九年级上册第四章概率初步单元检测(含答案)

文档属性

名称 九年级上册第四章概率初步单元检测(含答案)
格式 zip
文件大小 394.5KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2018-12-19 11:14:07

图片预览

文档简介

(
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
) (
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
) (
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
)
九年级上册 第四章 概率初步单元检测(历年中考题汇编)
一、单选题(共10题;共20分)
1.(2017?绍兴)在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其它均相同,从中任意摸出一个球,则摸出黑球的概率是( )
A. B. C. D.
2.(2017·嘉兴)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是( )

A. 红红不是胜就是输,所以红红胜的概率为
B. 红红胜或娜娜胜的概率相等
C. 两人出相同手势的概率为
D. 娜娜胜的概率和两人出相同手势的概率一样
3.(2016?漳州)掷一枚质地均匀的硬币10次,下列说法正确的是( )
A. 每2次必有1次正面向上 B. 必有5次正面向上
C. 可能有7次正面向上 D. 不可能有10次正面向上
4.如图,正方形ABCD内接于⊙O,⊙O的直径为分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是( )
A. B. C. D.


5.(2017?赤峰)小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为( )
A. B. C. D.
6.(2016?大连)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是( )
A. B. C. D.
7.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是( )
A. B. C. D.
8.(2017?葫芦岛)下列事件是必然事件的是( )
A. 乘坐公共汽车恰好有空座 B. 同位角相等
C. 打开手机就有未接电话 D. 三角形内角和等于180°
9.(2017?临沂)小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是( )
A. B. C. D.
10.(2017?贵阳)某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是( )
A. B. C. D.
二、填空题(共6题;共6分)
11.(2017?黑龙江)在一个不透明的袋子中装有除颜色外完全相同的3个红球、3个黄球、2个绿球,任意摸出一球,摸到红球的概率是________.
12.(2017?黄石)甲、乙两位同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为a、b,则a+b=9的概率为________.
13.(2017?泰州)“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是________.(填“必然事件”、“不可能事件”或“随机事件”)
14.(2016?北京)林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:
移植的棵数n 1000 1500 2500 4000 8000 15000 20000 30000
成活的棵数m 865 1356 2220 3500 7056 13170 17580 26430
成活的频率 0.865 0.904 0.888 0.875 0.882 0.878 0.879 0.881

估计该种幼树在此条件下移植成活的概率为________.
15.(2016?葫芦岛)如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为________.

16.(2014?抚顺)把标号分别为a,b,c的三个小球(除标号外,其余均相同)放在一个不透明的口袋中,充分混合后,随机地摸出一个小球,记下标号后放回,充分混合后,再随机地摸出一个小球,两次摸出的小球的标号相同的概率是 ________.
三、解答题(共3题;共18分)
17.(2014?丹东)甲、乙两人用如图的两个分格均匀的转盘A、B做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:
(1)用列表格或画树状图的方法表示游戏所有可能出现的结果.
(2)求甲、乙两人获胜的概率.



18.(2017?苏州)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.

根据以上信息解决下列问题:
(1)________, ________;
(2)扇形统计图中机器人项目所对应扇形的圆心角度数为________ ;
(3)从选航模项目的 名学生中随机选取 名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的 名学生中恰好有 名男生、 名女生的概率.
19.(2017?徐州)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1,﹣3,﹣5,7,这些卡片数字外都相同,小芳从口袋中随机抽取一张卡片,小明再从剩余的三张卡片中随机抽取一张,请你用画树状图或列表的方法,求两人抽到的数字符号相同的概率.



四、综合题(共6题;共65分)
20.(2017?玉林)在一个不透明的袋子中有一个黑球a和两个白球b,c(除颜色外其他均相同).用树状图(或列表法)解答下列问题:
(1)小丽第一次从袋子中摸出一个球不放回,第二次又从袋子中摸出一个球.则小丽两次都摸到白球的概率是多少?
(2)小强第一次从袋子中摸出一个球,摸到黑球不放回,摸到白球放回;第二次又从袋子中摸出一个球,则小强两次都摸到白球的概率是多少?

21.(2017?毕节市)由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负. 如果小王和小张按上述规则各转动转盘一次,则

(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?
(2)该游戏是否公平?请用列表或画树状图的方法说明理由.
22.(2015?贵州)在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛
(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率
(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率
23.(2016?陕西)某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500ml)、红茶(500ml)和可乐(600ml),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.
根据以上规则,回答下列问题:

(1)求一次“有效随机转动”可获得“乐”字的概率;
(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.
24.(2016?丹东)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.
(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;
(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.
25.(2016?眉山)九年级三班学生苏琪为帮助同桌万宇巩固“平面直角坐标系四个象限内及坐标轴上的点的坐标特点”这一基础知识,在三张完全相同且不透明的卡片正面分别写上了﹣3,0,2三个数字,背面向上洗匀后随机抽取一张,将卡片上的数字记为a,再从剩下的两张中随机取出一张,将卡片上的数字记为b,然后叫万宇在平面直角坐标系中找出点M(a,b)的位置.
(1)请你用树状图帮万宇同学进行分析,并写出点M所有可能的坐标;
(2)求点M在第二象限的概率;
(3)张老师在万宇同学所画的平面直角坐标系中,画了一个半径为3的⊙O,过点M能作多少条⊙O的切线?请直接写出答案.


答案
一、单选题
1.B 2.A 3.C 4.A 5.B 6.C 7.B 8.D 9.C 10.C
二、填空题
11. 12. 13.不可能事件 14.0.880 15. 16.
三、解答题
17.解:(1)所有可能出现的结果如图:
4 5 6 7
1 (1,4) (1,5) (1,6) (1,7)
2 (2,4) (2,5) (2,6) (2,7)
3 (3,4) (3,5) (3,6) (3,7)

(2)从上面的表格(或树状图)可以看出,所有可能出现的结果共有12种,且每种结果出现的可能性相同,其中积是奇数的结果有4种,即5、7、15、21,积是偶数的结果有8种,即4、6、8、10、12、14、12、18,
∴甲、乙 两人获胜的概率分别为:
P(甲获胜)==,
P(乙获胜)==?.
18.(1)8;3(2)144
(3)将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4. 用表格列出所有可能出现的结果:

由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“1名男生、1名女生”有8种可能.
则 P(1名男生、1名女生)=.
19.解:画树状图为:
共有12种等可能的结果数,其中两人抽到的数字符号相同的结果数为4,
所以两人抽到的数字符号相同的概率= = .
四、综合题
20.(1)解:如图,共6种情况,两次都摸出白球的情况数有2种,所以概率为 ;
(2)解:共8种情况,第一次摸到白球的可能性为 ,如果第一次摸到白球,那么第二次又摸到白球的概率是 ,那么两次摸到白球的概率是 × = .
21.(1)解:∵转盘的4个等分区域内只有1,3两个奇数, ∴小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率= = ;
(2)解:列表如下:
? 1 2 3 4
1 (1,1) (1,2) (1,3) (1,4)
2 (2,1) (2,2) (2,3) (2,4)
3 (3,1) (3,2) (3,3) (3,4)
4 (4,1) (4,2) (4,3) (4,4)

所有等可能的情况有16种,其中两指针所指数字数字都是偶数或都是奇数的都是4种,
∴P(向往胜)= = ,P(小张胜)= = ,
∴游戏公平.
22.(1)解:若已确定小英打第一场,再从其余三位同学中随机选取一位,共有3种情况,
而选中小丽的情况只有一种,所以P(恰好选中小丽)=
(2)解:列表如下:
小英 小丽 小敏 小洁
小英 (小英,小丽) (小英,小敏) (小英,小洁)
小丽 (小丽,小英) (小丽,小敏) (小丽,小洁)
小敏 (小敏,小英) (小敏,小丽) (小敏,小洁)
小洁 (小洁,小英) (小洁,小丽) (小洁,小敏)

所有可能出现的情况有12种,其中恰好选中小敏、小洁两位同学组合的情况有两种,所以P(小敏,小洁)==?.
23.(1)解:∵转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;
∴一次“有效随机转动”可获得“乐”字的概率为:
(2)解:画树状图得:

∵共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,
∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为: .
24.(1)解:所有可能出现的结果如图:
从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为: ;

(2)解:不公平.
从表格可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,
所以甲获胜的概率为: ,乙获胜的概率为: .
∵ > ,
∴甲获胜的概率大,游戏不公平.
25.(1)解:画树状图为

共有6种等可能的结果数,它们是(﹣3,0)、(﹣3,2)、(0,﹣3)、(0,2)、(2,﹣3)、(2,0);
(2)解:只有(﹣3,2)在第二象限,
所以∴点M在第二象限的概率=
(3)解:如图,过点M能作4条⊙O的切线.



(
- 1 -
)