,在解Schr?dinger方程中,波函数中引入了常数项 n、 l、m、ms,其意义见后,取值范围为:
n = 1, 2, 3, ……?
l = 0, 1, 2, ……n-1
m = 0, ?1, ?2, …… ?l
ms = ? 1/2
每种波函数对应于电子的一种运动状态。通常把一种波函数称为一个原子轨道。但这里的轨道,不是经典力学意义上的轨道,而是服从统计规律的量子力学意义上的轨道。
3、四个量子数波函数:径向函数 × 角度函数?
? n, l, m (r, ?, ?) = R n, l (r) ?Y l, m (?, ?)
?
R n, l (r) : 波函数的径向部分,由n, l决定
Y l, m (?, ?): 波函数的角度部分,由l, ms决定
三、波函数(?)和电子云(?2)的空间图象
R n, l (r) – r 波函数(? )径向分布
R2 n, l (r) – r 电子云 (? 2)径向密度分布
r2R2 n, l (r) – r 电子云 (? 2)径向分布
(电子在离核半径为r单位厚度的薄球壳内 出现的几率)
Y l, m (?, ?) 波函数(? )角度分布(+,-)
Y2 l, m (?, ?) 电子云(? 2)角度分布1、 电子云径向分布图r2R2 n, l (r)R2 n, l (r)电子云(? 2)
径向密度分布函数:电子云(? 2)
径向分布函数:电子云径向分布函数(r2R2 n, l( r))2、波函数角度分布图是角度函数Y l, m (?, ?)随?, ?变化的图象。s轨道:波函数角度分布图: p轨道其中,浅色为“+”号,深色为“-”号(下面的d轨道中同此)。正负号以及Y的极大值空间取向将对原子之间能否成键及成键的方向性起着重要作用。波函数角度分布图: d轨道课件29张PPT。第七章 原子结构(2)
四、多电子原子结构与元素周期律
1 多电子原子轨道的能级次序
2 屏蔽效应和钻穿效应
3 核外电子排布与元素周期律
五、元素某些基本性质的周期性变化规律
1 原子半径核离子半径
2 电离能核亲合能
3 电负性
四个量子数和电子运动状态 l = 0, 1, 2, ……, (n-1); m = 0, ±1, ±2, ……, ±l 参见 (p127-128)氢原子中单电子的轨道能级图1s2s, 2p3s, 3p, 3dE能层、能级、轨道四、多电子原子结构与元素周期律轨道能量 (屏蔽效应、钻穿效应)
电子排布 (Pauli 原理、能量最低原理、Hund规则)
元素周期律 (原子半径、电离能、电子亲合能、电负性)能级分裂 :
n 同,l 不同,
如:E3s ? E3p ? E3d
能级交错:
n, l 均不同,
E4s ? E3d (Z ? 21)多电子原子轨道的能级次序吸引与排斥有效核电荷:Ze = Z - ? ( ?称屏蔽常数)
Slater规则:
(1) 分组;(2) 外层 ? = 0;
(3) 同组 ? = 0.35;(4) 邻组 ? = 0.85 (s,p), 1.00(d,f);
(5) 内组 ? = 0.85 (s,p), 1.00(d,f)
[例] 求碳原子的2p电子的屏蔽常数
C: 1s22s2sp2 ? = 2 ? 0.85 + 3 ? 0.35 = 2.75
Ze = Z -? = 6 - 2.75 = 3.25能级除取决于主量子数 n 外,还与角量子数 l 等有关。屏蔽效应 (Shielding):电子作为客体有效核电荷n相同, l 不同
l 越小 ? 在离核近的地方发现的几率越大 ? 受其他电子的屏蔽越小 ? 受核的吸引越强
能级分裂
能级序:s < p < d < f钻穿效应 (penetration):电子作为主体能级交错19号,20号: E4s < E3d
?21号(Sc): E4s > E3d电子排布 Pauli 不相容原理
每个原子轨道中最多只能排布两个自旋相反的电子
能量最低原理
Hund规则
电子分布在角量子数 l 相同的简并轨道上时,总是尽可能分占不同的轨道,且自旋平行。
(全满、半满和全空)21号元素
1s22s22p63s23p64s23d1
(全空时,先填 s, 钻穿效应 )
1s22s22p63s23p63d14s2
(填充后,由于d 的屏蔽,使得 s 轨道能量升高)
Sc [Ar] 3d14s2
失去电子时,先失去4s2 电子,然后失去3d1电子。
40号元素
1s22s22p63s23p64s23d104p65s24d2 (全空时,先填s, penetrate)
1s22s22p63s23p63d104s24p64d25s2 (填充后,由于d的屏蔽,s↑)
Zr [Kr] 4d25s2 [例]五、元素某些基本性质的周期性变化规律元素周期表(1-18族)
周期数 = 电子层数 (主量子数n,7个)
族数 = 最外层电子数 (主族,8个) = 外围电子数 (副族,10个)
