1 认识三角形
第四章 三角形
导入新课
讲授新课
当堂练习
课堂小结
第1课时 三角形的内角和
1.了解三角形及相关概念,能正确识别和表示三角形;
2. 会按角的大小对三角形进行分类;
3.掌握三角形的内角和等于180°,并会据此解决简单
的问题.(重点、难点)
学习目标
导入新课
埃及金字塔
氨气分子结构示意图
飞机机翼
问题:
(1)从古埃及的金字塔到现代的飞机,从宏伟的建筑
物到微小的分子结构,都有什么样的形象?
(2)在我们的生活中有没有这样的形象呢?试举例.
讲授新课
问题1:观察下面三角形的形成过程,说一说什么叫三角形?
定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫作三角形.
问题2:三角形中有几条线段?有几个角?
A
B
C
边:线段AB,BC,CA是三角形的边.
顶点:点A,B,C是三角形的顶点,
角:∠A,∠B,∠C叫作三角形的内角,简称三角
形的角.
有三条线段,三个角
记法:三角形ABC用符号表示________.
边的表示:三角形ABC的边AB、AC和BC可用小写字母分别表示为________.
△ABC
c,a,b
边c
边b
边a
顶点C
角
角
角
顶点A
顶点B
辨一辨:下列图形符合三角形的定义吗?
不符合
不符合
不符合
①位置关系:不在同一直线上;
②联接方式:首尾顺次相接.
三角形应满足以下两个条件:
要点提醒
表示方法:
三角形用符号“△”表示;记作“△ABC”,读作“三角形ABC”,除此△ABC还可记作△BCA,
△ CAB, △ ACB等.
基本要素:
三角形的边:边AB、BC、CA;
三角形的顶点:顶点A、B、C;
三角形的内角(简称为三角形的角):∠ A、 ∠ B、 ∠ C.
特别规定:
三角形ABC的三边,一般的顶点A所对的边记作a,顶点B所对的边记作b,顶点C所对的边记作c.
5个,它们分别是△ABE,△ABC, △BEC,△BCD,△ECD.
找一找:(1)图中有几个三角形?用符号表示出这些三角形?
(2)以AB为边的三角形有哪些?
△ABC、△ABE.
(3)以E为顶点的三角形有哪些?
△ ABE 、△BCE、 △CDE.
(4)以∠D为角的三角形有哪些?
△ BCD、 △DEC.
(5)说出△BCD的三个角和三个顶点所对的边.
△BCD的三个角是∠BCD、∠BDC、∠CBD.顶点B所对应的边为DC,顶点C所对应的边为BD,顶点D所对应的边为BC.
三角形的三个内角拼到一起恰好构成一个平角.
观测的结果不一定可靠,还需要通过数学知识来说明.从上面的操作过程,你能发现证明的思路吗?
还有其他的拼接方法吗?
探究:在纸上任意画一个三角形,将它的内角剪下拼合在一起.
验证结论
三角形三个内角的和等于180°.
求证:∠A+∠B+∠C=180°.
已知:△ABC.
证法1:过点A作l∥BC,
∴∠B=∠1.
(两直线平行,内错角相等)
∠C=∠2.
(两直线平行,内错角相等)
∵∠2+∠1+∠BAC=180°,
∴∠B+∠C+∠BAC=180°.
1
2
证法2:延长BC到D,过点C作CE∥BA,
∴ ∠A=∠1 .
(两直线平行,内错角相等)
∠B=∠2.
(两直线平行,同位角相等)
又∵∠1+∠2+∠ACB=180°,
∴∠A+∠B+∠ACB=180°.
E
D
E
D
F
证法3:过D作DE∥AC,作DF∥AB.
∴ ∠C=∠EDB,∠B=∠FDC.
(两直线平行,同位角相等)
∠A+∠AED=180°,
∠AED+∠EDF=180°,
(两直线平行,同旁内角相补)
∴ ∠A=∠EDF.
∵∠EDB+∠EDF+∠FDC=180°,
∴∠A+∠B+∠C=180°.
想一想:同学们还有其他的方法吗?
思考:多种方法证明三角形内角和等于180°的核心是什么?
借助平行线的“移角”的功能,将三个角转化成一个平角.
例1 已知,如图,D是△ABC中BC边延长线上一点,F为AB上一点,直线FD交AC于E,∠DFB=90°,∠A=46°,∠D=50°.求∠ACB的度数.
解:在△DFB中,
∵∠DFB=90°,∠D=50°,
∠DFB+∠D+∠B=180°,
∴∠B=40°.
在△ABC中,
∵∠A=46°,∠B=40°,
∴∠ACB=180°-∠A-∠B=94°.
典例精析
同学们手中有直角三角板,请再画一个内角都不是90°的三角形.
三个角都是锐角的三角形叫作锐角三角形;
锐角三角形
有一个角是钝角的三角形叫作钝角三角形.
钝角三角形
有一个角是直角的三角形叫作直角三角形;
直角三角形
直角边
直角边
斜边
A
B
C
直角三角形ABC可以写成Rt△ABC;
直角三角形
锐角三角形
钝角三角形
三角形
三角形按角的大小分类
根据“三角形的内角和为180°”易得“直角三角形的两个锐角互余”.
例2 一个三角形的三个内角的度数之比为1∶2∶3,这个三角形一定是( )
A.直角三角形 B.锐角三角形
C.钝角三角形 D.无法判定
解析:设这个三角形的三个内角的度数分别是x,2x,3x,根据三角形的内角和为180°,得x+2x+3x=180°,解得x=30°,∴这个三角形的三个内角的度数分别是30°,60°,90°,即这个三角形是直角三角形.
典例精析
A
例3 如图,CE⊥AF,垂足为E,CE与BF相交于点D,∠F=40°,∠C=30°,求∠EDF、∠DBC的度数.
解:∵CE⊥AF,
∴∠DEF=90°,
∴∠EDF=90°-∠F=90°-40°=50°.
由三角形的内角和定理得
∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,
又∵∠CDB=∠EDF,
∴30°+∠DBC=40°+90°,
∴∠DBC=100°.
1.三角形是指( )
A.由三条线段所组成的封闭图形
B.由不在同一直线上的三条直线首尾顺次相
接组成的图形
C.由不在同一直线上的三条线段首尾顺次相
接组成的图形
D.由三条线段首尾顺次相接组成的图形
C
当堂练习
2.(口答)下列各组角是同一个三角形的内角
吗?为什么?
(2)60°, 40°, 90°
(3)30°, 60°, 50°
(1)3°, 150°, 27°
是
不是
不是
提醒:三角形的内角和为180°.
3.(1)在△ABC中,∠A=35°,∠ B=43°,
则∠ C =_______;
(2)在△ABC中,∠C=90°,∠B=50°,
则∠A = _______;
(3)在△ABC中, ∠A=40°,∠A=2∠B,
则∠C = ________.
