第六单元?????多边形的面积
第一课时?????平行四边形面积的计算
教学目标:
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3.对学生进行辩诈唯物主义观点的启蒙教育.
教学重点:理解公式并正确计算平行四边形的面积.
教学难点:理解平行四边形面积公式的推导过程.
学具准备:每个学生准备一个平行四边形。
教学过程:
1、什么是面积?
2、请同学翻书,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?
二、导入新课
??根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
三、讲授新课
(一)、数方格法
用展示台出示方格图
1、???这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
2、???请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
???以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
1、???这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、???然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
5、引导学生总结平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)
6、教学用字母表示平行四边形的面积公式。
板书:S=a×h,告知S和h的读音。
说明在含有字母的式子里,字母和字母中间的乘号可以记作“·”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h,或者S=ah。
(6)完成课本中间的“填空”。
7、验证公式
????学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”?,加以验证。?
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
(四)应用????
1、???学生自学例1后,教师根据学生提出的问题讲解。
3、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等(????)?
(2)平行四边形底越长,它的面积就越大(????)
4、做书上的题。
四、体验
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
五、作业
练习十九第1题。
??六、板书设计
平行四边形面积的计算
长方形的面积=长×宽???????????平行四边形的面积=底×高
S=a×h?????????????????????????S=a·h或S=ah
?
第二课时
教学内容:平行四边形面积计算的练习
教学目标:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2.养成良好的审题习惯。
教学重点:运用所学知识解答有关平行四边形面积的应用题。
教具准备:展示台
教学过程:
一、基本练习
1、平行四边形的面积是什么?它是怎样推导出来的?
2、.口算下面各平行四边形的面积。
(1)底12米,高7米;
(2)高13分米,第6分米;
(3)底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
(1)生独立列式解答,集体订正。
(2)如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?
①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:250×780÷10000=1.95公顷,
再求共收小麦多少千克:7000×1.95=13650千克
(3)如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500÷(250×78÷1000)
(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.(1)练习十九的题:
?a、你能找出图中的两个平行四边形吗?
b、他们的面积相等吗?为什么?
c、生计算每个平行四边形的面积。
d、你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)
???(2)练习十九6题
????让学生抓住平行四边形的底和高与正方形有什么关系。(平行四边形的底和高分别等于正方形的边长。)
3.练习十九第3题:已知一个平行四边形的面积和底,(如图),求高。
分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习:练习十九第7题。
四、作业:练习十九的题。
?
第三课????三角形面积的计算
教学目标:
1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.
2.培养学生观察能力、动手操作能力和类推迁移的能力.
3.培养学生勤于思考,积极探索的学习精神.
教学重点:理解三角形面积计算公式,正确计算三角形的面积.
教学难点:理解三角形面积公式的推导过程.
学具准备:每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。
教学过程:
一、激发:
1.出示平行四边形???????????????????
?提问:(1)这是什么图形?怎样计算平行四边形的面积。(板书:平行四边形面积=底×高)????
????(2)底是2厘米,高是1.5厘米,求它的面积。
????(3)平行四边形面积的计算公式是怎样推导的?
????2.出示三角形。三角形按角可以分为哪几种?
3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)
教师:今天我们一起研究“三角形的面积”(板书)
二、指导探索
(一)推导三角形面积计算公式.
1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.
2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
3.用两个完全一样的直角三角形拼.
(1)教师参与学生拼摆,个别加以指导
(2)演示课件:拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行?四边形的面积有什么关系?
4.用两个完全一样的锐角三角形拼.
(1)组织学生利用手里的学具试拼.(指名演示)
(2)演示课件:拼摆图形(突出旋转、平移)
教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?
5.用两个完全一样的钝角三角形来拼.
(1)由学生独立完成.
(2)演示课件:拼摆图形
6.讨论:
(1)两个完全相同的三角形都可以转化成什么图形?
(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?
(3)三角形面积的计算公式是什么?