价电子构型与价电子数
s区, (ns)1-2 ; p区, (ns)2(np)x; d区, (n-1)s1-2ndx
电子排布的周期性决定了元素性质的周期性
原子半径和离子半径减小增大主族原子半径图:原子半径图:原子半径半充满和全充满时,原子半径大离子半径阳离子和阴离子与其母原子的相对大小电离能气态原子 气态正离子增减电离能数据电离能:图电离能:图Cl (g) + e = Cl- (g) ?Ho = -349 kJ/mol
Eea = - ?Ho = 349 kJ/mol增减电子亲合能:分子中的原子对于成键电子吸引能力相对大小的量度。电负性:增减电负性数据小结原子的核外电子排布和元素周期表
1. Bohr模型和量子论
2. 微观粒子的波粒二象性
3. 波函数和电子云
1) 四个量子数
2) 电子云径向分布图
3) 波函数角度分布图
4)多电子原子的核外电子排布
元素周期表及元素周期律
① 原子半径
② 电负性
作业: 2,6,8,12, 14课件56张PPT。第八章 分子结构与晶体结构 (1)序言
一、化学键
1 离子键 (本质、特征、强弱、离子半径)
2 共价键 (本质、特征、强弱、共价半径)
3*分子构型 (价电子对互斥理论)
4 杂化轨道理论
5 分子轨道理论
二、分子间力和氢键
1 分子间力
2 氢键
三、*晶体结构
1 晶体的特征
2 晶格和晶胞
3 晶体的基本类型序言:原子怎样结合成为分子? - 化学键
离子键
共价键
金属键
分子的形状? - 分子构型
价电子对互斥理论
分子怎样组成物质材料?-分子间作用力
固体材料的结构?
-晶体结构
-无定型结构Link1、离子键 (Ionic Bonds)Lewis结构式和八隅体规则
离子键及其特点
离子键强度与晶格能
离子化合物的性质 一、化学键(Chemical Bonds)Lewis 结构式, 价电子(Valence electrons)
· ·· ··
H· He: :N· ·O· :Cl· K· Mg: :Ne:
· ·· ·· ·
·· ··
K· + :Cl· → K+[:Cl:]-
·· ··失或得电子 → 八隅体规则 (主族)为什么惰性气体稳定? ns2np6 八电子层结构? ?? ?离子键及其特点:定义:正负离子间的静电吸引力叫做离子键。
特点:既没有方向性,也不具饱和性。 ·
·· ··
K· + :Cl· → K+[:Cl:]-
·· ··NaCl 晶体离子键强度与晶格能:定义:晶格能表示相互远离的气态正离子和负离子结合成 1 mol 离子晶体时所释放的能量,或1 mol 离子晶体解离成自由气态离子时所吸收的能量。 (取其绝对值)如:
Ca2+ (g) + 2Cl- (g) CaCl2 (s)
– ?H = U = 2260.kJ/mol
晶格能(U) (Lattice Enthalpies)离子键强度与晶格能:Born-Lande 公式
U = -Ve ∝ Z1Z2/r
其中: Ve 为正负离子间吸引力和排斥力达平衡时,体系的位能;Z1、Z2 分别为正负离子的电荷数; r为正负离子间距。
Born-Haber 循环计算U (课外自学)
离子化合物的性质 (The Properties of Ionic Compounds)高熔点
高沸点
易脆性
溶解性
[例] Ca3(PO4)2:骨头的主要成分
The doubly charged small Ca2+ ions, and the triply charged PO43- ions attract one another very strongly and clamp together to form a rigid, insoluble solid. (not completely insoluble, osteoporosis,骨质疏松症)2、共价键 (Covalent Bonds)从原子到分子 (from atoms to molecules)
八隅率与Lewis结构
(The octet rule and Lewis structure)
双原子分子
多原子分子
共振杂化 形式电荷 例外
广义八隅率 (Expended valence shells)
Lewis 酸碱 (Lewis acids and bases)● ●··共享电子对Nonmetals form covalent bonds to one another by sharing pairs of electrons八隅率与Lewis结构 The octet rule and Lewis structureThe octet rule: In covalent bond formation, atoms go as far as possible toward completing their octet by sharing electron pairs.