102°
40°
120°
4.在△ABC中,∠A的度数是∠B的度数的3倍,
∠C 比∠B 大15°,求∠A,∠B,∠C的度数.
设∠B为x °,则∠A为(3x)°,∠C为(x+ 15)°.
3x+x+(x+15)=180,解得 x=33.
所以 3x=99 ,x+15 =48.
即∠A,∠B,∠C的度数分别为99°,33°,48°.
根据三角形的内角和等于180°, 得
解:
5.如图,△ABC中BD⊥AC,垂足为D,∠ABD=54°,
∠DBC=18°,求∠A和∠C的度数.
∵∠A+∠ABD+∠ADB=180°,
∵BD⊥AC,∴∠ADB=∠CDB=90°.
∠ABD=54°,∠ADB=90°,
∴∠A=180°-∠ABD-∠ADB
=180°-54°-90°=36°.
解:
∠C=180°-∠A-(∠ABD+∠DBC)
=180°-36°-(54°+18°)
=72°.
三角形
三角形的概念:由不在同一条直线上的三条线段首尾依次相接所组成的封闭图形.
课堂小结
三角形按角分类
直角三角形
锐角三角形
钝角三角形
三角形的内角和等于180°
直角三角形的两个锐角互余
1 认识三角形
导入新课
讲授新课
当堂练习
课堂小结
第2课时 三角形的三边关系
第四章 三角形
1.掌握三角形按边分类的方法,能够判定三角形
是否为特殊三角形;
2.探索并掌握三角形三边之间的关系,运用三角形
三边关系解决有关问题.(重点、难点)
学习目标
三角形按角的大小关系,可分为:
导入新课
复习导入
直角三角形
锐角三角形
钝角三角形
三角形
腰
不等边三角形
等腰三角形
等边三角形
底边
顶角
底角
你能找出下列三角形各自的特点吗?
讲授新课
三条边各不相等的三角形叫作不等边三角形 ;
有两条边相等的三角形叫作等腰三角形;
三条边都相等的三角形叫作等边三角形.
等边三角形和等腰三角形之间有什么关系?
总结归纳
不等边三角形
等腰三角形
我们可以把三角形按照三边情况进行分类
腰和底不等的等腰三角形
等边三角形(三边都相等
的三角形)
我要到学校怎么走呀?哪一条路最近呀?
为什么?
邮局
学校
小明家
A
B
C
路线1:从A到C再到B的路线走;
路线2:沿线段AB走.
请问:路线1、路线2哪条路程较短,你能说出根据吗?
解:路线2较短;两点之间线段最短.
归纳总结
三角形两边的和大于第三边.
三角形两边的差小于第三边.
议一议
1.在同一个三角形中,任意两边之和与第三边有什么
大小关系?
2.在同一个三角形中,任意两边之差与第三边有什么
大小关系?
3.三角形三边有怎样的不等关系?
通过动手实验同学们可以得到哪些结论?理由是什么?
例1 有两根长度分别为5cm和8cm的木棒,用长度
为2cm的木棒与它们能摆成三角形吗?为什么?长
度为13cm的木棒呢?
判断三条线段是否可以组成三角形,只需
说明两条较短线段之和大于第三条线段即可.
解:取长度为2cm的木棒时,由于2+5=7<8,出现了两边之和小于第三边的情况,所以它们不能摆成三角形.取长度为13cm的木棒时,由于5+8=13,出现了两边之和等于第三边的情况,所以它们也不能摆成三角形.
典例精析
例2 一个三角形的三边长分别为4,7,x,那么
x的取值范围是( )
A.3<x<11 B.4<x<7
C.-3<x<11 D.x>3
解析:∵三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.
A
例3 若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.
解:根据三角形的三边关系,两边之和
大于第三边,得
a-b-c<0,b-c-a<0,c+a-b>0.
∴|a-b-c|+|b-c-a|+|c+a-b|
=b+c-a+c+a-b+c+a-b
=3c+a-b.
(2)等边三角形是特殊的等腰三角形.( )
(1)一个钝角三角形一定不是等腰三角形.( )
(3)等腰三角形的腰和底一定不相等.( )
(5)直角三角形一定不是等腰三角形.( )
1.判断:
√
×
×
(4)等边三角形是锐角三角形.( )
×
√
当堂练习
4.如果等腰三角形的一边长是4cm,另一边长是9cm,
则这个等腰三角形的周长为________.
3.如果等腰三角形的一边长是5cm,另一边长是8cm,
则这个等腰三角形的周长为______________.
2.五条线段的长分别为1cm,2cm,3cm,4cm,5cm,以其
中三条线段为边长可以构成____个三角形.
3
22cm
18cm或21cm
5.判断下列长度的三条线段能否拼成三角形?为什么?
(1)3cm、8cm、4cm; (2)5cm、6cm、11cm;
(3)5cm、6cm、10cm.
判断三条线段是否可以组成三角形,只需说明两条较短线段之和大于第三条线段即可.
解:(1)不能,因为3cm+4cm<8cm;
(2)不能,因为5cm+6cm=11cm;
(3)能,因为5cm+6cm>10cm.
6.小颖要制作一个三角形木架,现有两根长度为
8cm和5cm的木棒,如果要求第三根木棒的长
度是偶数,小颖有几种选法?第三根的长度可
以是多少?
∵x为偶数,∴小颖有5种选法.
第三根木棒的长度可以是4cm,6cm,8cm,10cm,12cm.
解:设第三根木棒长为xcm,有8-5<x<8+5,
即3<x<13.
7.已知等腰三角形的周长为18cm,如果一边长
等于4cm,求另两边的长?
解:若底边长为4cm,设腰长为x cm,
则2x+4=18,解得x=7.
若一条腰长为4cm,设底边长为x cm,
则2×4+x=18,解得x=10.
因为4+4<10,所以4cm为腰不能构成三角形.
所以三角形另外两个边长都是7cm.
三角形中边的关系
课堂小结
三角形按边分类
不等边三角形
等腰三角形(包括等边三角形)
三角形的三边关系
任意两边之和大于第三边
任意两边之差小于第三边
1 认识三角形
导入新课
讲授新课
当堂练习
课堂小结
第3课时 三角形的中线、角平分线
第四章 三角形
1.了解三角形的角平分线、中线的概念并掌握其性
质,会用工具准确画出三角形的角平分线、中线;
(重点)
2. 学会用数学知识解决实际问题的能力,发展应用
和自主探究意识,并培养学生的动手实践能力与
合作精神;(难点)
学习目标
导入新课
情境导入
这里有一块三角形的蛋糕,如果兄弟两个想要平分的话,你该怎么办呢?本节课我们一起来解决这个问题吧!
在三角形中,连接一个顶点与它对边中点的线段,叫作这个三角形的中线(median). AE是BC边上的中线.
