五年级(数学)上册平行四边形的面积2课时教学设计

文档属性

名称 五年级(数学)上册平行四边形的面积2课时教学设计
格式 zip
文件大小 8.0KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2018-12-17 20:51:14

图片预览

文档简介

(五)年级(数学)上册第六单元《多边形的面积》
《平行四边形的面积》第1课时教学设计
课时目标
知识与技能:掌握平行四边形的面积的计算公式并能解决实际问题。
过程与方法:通过剪、摆、摆等活动,让学生主动探究平行四边形的面积的计算公式。
情感、态度与价值观:培养学生初步的空间观念,及积极参与、团结合作、主动探索的精神。
教学准备 师:多媒体。生:剪刀、直尺、平行四边形纸片、练习本
重点难点 掌握平行四边形的面积公式的推导过程和平行四边形的面积的计算。
教学过程
一、问(目标引领 问题导学)
1.谈话:为了创建文明城市,美化我们的生活环境,某社区准备要修建两个大花坛(出示教材第87页情境图)。这两个花坛分别是什么形状的?(一个长方形,一个平行四边形。)
2.让学生猜测:你觉得哪一个花坛大一些?多数学生认为不容易猜测,极少数同学猜长方形或平行四边形的花坛大。通过猜测,引导学生总结出:要想比较哪个花坛大,需要计算它们的面积。
3.提问:你会算它们的面积吗?
4.揭示课题:今天我们就来学习和研究平行四边形的面积的计算。
(板书课题:平行四边形的面积)
二、猜(读)(联系旧知 自主尝试)
1.数方格,比较大小。
想一想,我们可以用什么方法来计算平行四边形的面积呢?
根据已有经验,学生会想到用数方格的方式得出平行四边形的面积。
出示教材第87页方格图及平行四边形图:
引导学生数一数有多少个小方格?每一个小方格是l平方米,不满一格的均按半格计算,问这个平行四边形的面积是多少平方米?
学生数完以后会得出:这个平行四边形的面积是24m2。
继续出示教材第87页的长方形图,让学生数一数并算一算长方形的面积是多少。
学生数完得出:长方形的长为6m,宽为4m,面积是24m2。
引导学生完成教材87页的表格,并对填表的结果进行讨论:你发现了什么?
通过比较、讨论,得出:两个图形的底与长,高与宽和面积分别相等。
2.猜想验证。
提问:通过数方格子的方法我们可以求出平行四边形的面积,那如果是一个很大的平行四边形田地还能用数格子的方法吗?(不能,很麻烦)
引导学生小结并质疑:计算平行四边形的面积用数格子的方法是很不方便的,用什么样的方法计算平行四边形的面积既方便又简单?
引导假设:是否可以把平行四边形变成一个长方形来计算出它的面积?
操作验证:演示教材第88页平行四边形面积的推导过程,并让学生拿出自己的学具平行四边形纸片,像刚才演示的操作一样,同桌相互合作,动手进行剪、拼、移的操作方法,从中再次验证一下是否正确。
三、探(合作探究 点拨辅导)
师巡回指导学生的操作。
1、引导学生思考:通过刚才的操作演示你发现了什么?
学生可能会回答:我发现把平行四边形的面积转化成长方形后形状变了,但面积没有变,即长方形面积就等于平行四边形面积。我发现长方形的长就是平行四边形的底,宽就是平行四边形的高。
引导学生利用长方形的面积公式推导出平行四边形的面积公式:
平行四边形的面积=底×高
追问:要求平行四边形的面积必须知道什么条件?
学生得出结论:必须知道平行四边形的底和对应的高。
2.全班交流,要求学生说出自己的推导过程。(我们把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。)
3.教学用字母表示。
如果用S表示平行四边形的面积,a表示平行四边形的底,用h表示平行四边形的高。那么,平行四边形的面积公式可以写成: S=ah(板书)
4.应用面积计算公式计算平行四边形的面积。
出示教材第88页例1.
四、用(训练推进 拓展延伸)
完成教材第89页“练习十九”第2题。可先让学生试着做,再通过集体订正检查掌握情况。