7、引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。
②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)
?????③这个平行四边形的底等于三角形的底。(同时板书)
?????④这个平行四边形的高等于三角形的高。(同时板书)
????(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)
????板书:三角形面积=底×高÷2?
(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?
(二)教学例1
红领巾的底是100cm,高33cm,它的面积是多少平方厘米?
1.由学生独立解答.
2.订正答案(教师板书)
三、质疑调节
(一)总结这一节课的收获,并提出自己的问题.
(二)教师提问:
(1)要求三角形面积需要知道哪两个已知条件?
(2)求三角形面积为什么要除以2?
四、反馈练习
(一)下面平行四边形的面积是12平方厘米,求画斜线的三角形的面积.
(二)计算下面每个三角形的面积.
1.底是4.2米,高是2米;
2.底是3分米,高是1.3分米;
3.底是1.8米,高是.1.2米;
(三)?判断
1、一个三角形的底和高是4厘米,它的面积就是16平方厘米。(?)
2、等底等高的两个三角形,面积一定相等。?(?)
3、两个三角形一定可以拼成一个平行四边形。?(?)
4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。(?)
五、作业:做一做和练习二十1题?
板书设计:
三角形面积的计算
因为:平行四边形的面积=底×高,????例1…?…
三角形面积=拼成的平行四边形的一半,??100×33÷2=1650(cm)
所以三角形面积=底×高÷2?????
S=ah÷2
第四课时
教学内容:三角形面积计算的练习(练习二十5~10题)
教学目标:
1.是学生比较熟练地应用三角形面积计算公式计算三角形的面积。
2.能运用公式解答有关的实际问题。
3.养成良好的审题、检验的习惯,提供正确率。
教学重点:运用所学知识,正确解答有关三角形面积的应用题。
教具准备:展示台
教学过程:
一、基本练习
1.填空。
(1)三角形的面积=?????????????,用字母表示是????????。
?为什么公式中有一个“÷2”?
(2)一个三角形与一个平行四边形等底等高,平行四边形的底是2.8米,高是1.5米。三角形的面积是(?????????)平方米,平行四边形的面积是(??????????)平方米。
2、练习二十2题
二、指导练习
1.练习二十第6题:下图中哪两个三角形的面积相等?(两条虚线互相平行。)你还能画出和它们面积相等的三角形吗?
⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系?
⑵看看图中哪两个三角形的面积相等?为什么?
⑶分组讨论如何在图中画出一个与它们面积相等的三角形,并试着画出来
2.练习二十第7题
(1)?让学生尝试分。
(2)?展示学生的作业
可能有?:?a、根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积就必然相等。而要找这4个等底等高的小三角形,只需把原三角形的某一边4等份,再将各分点与这边相对的顶点连接起来即可。
?b、也可把原三角形先二等分,再把每一份分别二等分。
3、练习十六9*
????让学生抓住涂色的三角形的底只有平行四边形底的一半,它的高和平行四边形的高相等,平行四边形的面积=底×高,三角形的面积=(底÷2)×高÷2,所以三角形的面积等于48÷4
4.练习二十第3题:已知一个三角形的面积和底,求高?
让学生列方程解和算术方法解,算术方法176×2÷22,要让学生明确176×2是把三角形的面积转化成了平行四边形的面积。
三、课堂练习:练习二十第8*题。
四、作业:练习二十第4、5题。
第五课时?梯形面积的计算
教学目标:
1、在理解的基础上掌握梯形面积计算公式的推导,并能运用公式正确计算梯形的面积。?
2、通过动手操作、观察、比较,发展学生空间观念。培养学生分析、综合、抽象、概括和解决实际问题的能力。?
3、掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。?
教学重点:梯形面积计算公式的推导和运用。
教学难点:理解梯形面积公式的推导过程。?
教学过程:?
一、导入新课?
1、平行四边形、三角形的面积公式是什么?它们的面积公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。?
2、出示梯形,让学生说出它的上底、下底各是多少厘米,并画出它的高。?