The valence of an element is the number of covalent bonds of the element forms. (饱和性)
Lone pairs of electrons, pairs of valence electrons not involved in bondng. ( 双原子分子中,仅H2无孤对)
A Lewis structure shows the arrangement of valence electrons as shared pairs (line) and lone pairs (dots)多原子分子片的结构The structures of polyatomic speciesChoose the atom with the lowest ionization energy (electronegativity) to be the central atom.
Arrange the atoms symmetrically around the central atom. For example, SO2 is OSO.
[例1] HCN
Valence electrons: 1+4+5 = 10, five pairs.
C, lower ionization energy than N, C is central atom
··
H:C:N: ?
··
H:C:::N: 或 H-C?N:共振杂化 (Resonance)
The blending of structures with the same arrangements of atoms but different arrangements of electrons. It spreads multiple bond character over a molecular and also lower its energy.
[例2]NO3-
离域(delocalized)
形式电荷 (formal charge, FC)
FC = V – (L+1/2S)
= 自由原子价电子数 - 孤对电子数 – ?(成键电子数)
An indication of the extent to which atoms have gained or lose electrons in the process of covalent bond formation. Lowest FC, lowest energy.
八隅率例外 Radicals
· ··
[例] NO :N=O It is one of neurotransmitters.
·· (神经传递者)广义八隅率 (Expended valence shells)空的d轨道
足够的原子尺寸
第3周期及以后的元素Lewis 酸碱 (Lewis acids and bases) A Lewis acid is an electron pair acceptor;
A Lewis base is an electron pair donor.
They react to form a Lewis acid-base complex.共价键的形成过程: ?键(头碰头)The overlap of orbitals to form covalent bonds. (a) The bond in H2 results from the overlap of two 1s orbitals from two H atoms. (b) The bond in HCl results from the overlap of a 1s orbital of H and one of the lobes of a 3p orbital of Cl. (c) The bond in Cl2 results from the overlap of two 3p orbitals from two Cl atoms.HF的生成?键:p轨道(肩并肩)共价键的主要特点是具有饱和性和方向性。共价键的本质和特点共价键的本质是由于原子相互接近时轨道重叠(即波函数叠加),原子间通过共用自旋相反的电子对使能量降低而成键。离子键与共价键共价模型的修正
Electronegativity (EN) is a measure of the electron-pulling power of an atom on an electron pair in a molecule. Compounds composed of elements with large difference in EN (≥2) tend to have significant ionic character in their bonding.
离子模型的修正
Compounds composed of high polarizing (使极化) cations and highly polarizable (被极化) anions have a significant covalent character in their bonding.3、分子和离子的形状 (The shapes of molecules and ions) 价层电子对互斥理论
The VSEPR model
(Valence-shell electron-pair repulsion )
VSEPR (Valence-shell electron-pair repulsion )价层电子对互斥理论可以定性判断和预见分子的几何构型分子的共价键中的价电子对以及孤对电子由于相互排斥作用而趋向尽可能彼此远离,分子尽可能采取对称的结构。
若一个中心原子和几个配位原子形成分子时,分子的几何构型取决于中心原子周围地价电子数目。价电子包括价层轨道中成键电子对(bp)和孤电子对(lp).
不同价电子对间排斥作用的顺序为:
lp-lp ? lp-bp ? bp-bp
分子中的多重键按单键处理。
价层电子对数确定方法:
价层电子对数 = ?(中心原子价电子总数+配位原子提供电子数
– 离子电荷数)
配位原子提供电子数:H, Cl, 1; O, S, 0; N, -1.VSEPR (Valence-shell electron-pair repulsion )According to the VSEPR model, bonding pairs and lone pairs, to reduce repulsions, take up positions around an atom that maximize their separations. The shape of the molecule is determined by the locations of the atoms attached to the central atom.