三角形的“中线”
讲授新课
(1)在纸上画出一个锐角三角形,确定它的中线.
你有什么方法?它有多少条中线?它们有怎样的
位置关系?
三条中线,
交于一点
(2)钝角三角形和直角三角形的中线又是怎样的?
折一折,画一画,并与同伴交流.
三角形的三条中线交于一点,这个交点就是三角形的重心.
要点归纳
典例精析
例1 在△ABC中,AC=5cm,AD是△ABC的中线,若△ABD的周长比△ADC的周长大2cm,则BA=________.
提示:将△ABD与△ADC的周长之差转化为边长的差.
7cm
思考
在一张薄纸上任意画一个三角形,你能设法画出它的一个内角的平分线吗?你能通过折纸的方法得到它吗?
B
A
C
用量角器画最简便,用圆规也能.
在一张纸上画出一个一个三角形并剪下,将它的一个角对折,使其两边重合.
折痕AD即为三角形的∠A的平分线.
三角形的角平分线的定义:
在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫三角形的角平分线.
1
2
A
B
C
D
注意:“三角形的角平分线”是一条线段.
∠1=∠2
每人准备锐角三角形、钝角三角形和直角三角
形纸片各一个.
(1) 你能分别画出这三个三角形的三条角平分线吗?
(2) 你能用折纸的办法得到它们吗?
(3) 在每个三角形中,这三条角平分线之间有怎样的
位置关系 ?
做一做
三角形的三条角平分线交于同一点.
三角形角平分线的性质
解:∵AD是△ABC的角平分线,∠BAC=68°,
∴∠DAC=∠BAD=34°.
在△ABD中,
∠B+∠ADB+∠BAD=180°,
∴∠ADB=180°-∠B-∠BAD
=180°-36°-34°=110°.
例2 如图,在△ABC中,∠BAC=68°,∠B=36°,AD是△ABC的一条角平分线,求∠ADB的度数.
A
1.AD是ΔABC的角平分线(如图),那么
∠BAC= ∠BAD;
2.AE是ΔABC的中线(如图),那么
BC= BE.
当堂练习
2
2
3.如图,在△ABC中, ∠1=∠2,G为AD中点,延长BG交
AC于E,F为AB上一点,CF交AD于H,判断下列说法
的正误.
(1)AD是△ABE的角平分线( )
(2)BE是△ABD边AD上的中线( )
(3)BE是△ABC边AC上的中线( )
×
×
√
4.在ΔABC中,CD是中线,已知BC-AC=5cm,ΔDBC
的周长为25cm,求ΔADC的周长.
解:∵CD是△ABC的中线,
∴BD=AD,
∴△DBC的周长=BC+BD+CD=25cm,
则BD+CD=25-BC.
∴△ADC的周长=AD+CD+AC
=BD+CD+AC
=25-BC+AC
=25-(BC-AC)=25-5=20cm.
5.如图,AE是 △ABC的角平分线.已知∠B=45°,
∠C=60°,求∠BAE和∠AEB的度数.
解:∵AE是△ABC的角平分线,
∵ ∠BAC+∠B+∠C=180°,
∴∠BAC=180°-∠B-∠C=180°-45°-60°=75°,∴∠BAE=37.5°.
∵∠AEB=∠CAE+∠C,∠CAE=∠BAE=37.5°,
∴∠AEB=37.5°+60°=97.5°.
三角形中几条重要线段
课堂小结
角平分线:平分内角且与三角形对边相交的线段.
中线:连接三角形的顶点与对边中点的线段.
1 认识三角形
导入新课
讲授新课
当堂练习
课堂小结
第4课时 三角形的高
第四章 三角形
学习目标
1.认识三角形的高,能画任意三角形的高,了解
三角形三条高所在直线交于一点;(重点)
2. 学会用数学知识解决实际问题的能力,发展应
用和自主探究意识,培养学生的动手实践能力,
与合作精神,树立学好数学的信心.(难点)
你还记得 “过一点画已知直线的垂线” 吗?
放、
靠、
过、
画.
思考:过三角形的一个顶点,你能画出它的对边的垂线吗?
复习导入
导入新课
三角形的高的定义
A
从三角形的一个顶点,
B
C
向它的对边
所在直线作垂线,
顶点
和垂足
之间的线段
叫作三角形的高线,
简称三角形的高.
如右图, 线段AD是BC边上的高.
讲授新课
思考:你还能画出一条高来吗?
一个三角形有三个顶点,应该有三条高.
(1) 你能画出这个三角形的三条高吗?
(2) 这三条高之间有怎样的位置关系?
(3) 锐角三角形的三条高是在三角
形的内部还是外部?
锐角三角形的三条高交于同一点;
锐角三角形的三条高都在三角形的内部.
锐角三角形的三条高
如图所示;
直角三角形的三条高
(1) 画出直角三角形的三条高,
AB
BC
它们有怎样的位置关系?
直角三角形的三条高交于直角顶点.
BD
钝角三角形的三条高
(1) 你能画出钝角三角形的三条
高吗?
D
E
F
BF
CE
AD
A
B
C
D
F
(3)钝角三角形的三条高
交于一点吗?
(4)它们所在的直线交于
一点吗?
O
E
钝角三角形的三条高
不相交于一点;
钝角三角形的三条高所在直线交于一点.
例1 作△ABC的边AB上的高,下列作法中,正确的是( )
典例精析
方法总结:三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.
D
例2 如图所示,在△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,且AD=4,若点P在边AC上移动,则BP的最小值为____.
例3 如图,已知AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.
解:∵AD是△ABC的角平分线,∠BAC=60°,
∴∠DAC=∠BAD=30°.
∵CE是△ABC的高,∠BCE=40°,
∴∠B=50°,
∴∠ADB=180°-∠B-∠BAD
=180°-30°-50°=100°.
当堂练习
2. 如果一个三角形的三条高的交点恰是三角形的一个顶
点,那么这个三角形是( )
A.锐角三角形 B.直角三角形
C.钝角三角形 D.锐角三角形
B
D
3.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B=_______.
50°
4.如图,在△ABC中,AD是△ABC的高,AE是
△ABC的角平分线,已知∠BAC=82°,∠C=40°,
求∠DAE的大小.
解: ∵ AD是△ABC的高,
∴∠ADC=90°.
∵ ∠ADC+∠C+∠DAC=180°,
∴ ∠DAC=180°-(∠ADC+∠C )
=180°-90°-40°=50°.
∵AE是△ABC的角平分线,且∠BAC=82°,
∴∠CAE=41°,
∴∠DAE=∠DAC-∠CAE=50°-41°= 9°.
三角形的高
课堂小结
锐角三角形的三条高
都在三角形的内部.
高的定义
高的性质
直角三角形的三条高
交于直角顶点.
钝角三角形的三条高
所在直线交于一点.