3、教师导语:我们已经学会了计算长方形、正方形、平行四边形、三角形的面积计算方法,生活中还有很多物体面的形状是梯形,(出示一辆汽车侧面图)如汽车玻璃就是梯形的,那梯形的面积又该如何计算呢?我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)?
二、新课展开?
第一层次,推导公式?
(1)猜想:
???让学生先猜测一下梯形的面积可能和哪些量相关。
(2)操作学具?
????①启发学生思考:你能仿照求三角形面积计算公式的推导办法,把梯形也转化成已学过的图形计算出它的面积吗??
????②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。?
????③指名学生操作演示。?
学生预设:
方法一:把两个完全一样的梯形拼成一个平行四边形;
方法二:把一个梯形分成两个三角形;
方法三:把一个梯形分成一个平行四边形和一个三角形。
……
师:刚才同学们用自己的方法将梯形转化成我们学过的图形,利用这些方法都可以推导出梯形的面积计算公式。下面我们先选择其中的一种方法来共同推导梯形的面积。
????④教师带领学生共同操作:拿两个完全一样的梯形,先重合,再按住梯形右下角的顶点,使一个梯形逆时针旋转180度,使梯形上、下底成一条走线,然后把第一个梯形的左边沿着第二个梯形的右边平行移动,直到成为一个平行四边形为止。
(2)观察思考?
??①教师提出问题引导学生观察。?
??a.?用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系??
??b.?每个梯形的面积与拼成的平形四边形的面积有什么关系??
(3)反馈交流,推导公式。?
??①学生回答上述问题。?
??②师生共同总结梯形面积的计算公式。?
板书:梯形的面积=(上底+下底)×高÷2
问:梯形的面积公式中“(上底+下底)×高”求的是什么?
???为什么要除以2?
??③在小组内尝试上面另外几种不同的转化方法,如何推导出梯形的面积公式。
方法一:梯形的面积=上底×高÷2+下底×高÷2
??????????????????=(上底+下底)×高÷2
方法二:梯形的面积=平行四边形面积+三角形面积
??????????????????=上底×高+三角形的底×高÷2
??????????????????=(2个梯形上底+三角形底)×高÷2
??????????????????=(梯形上底+梯形下底)×高÷2
?
???④字母表示公式。?教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢??
学生回答后,教师板书:“S=(a+b)h÷2”。?
第二层次,公式应用。?
??(1)出示课本第89页的例题。同学们知道我国最大的水电站是哪个吗?下面是水电站大坝的横截面图,教师指导学生理解“横截面”。?
??(2)学生尝试解答。?
??(3)展示台出示例题的解答,反馈矫正。?
??(4)完成例题下面的“做一做”。强调计算时不要忘记除以2。
三、巩固练习?
??(1)完成练习二十一第1、2和3题。?
??(2)讨论完成练习二十一第4和6题。?
四、全课小结。?(略)
板书设计:
梯形的面积计算
平行四边形的面积=底×高????????????????例3??S=(a+b)h÷2
梯形的面积=(上底+下底)×高÷2??????????????=(36+120)×135÷2
????????S=(a+b)h÷2????????????????????????=156×135÷2
?????????????????????????????????????????????=10530(平方米)
第六课?梯形面积的练习
教学目标:
1.进一步理解和掌握梯形面积的计算公式,能够利用梯形面积计算公式解决生活中的相关问题。
2.提高学生运用知识解决问题的能力,培养分析、概括和思考的能力。
教学重点:深入理解和掌握梯形面积的计算公式。
教学难点:利用梯形面积计算公式解决生活中的相关问题。
教学过程:
一、基础练习:
1、填空
????4.8平方米=(?)平方分米??????????62平方厘米=(??)平方分米
????1.2公顷=(??)平方米?????????????1.2平方千米=(??)公顷
????560平方分米=(??)平方米
2、计算下面图形的面积.(图略)
3、揭示课题:今天这节课上一节梯形面积公式的练习和应用课,请同学们说出梯形的面积计算公式。我们是怎样推导出它的面积计算公式的?