Electron pairs in multiple bonds are treated as a single unit equivalent to one region of high electron concentration.
Lone pairs on the central atom contribute to the shape of the molecule but are ignored when we name the shape. The molecule adjusts its shape to reduce lone pair-lone pair and lone pair-bonding pair repulsions.Rules of VSEPR Theory1) Draw the best Lewis dot structure of the molecule
2) Assign a steric number (SN) to the structure
SN = (# of bonded atoms) + (# of lone pairs)
3) Place the atoms and lone pairs as far apart as possible (while still keeping them connected to the
central atom)
4) Deduce the molecular geometry by ignoring the
positions of the lone pairs
5) Remember, lone pairs are FAT
价电子对数目与分子构型电子对数目:2,3,4电子对数目:5,6Methane (CH4) Lewis structure:
Central atom carbon
Valence electrons on central atom 4
4 H each contribute 1 electron: 4
Total 8
?
Divide by 2 to give electron pairs 4
4 electron pairs: tetrahedral for the four shape-determining electron pairs
甲烷分子构型:正四面体Ammonia, NH3 Lewis structure:
Central atom nitrogen
Valence electrons on central atom 5
3 H each contribute 1 electron: 3
Total 8
Divide by 2 to give electron pairs 4
4 electron pairs: tetrahedral geometry for the four shape-determining electron pairs
The H-N-H bond angles are slightly less (106.6°) than the ideal tetrahedral angle of 109.5°. 氨分子构型:角锥型电子构型与分子构型不一致Water, OH2 Lewis structure:
Central atom oxygen
Valence electrons on central atom 6
2 H each contribute 1 electron: 2
Total 8
Divide by 2 to give electron pairs 4
4 electron pairs: tetrahedral for the four shape-determining electron pairs
水分子构型:角型电子构型与分子构型不一致Boron trifluoride, BF3 Lewis structure:
Central atom boron
Valence electrons on central atom 3
3 F each contribute 1 electron: 3
Total 6
Divide by 2 to give electron pairs 3
3 electron pairs: trigonal geometry for the three shape-determining electron pairs
BF3分子构型:平面三角hexafluorophosphate, [PF6]-
Lewis structure:
Central atom phosphorus
Valence electrons on central atom 5
6 F each contribute 1 electron: 6
Add one for the negative charge on P 1
Total 12
Divide by 2 to give electron pairs 6
6 electron pairs: octahedral geometry for the six shape-determining electron pairs [PF6]-分子构型:正八面体Chlorine trifluoride, ClF3
Lewis structure:
Central atom chlorine
Valence electrons on central atom 7
3 F atoms each contribute 1 electron: 3
Total 10
Divide by 2 to give electron pairs 5
5 electron pairs: trigonal bipyramidal geometry for the five shape-determining electron pairs ClF3分子构型:T字型电子构型与分子构型不一致电子数为5时,孤对总是尽先处于三角双锥的腰部位置Isomers
The case of ClF3 is interesting. The calculation shows that the shape is based upon five electron pairs and the favoured geometry is therefore trigonal bipyramidal. There are three bonded groups and so two lone pairs. This is indeed the case, but the point of interest here is the location of the lone pairs. There are three possible ways of placing two electron pairs in a trigonal bipyramidal geometry.