2 图形的全等
导入新课
讲授新课
当堂练习
课堂小结
第四章 三角形
1.了解全等形及全等三角形的概念,掌握全等三
角形的表示方法,理解和掌握全等三角形的性质;
(重点)
2.了解对应边和对应角的概念,能准确找到全等
三角形对应边和对应角;(难点)
3.学生通过观察、发现生活中的全等形和实际操作
中获得全等三角形的体验,在探索和运用全等三
角形性质的过程中感受到数学的乐趣.
学习目标
导入新课
观察与思考
下列各组图形的形状与大小有什么特点?
(1)
(2)
(3)
(4)
(5)
讲授新课
问题1:观察思考:每组中的两个图形有什么特点?
① ② ③
问题2:观察思考:每组中的两个图形有什么特点?
④ ⑤
归纳总结
全等图形定义:
能够完全重合的两个图形叫做全等图形.
全等形性质:
如果两个图形全等,它们的形状和大小一定都相等.
下面哪些图形是全等图形?
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
大小、形状完全相同
像上图一样,把△ABC叠到△DEF上,能够完全重合的两个三角形,叫作全等三角形.
把两个全等的三角形重叠到一起时,重合的顶点叫作对应顶点,重合的边叫作对应边,重合的角叫作对应角.
你能指出上面两个全等三角形的对应顶点、对应边、对应角吗?
△ABC≌△FDE
注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.
全等的表示方法
“全等”用符号“≌”表示,读作“全等于”.
例1:如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个三角形的对应角.
典例精析
解:△BOD与△COE的对应边为:
BO与CO,OD与OE,BD与CE;
△ADO与△AEO的对应角为:
∠DAO与∠EAO,∠ADO与∠AEO,
∠AOD与∠AOE.
找一找下列全等图形的对应元素?
A
B
C
D
F
请你利用自制的一对全等三角形拼出有公共顶点或公共边或公共角的图形.试用全等符号表示它们,分析每个图形,找准对应边、对应角.
1.有公共边
寻找对应边、对应角有什么规律?
探究归纳
1. 有公共边,则公共边为对应边;
2. 有公共角(对顶角),则公共角(对顶角)为对应角;
3.最大边与最大边(最小边与最小边)为对应边;
最大角与最大角(最小角与最小角)为对应角;
4. 对应角的对边为对应边;对应边的对角为对应角.
2.有公共点
总结归纳
A
B
C
E
D
F
∵△ABC≌△DEF(已知),
∴AB=DE, AC=DF,BC=EF(全等三角形对
应边相等),
∠A=∠D, ∠B=∠E, ∠C=∠F(全等三角形对应角相等).
全等三角形的对应边相等;
全等三角形的对应角相等.
全等的性质
∵△ABC≌△FDE
∴A B=F D,A C=F E,B C=D E(全等三角形对应边相等)
∠A=∠F,∠B=∠D,∠C=∠E(全等三角形对应角相等)
全等三角形的性质的几何语言
试一试:
如图,△ABC与△ADC全等,请用数学符号表示出
这两个三角形全等,并写出相等的边和角.
解:△ABC≌△ADC;
相等的边为:AB=AD,AC=AC,BC=DC;
相等的角为:∠BAC=∠DAC,∠B=∠D,∠ACB=∠ACD.
例2 如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF的长.
解:∵△ABC≌△DEF,∠A=70°,
∠B=50°,BF=4,EF=7,
∴∠DEF=∠B=50°,BC=EF=7,
∴CF=BC-BF=7-4=3.
例3 如图,△EFG≌△NMH,EF=2.1cm,EH=1.1cm,NH=3.3cm.
(1)试写出两三角形的对应边、对应角;
解:(1)对应边有EF和NM,FG和MH,EG和NH;
对应角有∠E和∠N, ∠F和∠M, ∠EGF和∠NHM.
(2)求线段NM及HG的长度;
(3)观察图形中对应线段的数量或位置关系,试提出一个正确的结论并证明.
解:∵ △EFG≌△NMH,
∴NM=EF=2.1cm,
EG=NH=3.3cm.
∴HG=EG –EH=3.3-1.1=2.2(cm).
解:结论:EF∥NM
证明: ∵ △EFG≌△NMH,
∴ ∠E=∠N. ∴ EF∥NM.
当堂练习
1.能够 的两个图形叫做全等形.两个三角形 重合时,互相 的顶点叫做对应顶点.记两个全等三角形时,通常把表示 顶点的字母写在 的位置上.
重合
重合
重合
相对应
2.如图,△ABC≌ △ADE,若∠D=∠B,
∠C= ∠AED,则∠DAE= ; ∠DAB= .
∠BAC
∠EAC
3.如图,△ABC≌△BAD,如果AB=5cm, BD=
4cm,AD=6cm,那么BC的长是 ( )
A.6cm B.5cm C.4cm D.无法确定
4.在上题中,∠CAB的对应角是 ( )
A.∠DAB B.∠DBA C.∠DBC D.∠CAD
A
B
5.如图,△ABC≌△AED,AB是△ABC的最大边,AE是△AED的最大边, ∠BAC 与∠ EAD是对应角,且∠BAC=25°,∠B= 35°,AB=3cm,BC=1cm,求出∠E, ∠ ADE的度数和线段DE,AE 的长度.
解:∵ △ABC≌△AED,(已知)
∴∠E= ∠B= 35°,(全等三角形对应角
相等)
∠ADE=∠ACB=180°-25°-35°
=120 °, (全等三角形对应角相等)
DE=BC=1cm, AE=AB=3cm.
(全等三角形对应边相等)
摆一摆:利用平移,翻折,旋转等变换所得到的三角形与原三角形组成各种各样新的图形,你还能拼出什么不同的造型吗?比一比看谁更有创意!
拼接的图形展示
全等三角形
全等形:能够完全重合的两个图形叫作全等形.
课堂小结
全等三角形:能够完全重合的两个三角形叫作全等三角形.
全等三角形的性质
全等三角形的对应边相等
全等三角形的对应角相等
3 探索三角形全等的条件
导入新课
讲授新课
当堂练习
课堂小结
第四章 三角形
第1课时 利用“边边边”判定三角形全等
1.了解三角形的稳定性,掌握三角形全等的“SSS”
判定,并能应用它判定两个三角形是否全等;
(重点)
2.由探索三角形全等条件的过程,体会由操作、归
纳获得数学结论的过程.(难点)
学习目标
1. 什么叫全等三角形?
能够重合的两个三角形叫 全等三角形.
3.已知△ABC ≌△DEF,找出其中相等的边与角.
①AB=DE
③ CA=FD
② BC=EF
④ ∠A= ∠D
⑤ ∠B=∠E
⑥ ∠C= ∠F
2. 全等三角形有什么性质?
全等三角形的对应边相等,对应角相等.
导入新课
如果只满足这些条件中的一部分,那么能保证△ABC≌△DEF吗?