二、指导练习:
1、练习十七第3题。
???观察思考:要计算梯形面积,哪些条件是合适的?
???独立完成,核对时说一说自己是怎样想的?怎样算的?
2、练习二十一第4题。
问:这个花坛是什么形状?要示其面积必须知道哪些数据?题目中是直接告诉我们如何求梯形上下底的和?(如果有困难,可以小组讨论)
板书:上底+下底=46—20=26(厘米)
??????高:20厘米
学生明确上面几个问题后独立解答,集体订正。
3、练习二十一第8题。
讨论:如何剪去一个最大的平行四边形?(以梯形上底长度为底长的平行四边形是梯形里最大的平行四边形。)
如何求剩下的面积?独立做题,小组交流,全班汇报。
预设有以下两种方法:
方法一:(2+3.5)×1.8÷2-2×1.8
=4.95-3.6
=1.35(平方厘米)
方法二(3.5-2)×1.8÷2
=1.5×1.8÷2
=2.7÷2
=1.35(平方厘米)
三、课堂作业
补充练习:
1、一个梯形,上底是1.2米,下底是0.8米,面积是3.6平方米,求这个梯形的高.?
2、一个梯形的下底是12厘米,高是4厘米,面积是36平方厘米,这个梯形的上底是多少厘米?
第七课?组合图形面积的计算
教学目标:
1、结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算面积。
2、能根据图形的特点,选择合适而又简便的方法计算组合图形的面积。
3、能灵活思考解决实际生活中的问题,进一步发展学生的空间观念。
教学过程:
一、复习。
“第一个图形是什么形?它的面积怎样计算?”学生口答,
教师在长方形图的下面板书:S=ab
“第二个图形呢?”
学生分别口答后,教师在每个图的下面写出相应的计算面积的公式.
可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算。
二、认识组合图形
1、让学生指出有哪些图形?
师:计算这些图形的面积我们已经学会了,今天老师带来了几张图片,认一认,它们是什么?
这些图片分别是由哪几个平面图形组成的?
这几张图片显示的都是组合图形,你觉得什么样的图形是组合图形?
师:组合图形是由几个简单的图形组合而成的。
问:说一说,生活中哪些物体的表面可以看到组合图形?
同学们现在已知认识了组合图形,这就是这节课我们重点学习的内容。[板书课题]
三、组合图形面积的计算。
1.在实际生活中,有些图形也是由几个简单的图形组合而成的(出示例1题目及图)。?图表示的是一间房子侧面墙的形状,它的面积是多少平方米?
2.如果不分割能直接算出这个图形的面积吗?(引讨横虚线的作用)怎样计算这个组合图形的面积呢?
先在小组内讨论方法,再后打开书计算,同时指名板演。
5×5+5×2÷2
[5+(2+5)]×(5÷2)÷2×2
集体订正时问:你将组合图形分成了哪几个基本图形?算式的每一步求的是什么?
比较一下,你喜欢哪种算法?为什么?
师:我们在计算组合图形面积时,要根据已知条件对图形进行分解,分解图形要尽量选择最简便的方法进行计算,特别要有计算面积所必需的数据。
小结:一个组合图形,可以用多种方法划分成几个已经学过的简单图形,再分别计算出这些图形的面积,求出组合图形的面积。
四、巩固初步
1.课本做一做
让学生独立完成,核对时说一说自己是怎样选择的。
2.练习二十二第2题
(1)由中队旗引入,请同学们选择有用的数据算出它的面积。
(2)指名板演,展示不同的算法,对于不同的算法,师生共同比较哪种方法比较简便。可能有下面几种情况:
S总=S梯×2??????????(80—20+80)×30??÷2×2?????????
S总=S长—S三?????????80×60—(30+30)×20÷2
S总=S长+S三×2????(80—20)×(30+30)+(30×20÷2)×2
五、全课小结
这节课你学会了什么?有什么收获?
六、作业:练习二十二第2题
第八课时
教学目标:
1、使学生进一步巩固组合图形面积的计算方法;
2、利用所学知识解决生活中的实际问题。
教学重点:应用知识解决生活中有关组合图形面积的问题。
教学过程:
一、基本练习
1、复习
(1)回忆长方形、正方形、平行四边形、三角形、梯形的面积计算公式。
(2)看图说说下列图形是由哪些基本图形组成的。
二、指导练习
1、练习二十二第3题
让学生独立审题,说一说该如何计算它实际占地面积。
学生讨论完后独立独立解答,集体核对。
2、练习二十二第5题。
让学生看题和图,问:图是何意?
提醒学生这是一个组合图形的分解图。对理解有困难的学生,可实际操作一下让学生理解。
学生解答,集体核对。
3、练习二十二第7题。
学生独立完成后集体订正。
4、补充练习:学校要油漆40扇教室的门。(门形状如图,单位分米)需要油漆的面积一共是多少?如果油漆每平方米需要花费8元,那么学校共要花费多少元?
(1)让学生审题,理解题意。
(2)做此题应该注意什么?
?????强调油漆门是双面的。
(3)独立解答,核对时说一说自己是怎样算的?
三、延伸拓展
1、练习二十二第8题。
(1)学生独立审题后小组讨论,如何计算草地、红花、黄花的面积。
(2)讨论完后试着算一算。
(3)汇报交流。
根据长方形的长与宽,可以求出它的面积。18×12?=?216(m2)
红花、黄花和绿草的种植面积,可以根据它们各自占长方形面积的几分之几来计算。
绿草的面积占长方形面积的1/2,所以绿草种植面积是216÷2=108?(m2)。
红花和黄花的面积各占长方形面积的1/4,
所以红花和黄花的种植面积各是216÷4?=?54(m2)。
四、全课小结:说一说今天这节课的最大收获是什么?
五、课堂作业:练习二十二第4、6题,第8题的设计图。?
第九课时
教学目标:
1、通过复习,使学生理清各种平面图形面积计算公式之间的关系。
2、使学生能够应用面积计算公式,熟练计算平行四边形、三角形、梯形和组合图形的面积。
3、能灵活运用所学知识解决有关的实际问题。
教学重点:熟练计算平行四边形、三角形、梯形及组合图形的面积。
教学准备:平行四边形、三角形、梯形的磁片。
教学过程:
一、创设情境,揭示课题。
1、想一想,本单元我们学习了哪些知识?
揭示课题:今天这节课我们对第五单元的知识进行整理和复习。(板书课题)
2、在小组内说一说,你学会了什么?
二、知识梳理,形成网络
1、复习多边形面积计算公式
(1)老师分别出示平行四边形、三角形和梯形,让学生说一说各个图形面积公式是怎样推导出来的?
老师根据学生所说,演示转化过程,形成如教材96页的板书。
(2)从整理图中能看出各种图形之间的关系吗?
学生回答?后老师简要小结。
2、练一练:
老师出示下题让学生独立完成后集体核对。
选择条件分别计算各图形的面积。
3、师:刚才复习的是基本图形的面积,而由几个基本图形组合而成的图形叫什么?
出示练习二十三的第2题,让学生自己独立完成。
集体核对时让学生说一说自己的几种方法。
学生可能会想到几种方法。
比较哪种方法比较简便?
三、应用拓展
1、练习二十三第1题。
(1)让学生审题,说一说解题步骤。
(2)独立完成。
(3)小组交流,说一说你的发现。
(4)全班交流。
师小结:几个图形都在两条平行线之间,说明它们的高是相等的,在高相等的条件下,面积不等,说明它们的高都不等。
2、练习二十三第4题。
(1)先让学生独立完成第1小题,集体核对。
(2)出示第2小题,让学生思考:能剪几棵这样的小树要考虑什么因素?能不能用纸的面积除以树的面积?
想一想该如何摆放小树?让学生在草稿本上画一画示意图。
集体订正,展示。
四、小结:说一说今天这节课最大的收获是什么?
五、课堂作业:练习二十三第2、3题。