These three structures have respectively zero, one, and two lone pairs in the axial sites. For the VSEPR method to be worth much, it has to successfully predict the correct geometry. To approach this problem it is necessary to know the relative magnitude of the various kinds of electron pair-electron pair interactions. There are three possible interactions三种构型 选择See p167VSEPR calculation for perchlorate, [ClO4]-
Perchlorate, [ClO4]- Lewis structure:
Central atom chlorine
Valence electrons on central atom 7
4 terminal oxygens each contribute 1 electron in the four s bonds 4
Add one for the negative charge located on Cl 1
Subtract four for the four electrons contributed by Cl to the four pi bonds (one for each): -4 (双键因素)
Total 8
Divide by 4 to give electron pairs 4
4 electron pairs: tetrahedral geometry for the four shape-determining electron pairs [ClO4]–分子构型:正四面体含氧原子的情况:净结果是O原子不提供价电子。Nitrogen dioxide, NO2 Lewis structure:
Central atom nitrogen
Valence electrons on central atom 5
2 terminal oxygens each contribute 1 electron in the two s bonds: 2
Subtract two for the two electrons contributed by N to the two pi bonds: -2
(双键因素)
Total 5
Divide by 2 to give electron pairs 2.5 3
3 electron pairs: trigonal geometry for the 3 shape-determining s-framework orbitals NO2分子构型:角型含氧原子的情况:净结果是O原子不提供价电子。电子构型与分子构型不一致适用性与局限性价层电子对互斥理论
? Predicts the shapes of molecules
? Works very well for octets and for “expanded
octets” (2nd and 3rd row elements)
? Doesn’ t work at all for transition metal
complexes--too many groups and electrons
to allow the use of sterics alone
不能说明成键原理和键的相对稳定性Ronald J. Gillespie
Department of Chemistry, McMaster Uni6ersity, 1280 Main Street West, Hamilton, Ont., Canada
Coordination Chemistry Reviews,197 (2000), 3-19; 51–69.4 、杂化轨道 (Hybrid Obital)实验测得 CCl4、 CH4等的立体构型为正四面体(tetrahedral) 在同一个原子中能量相近的不同类型(s, p, d, ?)的几个原子轨道波函数可以相互叠加而组成同等数目的能量能量完全相同的杂化轨道。sp杂化轨道 :BeF2 的立体结构为线性激发杂化sp2杂化:sp2杂化:乙烯sp3杂化:sp3杂化及其成键过程杂化轨道与分子形状(Hybridization and molecular shape)分子不是因为它有sp3杂化轨道而具有四面体形状!杂化仅仅是描述给定分子结构中成键的一种理论方式。它只是对分子形状的一个解释,形状本身并非杂化的结果!杂化轨道理论不能预测分子的几何构型立体三角锥共振体(Resonance)和(离域 ? 键)实验测得:苯中C-C的键长均相等,为139pm. 介于C=C 键长(133pm) 和 C-C键长( 154pm )之间。[例] NO3- SO2 NO2 等 (参见p163-164)离域 ? 键 (delocalized) 但价键理论不能说明氧分子的顺磁性等。顺磁性:要求分子内必须有未成对电子。?分子轨道理论解释见本文件第27页。5、分子轨道理论(Molecular orbital theory) 分子轨道理论是把分子看作一个整体,分子轨道可近似地用原子轨道波函数线性组合得到。分子轨道的数目等于组成分子的各原子的原子轨道数目之和。
2 个原子轨道可以组合成 2个分子轨道,其中一个为成键轨道(bonding),其能量较原来的原子轨道能量降低,用 ? 或 ? 表示;另一个为反键轨道(antibonding),其能量较原来的原子轨道能量升高,用? * 或 ?* 表示.
电子在分子轨道上的排布也遵从原子轨道电子排布的同样原则。分子轨道图(a) 和分子轨道能级图(b)(a)(b)成键轨道中,两原子之间的电子云密度增加;而反键轨道中,两原子之间的电子云密度降低。分子轨道能级图:H2 能级图(Energy-level-diagram)
(a) 氢原子轨道 (b) 氢分子轨道(a)(b)分子轨道能级图:H2 与 He2 的比较Figure. Energy-level diagram for (a) the H2 molecule and (b) the hypothetical He2 molecule.氧的顺磁性叶绿素a, b分子对光的吸收:电子从成键轨道激发到反键轨道从原子轨道到分子轨道必须满足3条原则:
对称性匹配
能量近似
最大重叠
课件53张PPT。第八章 分子结构与晶体结构 (2)序言
一、化学键
1 离子键 (本质、特征、强弱、离子半径)
2 共价键 (本质、特征、强弱、共价半径)
3*分子构型 (价电子对互斥理论)
4 杂化轨道理论
5 分子轨道理论
二、分子间力和氢键
1 分子间力
2 *氢键
三、*晶体结构
1 晶体的特征
2 晶格和晶胞
3 晶体的基本类型二、分子间力和氢键分子的极性
分子间作用力
(Intermolecular Forces)
氢键 (Hydrogen bonds)极性键 (Polar bonds)A polar covalent bond is a bond between two atoms that have partial electric charge arising from their difference in electronegativity. Partial charge give rise to an electron dipole moment.分子的极性HCl偶极矩 (Dipole Moment, ?) ? = q × d
d :正、负电荷重心间距(偶极长)
q :电量
单位: 德拜(Debye,D)
1D=3.336 × 10-30 C·m(库仑·米)
表示:(+) (-)(矢量)极性分子 (Polar molecules)多原子分子:键的极性与分子构型
CCl4,非极性; CHCl3, 极性。A diatomic molecule is polar if its bond is polar. A polyatomic molecule is polar if it has polar bonds arranged in space in such a way what their dipoles do not cancel. H2O极性分子 (Polar molecules)多原子分子:键的极性与分子构型分子间作用力 (Intermolecular Forces)化学键能约为:100~600 (kJ/mol)Polar molecules form liquids and solids partly as a result of dipole-dipole interactions, the attraction between the permanent partial charges of their molecules.