想一想:
即:三条边分别相等,三个角分别相等的两个三角形全等.
探究活动1:一个条件可以吗?
(1)有一条边相等的两个三角形
不一定全等
(2)有一个角相等的两个三角形
不一定全等
结论:
有一个条件相等不能保证两个三角形全等.
讲授新课
有两个条件对应相等不能保证三角形全等.
不一定全等
探究活动2:两个条件可以吗?
不一定全等
不一定全等
结论:
(1)有两个角对应相等的两个三角形
(2)有两条边对应相等的两个三角形
(3)有一个角和一条边对应相等的两个三角形
结论:三个内角对应相等的三角形不一定全等.
(1)有三个角对应相等的两个三角形
探究活动3:三个条件可以吗?
(2)三边对应相等的两个三角形会全等吗?
先任意画出一个△ABC,再画出一个△A′B′C′ ,使A′B′= AB ,B′C′ =BC, A′ C′ =AC.把画好的△A′B′C′剪下,放到△ABC上,他们全等吗?
A ′
B′
C′
想一想:作图的结果反映了什么规律?你能用文字语言和符号语言概括吗?
作法:
(1)画B′C′=BC;
(2)分别以B',C'为圆心,线段AB,AC长为半径画圆,两弧相交于点A';
(3)连接线段A'B',A 'C '.
文字语言:三边对应相等的两个三角形全等.
(简写为“边边边”或“SSS”)
“边边边”判定方法
在△ABC和△ DEF中,
∴ △ABC ≌△ DEF(SSS).
几何语言:
例1 如图,有一个三角形钢架,AB =AC ,AD 是连接点A 与BC 中点D 的支架.是说明:(1)△ABD ≌△ACD .
解题思路:
先找隐含条件
公共边AD
再找现有条件
AB=AC
最后找准备条件
BD=CD
D是BC的中点
证明:∵ D 是BC中点,
∴ BD =DC.
在△ABD 与△ACD 中,
∴ △ABD ≌ △ACD ( SSS ).
准备条件
指明范围
摆齐根据
写出结论
(2)∠BAD = ∠CAD.
由(1)得△ABD≌△ACD ,
∴ ∠BAD= ∠CAD.
(全等三角形对应角相等)
如图, C是BF的中点,AB =DC,AC=DF.
试说明:△ABC ≌ △DCF.
在△ABC 和△DCF中,
AB = DC,
∴ △ABC ≌ △DCF
(已知)
(已证)
AC = DF,
BC = CF,
解:∵C是BF中点,
∴BC=CF.
(已知)
(SSS).
已知: 如图,点B、E、C、F在同一直线上 , AB = DE ,
AC = DF ,BE = CF .
试说明: (1)△ABC ≌ △DEF;
(2)∠A=∠D.
解:
∴ △ABC ≌ △DEF ( SSS ).
在△ABC 和△DEF中,
AB = DE,
AC = DF,
BC = EF,
(已知)
(已知)
(已证)
∵ BE = CF,
∴ BC = EF.
∴ BE+EC = CF+CE,
(1)
(2)∵ △ABC ≌ △DEF(已证),
∴ ∠A=∠D(全等三角形对应角相等).
E
解:∵D是BC的中点,
∴BD=CD.
在△ABD与△ACD中,
AB=AC(已知),
BD=CD(已证),
AD=AD(公共边),
∴△ABD≌△ACD(SSS),
例2 如图, △ABC是一个钢架,AB=AC,AD是连接A与BC中点D的支架,试说明:∠B=∠C.
∴∠B=∠C.
典例精析
动手做一做
1.将三根木条用钉子钉成一个三角形木架.
2.将四根木条用钉子钉成一个四边形木架.
洋葱微视频(单击)
请同学们看看:三角形和四边形的模型,扭一扭模型,它们的形状会改变吗?
不会
会
1.三角形具有稳定性.
2.四边形没有稳定性.
发现
理解“稳定性”
“只要三角形三条边的长度固定,这个三角形的形状和大小也就完全确定,三角形的这种性质叫做“三角形的稳定性”.
这就是说,三角形的稳定性不是“拉得动、拉不动”的问题,其实质应是“三角形边长确定,其形状和大小就确定了”.
你能举出一些现实生活中的应用了三角形稳定性的例子吗?
△ABC≌ (SSS).
(1)如图,AB=CD,AC=BD,△ABC和△DCB是否全等?试说明理由.
解: △ABC≌△DCB.
理由如下:
AB = CD,
AC = BD,
=
(2)如图,D、F是线段BC上的两点,
AB=CE,AF=DE,要使△ABF≌△ECD ,
还需要条件_________________.
当堂练习
BC
CB
△DCB
BF=CD
1.填空题:
A
E
或 BD=FC
2.如图,桥梁的斜拉钢索是三角形的结构,主要是为了 ( )
A.节省材料,节约成本
B.保持对称
C.利用三角形的稳定性
D美观漂亮
C
3. 如图,AB=AC,DB=DC,请说明∠B =∠C成立的理由.
A
B
C
D
在△ABD和△ACD中,
AB=AC (已知),
DB=DC(已知),
AD=AD(公共边),
∴△ABD≌△ACD (SSS),
解:连接AD.
∴ ∠B =∠C (全等三角形的对应角相等).
4.已知AC=AD,BC=BD,试说明:AB是∠DAC的平分线.
AC=AD( ),
BC=BD( ),
AB=AB( ),
∴△ABC≌△ABD( ),
∴∠1=∠2
∴AB是∠DAC的平分线
(全等三角形的对应角相等),
已知
已知
公共边
SSS
(角平分线定义).
解:在△ABC和△ABD中,
三边分别相等的两个三角形
三角形全等的“SSS”判定:三边分别相等的两个三角形全等.
课堂小结
三角形的稳定性:三角形三边长度确定了,这个三角形的形状和大小就完全确定了.
3 探索三角形全等的条件
导入新课
讲授新课
当堂练习
课堂小结
第四章 三角形
第2课时 利用“角边角”“角角边”
判定三角形全等
情境引入
1.探索并正确理解三角形全等的判定方法“ASA”和“AAS”.
2.会用三角形全等的判定方法“ASA”和“AAS”证明两个三角形全等.
导入新课
如图,小明不慎将一块三角形玻璃打碎为三块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗? 如果可以,带哪块去合适?
你能说明其中理由吗?
情境引入
讲授新课
问题:如果已知一个三角形的两角及一边,那么有几种可能的情况呢?
图一
图二
“两角及夹边”
“两角和其中一角的对边”
它们能判定两个三角形全等吗?
作图探究
先任意画出一个△ABC,再画一个△A ′ B ′ C ′ , 使A ′ B ′ =AB, ∠A ′ =∠A, ∠B ′ =∠B (即使两角和它们的夹边对应相等).把画好的△A ′ B ′ C ′剪下,放到△ABC上,它们全等吗?
A′
B′
C′
E
D
作法:
(1)画A'B'=AB;
(2)在A'B'的同旁画∠DA'B '=∠A,∠EB'A '=∠B,A'D,B'E相交于点C'.
想一想:从中你能发现什么规律?
“角边角”判定方法
文字语言:有两角和它们夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”).
几何语言:
例1 已知:∠ABC=∠DCB,∠ACB= ∠DBC,
试说明:△ABC≌△DCB.
∠ABC=∠DCB(已知),
BC=CB(公共边),
∠ACB=∠DBC(已知),
解:
在△ABC和△DCB中,
∴△ABC≌△DCB(ASA ).
判定方法:两角和它们的夹边对应相等两个三角形全等.
例2 如图,点D在AB上,点E在AC上,AB=AC, ∠B=∠C,试说明:AD=AE.
分析:证明△ACD≌△ABE,就可以得出AD=AE.
解:在△ACD和△ABE中,
∠A=∠A(公共角 ),
AC=AB(已知),
∠C=∠B (已知 ),
∴ △ACD≌△ABE(ASA),
∴AD=AE.
问题:若三角形的两个内角分别是60°和45°,且45°所对的边为3cm,你能画出这个三角形吗?
合作探究
思考:
这里的条件与1中的条件有什么相同点与不同点?你能将它转化为1中的条件吗?
两角分别相等且其中一组对角的对边相等的两个三角形全等.简写成“角角边”或“AAS”.
归纳总结
例3:在△ABC和△DEF中,∠A=∠D,∠B= ∠E,BC=EF.求说明:△ABC≌△DEF.
∠B=∠E,
BC=EF,
∠C=∠F.
解:
在△ABC中,∠A+∠B+∠C=180°.
∴△ABC≌△DEF(ASA ).
∴ ∠C=180°-∠A-∠B.
同理 ∠F=180°-∠D-∠E.
又 ∠A=∠D,∠B= ∠E,
∴ ∠C=∠F.
在△ABC和△DEF中,
例4 如图,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试说明:(1)△BDA≌△AEC;
解:(1)∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,
∴∠ABD+∠BAD=90°.
∵AB⊥AC,
∴∠BAD+∠CAE=90°,
∠ABD=∠CAE.
在△BDA和△AEC中,
∠ADB=∠CEA=90°,
∠ABD=∠CAE,
AB=AC,
∴△BDA≌△AEC(AAS).
(2)DE=BD+CE.
∴BD=AE,AD=CE,
∴DE=DA+AE=BD+CE.
解:∵△BDA≌△AEC,
方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.
1. △ABC和△DEF中,AB=DE,∠B=∠E,要使△ABC≌△DEF ,则下列补充的条件中错误的是( )
A.AC=DF B.BC=EF
C.∠A=∠D D.∠C=∠F
2. 在△ABC与△A′B′C′中,已知∠A=44°,∠B=67°,∠C′=69° ,∠A′=44°,且AC=A′C′,那么这两个三角形( )
A.一定不全等 B.一定全等
C.不一定全等 D.以上都不对
当堂练习
A
B
3. 如图,已知∠ACB=∠DBC,∠ABC=∠CDB,判别下面的两个三角形是否全等,并说明理由.
不全等,因为BC虽然是公共边,但不是对应边.
A
B
C
D
E
F
4.如图∠ACB=∠DFE,BC=EF,那么应补充一个条件 ,才能使△ABC≌△DEF (写出一个即可).
∠B=∠E
或∠A=∠D
或 AC=DF
(ASA)
(AAS)
(SAS)
AB=DE可以吗?
×
AB∥DE
5.已知:如图, AB⊥BC,AD⊥DC,∠1=∠2,
试说明:AB=AD.
解: ∵ AB⊥BC,AD⊥DC,
∴ ∠ B=∠D=90 °.
在△ABC和△ADC中,
∴ △ABC≌△ADC(AAS),
∴AB=AD.
学以致用:如图,小明不慎将一块三角形模具打碎为三块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗? 如果可以,带哪块去合适?你能说明其中理由吗?
答:带1去,因为有两角且夹边相等的两个三角形全等.
能力提升:已知:如图,△ABC ≌△A′B′C′ ,AD、A′ D′ 分别是△ABC 和△A′B′C′的高.试说明AD= A′D′ ,并用一句话说出你的发现.
解:因为△ABC ≌△A′B′C′ ,
所以AB=A'B'(全等三角形对应边相等),∠ABD=∠A'B'D'(全等三角形对应角相等).
因为AD⊥BC,A'D'⊥B'C',所以∠ADB=∠A'D'B'.
在△ABD和△A'B'D'中,
∠ADB=∠A'D'B'(已证),
∠ABD=∠A'B'D'(已证),
AB=AB(已证),
所以△ABD≌△A'B'D'.所以AD=A'D'.
全等三角形对应边上的高也相等.
课堂小结
边角边
角角边
内容
有两角及夹边对应相等的两个三角形全等(简写成 “ASA”)
应用
为证明线段和角相等提供了新的证法
注意
注意“角角边”、“角边角”中两角与边的区别
3 探索三角形全等的条件
导入新课
讲授新课
当堂练习
课堂小结
第四章 三角形
第3课时 利用“边角边”判定三角形全等
情境引入
1.探索并正确理解三角形全等的判定方法“SAS”.(重点)
2.会用“SAS”判定方法证明两个三角形全等及进行简单的应用.(重点)
3.了解“SSA”不能作为两个三角形全等的条件.(难点)
1.回顾三角形全等的判定方法1
三边对应相等的两个三角形全等(可以简写为
“边边边”或“SSS”).
导入新课
当两个三角形满足六个条件中的3个时,有四种情况:
除了SSS外,还有其他情况吗?
三角 ×
三边 √
两边一角 ?
两角一边
讲授新课
问题:已知一个三角形的两条边和一个角,那么这两条边与这一个角的位置上有几种可能性呢?
“两边及夹角”
“两边和其中一边的对角”
它们能判定两个三角形全等吗?
尺规作图画出一个△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A (即使两边和它们的夹角对应相等). 把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?
探究活动1:SAS能否判定的两个三角形全等
作法:
(1)画∠DA'E=∠A;
(2)在射线A'D上截取A'B'=AB,在射线A'E上截取A'C'=AC;
(3)连接B'C '.
思考:
① △A′ B′ C′ 与 △ABC 全等吗?如何验证?
②这两个三角形全等是满足哪三个条件?
在△ABC 和△ DEF中,
∴ △ABC ≌△ DEF(SAS).
文字语言:两边和它们的夹角分别相等的两个三角形全等
(简写成“边角边”或“SAS ”).
“边角边”判定方法
几何语言:
必须是两边“夹角”
例1 :如果AB=CB ,∠ ABD= ∠ CBD,那么
△ ABD 和△ CBD 全等吗?