板书设计 平行四边形的面积
长方形的面积=长 × 宽 例1 S =ah
↓ ↓ ↓ =6×4
平行四边的面积=底 × 高 =24(m2)
↓ ↓ ↓
S a h
教学反思 让学生掌握平行四边形的面积公式的推导过程和平行四边形的面积的计算,更多采用图片以及现实中的实物做教学课件,更直观,更形象,效果更好
(五)年级(数学)上册第六单元《多边形的面积》
《平行四边形的面积—练习十九》第2课时教学设计
课时目标
知识与技能:熟练运用平行四边形的面积公式计算平行四边形的面积,解决相关的实际问题。能根据底、高、面积三个量中的任意两个量,用算术方法或方程计算第三个量。
过程与方法:通过猜测、验证、比较发现平行四边形的面积与底和高的直接关系。
情感、态度与价值观:体会数学的应用价值及数学与生活的紧密联系。
教学准备 多媒体、一个平行四边形、一个长方形。
重点难点 运用所学知识解决有关平行四边形面积的应用题. 逆用平行四边形面积的计算公式。
教学过程
一、问(目标引领 问题导学)
1.复习回顾:
师:上节课我们一起探究了平行四边形的面积计算公式,谁来说说要求面积必须知道什么?怎样求?教师板书公式。
2.你能想办法求出下面两个平行四边形的面积吗?(练习十九第4题)
动手操作:画出已知底的高。
?
指名学生展示自己的作品,请其余学生作点评。
教师在以上图形中填入底和高的数据,学生口答。
3.只列式不计算:选择合适的底和高求平行四边形的面积。
?
学生先独立解答,再小组交流。
在解答中,教师提醒学生注意找准对应的底和高。
二、猜(读)(联系旧知 自主尝试)
1.补充题:
一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
(l)学生先独立列式解答,然后集体订正。
(2)如果问题改为“每公顷可收小麦7000千克,这块地共可收小麦多少千克”,必须知道哪两个条件?
学生先独立列式,然后集体讲评:
先求这块地的面积:250×78÷10000 =1.95(公顷),再求共收小麦多少千克:7000×1.95=13650(千克)。
(3)如果问题改为“一共可收小麦58500千克,平均每公顷可收小麦多少千克”,又该怎样求?
将(3)与(2)比较,从数量关系上看,哪里相同?哪里不同?
讨论归纳后,学生列式解答:58500÷(250×78÷10000)
(4)小结:上述几题,我们根据一题多变的思想进行练习,尤其是变式后的两道题,都是要先求面积,再变换成积后才能进入下一步计算,否则就会出现问题。
三、探(合作探究 点拨辅导)
1、练习十九第6题。
(1)组织全班学生讨论这两个平行四边形的面积是否相等。
(2)引导学生观察,这两个平行四边形的底和高分别是多少?
学生观察得出:这两个平行四边形的底都是2.8 cm,高都是1.5 cm。
(3)启发学生得出:等底等高的平行四边形的面积相等。
2.练习十九第7题。
?
让学生掌握平行四边形的底和高与正方形之间的关系。(平行四边形的底和高分别等于正方形的边长。)
3、练习十九第8题。
让学生观察、讨论什么不变,什么发生了变化(四条边的长度不变,底边上的高发生变化),从而得到它们的周长不变,但面积变小了。
四、用(训练推进 拓展延伸)
1.教材第89页练习十九第5题。
(1)学生读题,理解题意。
(2)引导学生讨论:根据哪两个条件可以求出这块麦田有多少公顷?
要求平均每公顷收小麦多少吨,必须知道哪两个条件?
(3)让学生自己列式,再全班集体订正。
2.教材第90页练习十九第11*题。
(1)议一议:把两个小三角形拼接在一起,会有什么新的发现?
(2)拼摆的平行四边形和小平行四边形有什么关系?
引导得出:拼摆的平行四边形和小平行四边形等底等高,因此面积都是大平行四边形面积的一半:48÷2-24(cm2)。
板书设计 平行四边形面积的练习
S=ah
等底等高的平行四边形的面积相等。
教学反思
通过猜测、验证、比较发现平行四边形的面积与底和高的直接关系,教师的引导和学生的配合构成有效课堂