极性分子的永久部分电荷之间的吸引作用。取向力 (Dipole-Dipole Interactions )色散力的形成Two schematic representations of the instantaneous dipoles (瞬时偶极) on two adjacent helium atoms, showing the electrostatic attraction between them.London Forces arises from the attraction between instantaneous electric dipoles on neighboring molecules and acts between all types of molecules; its strength increases with increasing number of electrons and hence with molar mass. If two molecules have the same formula, the London forces are stronger for the molecule with the more linear shape.色散力大小与分子的形态1)分子量愈大,色散力愈大;
2)相同组成时,线性分子的色散力较大。如:正戊烷,bp=36.1 °C. 而(CH3)4C, bp=9.5 °C. Hydrogen bonding, which occurs between oxygen, nitrogen, and fluorine atoms bonded to hydrogen atoms, is the strongest type of intermolecular force.
O, N, F原子之间通过H原子连接而成;
最强的分子间力。
氢键(Hydrogen Bonding)氢键与沸点冰的结构(b) The arrangement of H2O molecules in ice. Each hydrogen atom in one H2O molecule is oriented toward a nonbonding pair of electrons on an adjacent H2O molecule. As a result, ice has an open, hexagonal arrangement of H2O molecules.(a) Hydrogen bonding between two water molecules. The distances shown are those found in ice. A structure for Deoxyribose Nucleic Acid Nature, 2 April 1953, VOL 171, page737.J. D. WATSON F. H. C. CRICK 粘度 (Viscosity)
粘度与分子间作用力有关,具有氢键的液体具有典型的高粘度。
Mercury(汞)粘度较高是因为其为金属键,而不是分子液体。粘度与液体结构Surface tension arises from the imbalance of intermolecular forces at the surface of a liquid. It is responsible for the tendency of liquids to form droplets and for capillary action(毛细管效应). 左 (H2O):内聚力<水与玻璃的作用力
右 (Hg):
内聚力>汞与玻璃的作用力 水在油性叶子表面易形成水珠。表面张力 (Surface tension)表面张力 (Surface tension)Surface tension : The intermolecular, cohesive attraction that causes a liquid to minimize its surface area. 由分子间吸引力而产生的液体表面分子的内聚力,该力使得液体的表面面积尽量降低。方铅矿(Galena, PbS)石英(Quartz, SiO2), 玻璃(glass, SiO2) 三、晶体结构 Crystal Structure晶体的特征外形整齐
有时需在显微镜下观察
熔点固定
相反,玻璃没有固定熔点
各向异性
光的传播速度、热和电的传导等晶格与晶胞晶格晶胞Unit cell: the smallest hypothetical unit that, when stacked together repeatedly without any gaps, can reproduce the entire crystal.
In the face-centered cubic cell (面心立方), each corner atom is shared by eight cubes that touch at the corner. Each atom on the face is shared by two adjacent cubes.晶胞(Unit cell)7 种晶系(14种点阵型式,未列出)立方 Cubic
a=b=c, ?=?=?=90°四方 Tetragonal
a=b?c, ?=?=?=90°六方 Hexagonal
a=b?c,
?=?=90°, ?=120°正交 Rhombic
a?b?c, ?=?=?=90°三方 Rhombohedral
a=b=c, ?=?=??90°
a=b?c, ?=?=90° ?=120°单斜 Monoclinic
a?b?c
?=?=90°, ??90°三斜 Triclinic
a?b?c
?=?=?=90°三种立方点阵形式:面心、体心、简单立方晶胞配位数:12
质点数:4配位数:8
质点数:2配位数:6
质点数:1晶胞种质点个数的计算面心立方晶胞中的原子个数Face-centered cubic (fcc) unit: 8×1/8 + 6×1/2 = 4金属 Metallic solids, commonly called metals, consist of cations held together by a sea of valence electrons.