分析:
△ ABD ≌△ CBD.
AB=CB(已知),
∠ABD= ∠CBD(已知),
?
BD=BD(公共边).
典例精析
解:
在△ABD 和△ CBD中,
AB=CB(已知),
∠ABD= ∠CBD(已知),
∴ △ ABD≌△CBD ( SAS).
BD=BD(公共边),
变式1:
已知:如图,AB=CB,∠1= ∠2.
试说明:(1) AD=CD;
(2) DB 平分∠ ADC.
在△ABD与△CBD中,
解:
∴△ABD≌△CBD(SAS),
∴AD=CD,∠3=∠4,
∴DB 平分∠ ADC.
A
B
C
D
变式2:
已知:AD=CD,DB平分∠ADC ,试说明:∠A=∠C.
1
2
在△ABD与△CBD中,
解:
∴△ABD≌△CBD(SAS),
∴∠A=∠C.
∵DB 平分∠ ADC,
∴∠1=∠2.
例2:已知:如图, AB=DB,CB=EB,∠1=∠2,
试说明:∠A=∠D.
解:∵ ∠1=∠2(已知),
∴∠1+∠DBC= ∠2+ ∠DBC(等式的性质),
即∠ABC=∠DBE.
在△ABC和△DBE中,
AB=DB(已知),
∠ABC=∠DBE(已证),
CB=EB(已知),
∴△ABC≌△DBE(SAS).
∴ ∠A=∠D(全等三角形的对应角相等).
想一想:
如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC.固定住长木棍,转动短木棍,得到△ABD.这个实验说明了什么?
B
A
C
D
△ABC和△ABD满足AB=AB ,AC=AD,
∠B=∠B,但△ABC与△ABD不全等.
探究活动2:SSA能否判定两个三角形全等
画一画:
画△ABC 和△DEF,使∠B =∠E =30°, AB =DE
=5 cm ,AC =DF =3 cm .观察所得的两个三角形是否全等?
?
A
B
M
C
D
例3 下列条件中,不能证明△ABC≌△DEF的是( )
典例精析
A.AB=DE,∠B=∠E,BC=EF
B.AB=DE,∠A=∠D,AC=DF
C.BC=EF,∠B=∠E,AC=DF
D.BC=EF,∠C=∠F,AC=DF
解析:要判断能不能使△ABC≌△DEF,应看所给出的条件是不是两边和这两边的夹角,只有选项C的条件不符合,故选C.
C
方法总结:判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等.解题时要根据已知条件的位置来考虑,只具备SSA时是不能判定三角形全等的.
当堂练习
1.在下列图中找出全等三角形进行连线.
2.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需要增加的条件是 ( )
A.∠A=∠D B.∠E=∠C
C.∠A=∠C D.∠ABD=∠EBC ?
D
3.如图,点E、F在AC上,AD//BC,AD=CB,AE=CF.
试说明:△AFD≌△CEB.
解:
∵AD//BC,
∴ ∠A=∠C,
∵AE=CF,
在△AFD和△CEB中,
AD=CB
∠A=∠C
AF=CE
∴△AFD≌△CEB(SAS).
∴AE+EF=CF+EF,
即 AF=CE.
(已知),
(已证),
(已证),
4.已知:如图,AB=AC,AD是△ABC的角平分线,
试说明:BD=CD.
解:
∵AD是△ABC的角平分线,
∴ ∠BAD=∠CAD,
在△ABD和△ACD中,
AB=AC
∠BAD=∠CAD
AD=AD
∴△ABD≌△ACD(SAS).
(已知),
(已证),
(已证),
∴ BD=CD.
已知:如图,AB=AC, BD=CD,
试说明: ∠ BAD= ∠ CAD.
变式1
解:
∴ ∠BAD=∠CAD,
在△ABD和△ACD中,
∴△ABD≌△ACD(SSS).
已知:如图,AB=AC, BD=CD,E为AD上一点,
试说明: BE=CE.
变式2
解:
∴ ∠BAD=∠CAD,
在△ABD和△ACD中,
∴ BE=CE.
在△ABE和△ACE中,
∴△ABD≌△ACD(SSS).
∴△ABE≌△ACE(SAS).
5.如图,已知CA=CB,AD=BD, M,N分别是CA,CB的中点,试说明:DM=DN.
在△ABD与△CBD中
解:
∴△ACD≌△BCD(SSS)
能力提升
连接CD,如图所示;
∴∠A=∠B
又∵M,N分别是CA,CB的中点,
∴AM=BN
在△AMD与△BND中
∴△AMD≌△BND(SAS)
∴DM=DN.
课堂小结
边角边
内容
有两边及夹角对应相等的两个三角形全等(简写成 “SAS”)
应用
为证明线段和角相等提供了新的证法
注意
1.已知两边,必须找“夹角”
2. 已知一角和这角的一夹边,必须找这角的另一夹边
4 用尺规作三角形
导入新课
讲授新课
当堂练习
课堂小结
第四章 三角形
学习目标
1.已知两边及其夹角会作三角形;(重点,难点)
2.已知两角及其夹边会作三角形.(重点,难点)
3.已知三边会作三角形.(重点,难点)
豆豆书上的三角形被墨迹污染了一部分,他想在作业本上画出一个与书上完全一样的三角形,他该怎么办?
你能帮他画出来吗?
导入新课
情境导入
1.尺规作图的工具是直尺和圆规.
2.我们已经会用尺规作一条线段等
于已知线段、作一个角等于已知角.
复习巩固
已知:∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB.
C
D
O′
B′
A′
D′
C′
作法与提示:
3.作一个角等于已知角.
思考:如何利用尺规作出一个三角形与已 知三角形全等?
已知三角形的两边及其夹角,求作这个三角形.
求作:△ABC,使BC=a AB=c, ∠ABC= .
讲授新课
做一做
(2)以B为顶点,以BC为
一边作 .
B
C
(3)在射线BD上截取线
段BA=c;
(4)连接AC.△ABC就是
所求作的三角形.
A
D
D
A
请按照给出的作法作出相应的图形.
作法 示范
(1)作一条线段BC=a;
将你所作的三角形与同伴作出的三角形进行比较,它们全等吗?为什么?
两边及它们的夹角对应相等的两个三角形全等(SAS).
已知三角形的两边及夹角,求作这个三角形.
回顾刚才作三角形的顺序
边
边
夹角
夹角
边
边
还有没有其他的作法?
已知:线段a, c, ∠α ,求作:△ABC,使BC=a,AB= c, ∠ABC =∠α.
B
M
D
E
D′
E′
N
(1)作∠MBN= ∠α;
作法2
B
M
D′
E′
N
C
A
(2)在射线BM上截取BC=a,
在射线BN上截取BA=c;
作法2
a
c
B
M
D′
E′
N
C
A
(3)连接AC,则△ABC为所求
作的三角形.
作法2
a
b
求作:△ABC,使∠A= ,∠B= ,AB=c.
已知: , ,线段c.
例 已知三角形的两角及其夹边,求作这个三角形.
典例精析
请按照给出的作法作出相应的图形.
A
F
(2)在射线AF上截取线段AB=c;
C
D
B
(3)以B为顶点,以BA为一边,
作 ,BE交AD于点C.
△ABC就是所求作的三角形.
E
作法 图形
已知三角形的三条边,求作这个三角形.
已知:线段 a,b,c.
求作:△ABC,使AB=c,AC=b,BC=a.
(1)作一条线段BC=a;
(2)分别以B,C为圆心,以c,b为
半径画弧,两弧交于A点;
(3)连接AB,AC,
a
b
c
B
C
A
作法:
当堂练习
△ABC就是所求作的三角形.
如图,在△ABC中,BC=5厘米,AC=3厘米, AB=3.5厘米,∠B=36°,∠C=44°,请你选择适当数据,画与△ABC全等的三角形(用三种方法画图,不写作法,但要从所画的三角形中标出用到的数据)
拓展:
B
M
C
(2)以C为圆心, 3厘米为半径画弧;
(3)以B为圆心,3.5厘米为半径画弧,
(4)连接AB,AC,
(1)作线段BC=5厘米;
A
作法:
则△ABC为所求作的三角形.
两弧相交于点A;
经过前面的实践,我们如何来分析作图题.
1.假设所求作的图形已经作出,并在草稿纸上作
出草图;
2.在草图上标出已给的边、角的对应位置;
3.从草图中首先找出基本图形,由此确定作图的
起始步骤;
4.在3的基础上逐步向所求图形扩展.
课堂小结
(1)作∠......=∠...... ;
(2)在......上截取,使......= ...... ;
(3)以......为顶点,以......为一边,作∠...... =∠ ...... ;
(4)作一条线段...... = ...... ;
(5)连接...... ,或连接......交......于点...... ;
(6)分别以......, ......为圆心,以......, ......为半径画弧,
两弧交于......点;
......
你知道的常用作图语言有哪些呢?
5 利用三角形全等测距离
导入新课
讲授新课
当堂练习
课堂小结
第四章 三角形
1.复习并归纳三角形全等的判定及性质;
2.能够根据三角形全等测定两点间的距离,并解
决实际问题.(重点,难点)
学习目标
1.要证明两个三角形全等应有哪些必要条件?
(1)“SSS”:三边对应相等的两个三角形全等.
(2)“ASA”:两角和它们的夹边对应相等的两个
三角形全等.
(3)“AAS”:两角和其中一角的对边对应相等的
两个三角形全等.
(4)“SAS”:两边和它们的夹角对应相等的两个
三角形全等.
导入新课
复习引入
2.两个全等的三角形有哪些性质?
(1)全等三角形的对应边相等;
(2)全等三角形的对应角相等.
这位聪明的八路军战士的方法如下:
从战士的作法中你能发现哪些相等的量?
讲授新课
智慧炸碉堡的故事
A
C
B
D
你能用所学的数学知识说明BC=DC吗?
A
B
D
如何求未知线段?
途径:利用全等三角形的性质
关键:构造全等三角形
例 如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,但绳子不够长,你能帮小明设计一个方案,解决此问题吗?
1.说出你的设计方案;
2.你能用所学知识说明你设计方案的
理由是什么吗?
典例精析
先在地上取一个可以直接到达点A和B的点C,连接AC并延长到D,使AC=CD,连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,测得DE的长度就是A、B 间的距离.
C
D
E
·
·
·
1.你能设计出其他的方案来吗?(构建全等三角形)
2.已知条件是什么?结论又是什么?
3.你能说明设计出方案的理由吗?
B
·
C
D
E
在△ABC与△DEC中,已知:AB⊥BE,DE⊥BE,BE=EC,结论:AB=DE.
·
∴AB = CD.
方
案
二
1
2
解:连结BD,∵AD∥CB,
∴∠1=∠2
在△ABD与△CDB中
如图,先作三角形ABD,再找一点C,使BC∥AD,并使AD=BC,连结CD,量CD的长即得AB的长
B
C
D
A
∴△ABD≌△CDB(SAS)
如图,找一点D,使AD⊥BD,延长AD至C,使CD=AD,连结BC,量BC的长即得AB的长.
B
A
D
C
∴ △ADB≌△CDB(SAS)
∴ BA = BC
方
案
三
1.如图,工人师傅要计算一个圆柱形容器的容积,需要测量其内径.现在有两根同样长的木棒、一条橡皮绳和一把带有刻度的直尺,你能想法帮助他完成吗?
·
中点C
A
B
试一试
2.一个人站在路中央,先往左看了看,又往右看了看,然后说知道纪念碑相当于5层楼那么高,你知道他是怎么做到的吗?
如图要测量河两岸相对的两点A、B的距离,先在AB 的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长就是AB的长.判定△EDC≌△ABC的理由是( )
A.SSS B.ASA C.AAS D.SAS
B
当堂练习
2.山脚下有A、B两点,要测出A、B两点间的距离.
在地上取一个可以直接到达A、B点的点O,连接
AO并延长到C,使AO=CO;连接BO并延长到D,
使BO=DO,连接CD.可以证△ABO≌△CDO,得
CD=AB,因此,测得CD的长就是AB的长.判定
△ABO≌△CDO的理由是( )
A.SSS
B.ASA
C.AAS
D.SAS
D
3.如图所示小明设计了一种测工件内径AB的卡钳,问:在卡钳的设计中,AO、BO、CO、DO 应满足下列的哪个条件?( )
A.AO=CO
B.BO=DO
C.AC=BD
D.AO=CO且BO=DO
D
4.如图所示,已知AC=DB,AO=DO,CD=100 m,则A,B两点间的距离( )
A.大于100 m B.等于100 m
C.小于100 m D.无法确定
C
5.如图,公园里有一条“Z”字型道路ABCD,其中AB∥CD,在AB,BC,CD三段道路旁各有一只小石凳E,M,F,M恰为BC的中点,且E,M,F在同一直线上,在BE道路上停放着一排小汽车,从而无法直接测量B,E之间的距离,你能想出解决的方法吗?请说明其中的道理.
解:因为AB∥CD,所以∠B=∠C.
在△BME和△CMF中,
∠B=∠C,BM=CM,∠BME=∠CMF,
所以△BME≌△CMF(ASA),所以BE=CF.
故只要测量CF即可得B,E之间的距离.
1.知识:
利用三角形全等测距离的目的:变不可测距离为可测
距离.
依据:全等三角形的性质.
关键:构造全等三角形.
2.方法:
(1)延长法构造全等三角形;
(2)垂直法构造全等三角形.
3.数学思想:
树立用三角形全等构建数学模型解决实际问题的思想.
课堂小结