离子晶体 Ionic solids consist of ions held together by the mutual attractions of cations and anions.
原子晶体 Network solids consist of atoms bonded to their neighbors covalently throughout the extent of the solid.
分子晶体 Molecular solids are collections of discrete molecules held in place by intermolecular forces.晶体的基本类型金属晶体 (Metallic crystals)六方密堆积 (hexagonal close-packed, hcp)ABABAB…, coordination number = 12. e.g., Mg and ZnABCABC…, 配为数 coordination number = 12
Examples: Al, Cu, Ag, Au
(许多金属采取密堆积结构,但非所有)金属晶体 (Metallic crystals)立方密堆积,面心金 (gold, Au)金晶格体心立方 body-centered cubic (bcc), e.g., Fe, Na, K, U铀(Uranium, U)简单立方(钋,Po)钋(a) 简单立方:d = m/a3 = (M/NA)/(2r)3 = M/(8NAr3)
(b) 体心立方: d = m/a3 = (2M/NA)/(4r/31/2)3 = 33/2M/(32NAr3)
(c) 面心立方: d = m/a3 = (4M/NA)/(81/2r)3 = 4M/(83/2NAr3)
(a):(b):(c) ? 1:1.299:1.414 面心结构密度最大,最稳定
(立方密堆积)密度与金属固体的结构The mobility of the valence electrons in a metal accounts for its luster(光泽), malleability, ductility (延展性), and electrical conductivity(导电性). The resistance of conductors increase with temperature.金属的性质Huge no. of molecular orbitals in a metal are so closed together in energy that form a nearly continuous band.固体的能带理论导体、半导体、绝缘体Ions stack together in the lowest energy regular crystalline structure;
Two common arrangements are the rock-salt(岩盐,面心立方)structure and the cesium-chloride(CsCl,体心立方) structure.
* Covalent character in an ionic bond imposes a directional character on the bonding. 离子极化
(The ions are not completely close packed)离子晶体 (Ionic solids)Fcc not ccp (阴离子面心立方,阳离子处在八面体空隙)
Coordination number (6, 6)
Radius ratio = rcation/ranion, 0.4-0.7 (NaCl, 0.564)Rock-salt structure (NaCl, KBr, RbI, MgO, CaO, AgCl)Fcc
(阴离子面心立方,阳离子处在四面体空隙)
Coordination number
(4, 4)
Radius ratio = rcation/ranion, < 0.4ZnS型结构Bcc 体心
Coordination number (8, 8)
Radius ratio = rcation/ranion, > 0.7Cesium-chloride structure (CsCl, CsBr, CsI, NH4Cl) Ni3As2
The small Ni2+ cations polarize the big As3- anions, the bonds have some covalent character.离子极化离子极化使得离子键中含有一些共价键的性质。Molecular solids are typically less hard and less brittle than ionic solids and melt at lower temperature.分子固体 (Molecular solids)液态和固态的
H2O and Benzene冰的晶体结构
Each O atom is surrounded tetrahedrally by four H atoms, two of which are sigma-bonded to it and two of which are hydrogen bonded to it.冰和苯共价键结合
Network solids are typically hard and rigid, and have high melting and boiling points.原子晶体 (Network Solids)金刚石 (diamond) Each atom forms an sp3 hybird covalent bond to each of its four neighbors. (great hardness, high thermal conductivity)金刚石Graphite consists of staggered layers of hexagonal rings of sp2 hybirdized carbon atoms.
(Soft and slippery)石墨Typical characteristics of solids小结中心是化学键
1. 化学键的种类与特点
共价键的主要理论与特点
Lewis结构,杂化轨道等
2. 价层电子对互斥理论的基本点
一些常见分子的立体构型
3. 分子间作用力及其与物性之间的关系
晶体结构的类型、特点
① 立方晶胞的三种类型
② 离子晶体
8.4
8.5
8.11
8.16作业: