专题十八 原子结构与原子核(解析版)
考点
要求
考点解读及预测
.氢原子光谱 氢原子的能级结构、能级公式
Ⅰ
1.考查方式
从近几年高考题来看,对于选修3-5内容的考查,内容和形式都比较固定,一般第(1)(2)问为选择题和填空题,考查原子和原子核的基本概念和规律.第(3)问计算题是考查碰撞中的动量和能量的综合应用.
2.命题趋势
试题将坚持立足基本概念,贴近教材和教学实际,情境接近生活经历,关注社会问题,亲近自然,体现“从生活走向物理,从物理走向社会”的课程理念.试题关注学科素养,引导学以致用,引导高中教学注重培养学生应用知识解决实际问题的能力.
原子核的组成
Ⅰ
.原子核的衰变 半衰期
Ⅰ
.放射性同位素 放射性的应用与防护
Ⅰ
核力与结合能 质量亏损
Ⅰ
.核反应方程
Ⅰ
裂变反应 聚变反应 链式反应
Ⅰ
一、玻尔理论的理解与计算
1.原子的跃迁条件:hν=E初-E终,适用于光子和原子作用而使原子在各定态之间跃迁的情况.(1)从低能级(n小)高能级(n大)―→吸收能量。hν=En大-En小
(2)从高能级(n大)低能级(n小)―→放出能量。hν=En大-En小
2.两类能级跃迁
(1)自发跃迁:高能级→低能级,释放能量,发出光子。
光子的频率ν==。
(2)受激跃迁:低能级→高能级,吸收能量。
①光照(吸收光子):光子的能量必须恰等于能级差,hν=ΔE。
②实物粒子和原子作用而使原子激发的情况
当实物粒子和原子相碰时,由于实物粒子的动能可全部或部分地被原子吸收,所以只要入射粒子的动能大于或等于原子某两定态能量之差,均可以使原子受激发而向较高能级跃迁,但原子所吸收的能量仍不是任意的,一定等于原子发生跃迁的两个能级间的能量差.
碰撞、加热等:只要入射粒子能量大于或等于能级差即可,E外≥ΔE。
③大于电离能的光子被吸收,将原子电离。
3.谱线条数的确定方法
一个原子和一群原子
氢原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨道时,可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现了.即:一群氢原子处于量子数为n的激发态时,可能辐射出的光谱条数为N==C,而一个氢原子处于量子数为n的激发态上时,最多可辐射出n-1条光谱线.
二 原子核的衰变
1.衰变规律及实质
衰变类型
α衰变
β衰变
衰变方程
X→Y+He
X→Y+e
衰变实质
2个质子和2个中子结合成一个整体射出
中子转化为质子和电子
2H+2n→He
n→H+e
衰变规律
电荷数守恒、质量数守恒
3.确定衰变次数的方法
(1)设放射性元素X经过n次α衰变和m次β衰变后,变成稳定的新元素Y,则表示该核反应的方程为X→Y+nHe+me
根据电荷数守恒和质量数守恒可列方程A=A′+4n,Z=Z′+2n-m
(2)确定衰变次数,因为β衰变对质量数无影响,先由质量数的改变确定α衰变的次数,然后再根据衰变规律确定β衰变的次数.
4.对半衰期的理解
(1)半衰期公式:N余=N原,m余=m原。
(2)半衰期的物理意义:半衰期是表示放射性元素衰变快慢的物理量,同一放射性元素的衰变速率一定,不同的放射性元素半衰期不同,有的差别很大。
(3)半衰期的适用条件:半衰期是一个统计规律,是对大量的原子核衰变规律的总结,对于一个特定的原子核,无法确定何时发生衰变。
三 核反应类型及核反应方程
类型
可控性
核反应方程典例
衰变
α衰变
自发
U→Th+He
β衰变
自发
Th→Pa+e
人工转变
人工控制
N+He→O+H
(卢瑟福发现质子)
He+Be→C+n
(查德威克发现中子)
Al+He→P+n
约里奥·居里夫妇发现放射性同位素,同时发现正电子
P→Si+e
重核裂变
比较容易进行人工
控制
U+n→Ba+Kr+3n
U+n→Xe+Sr+10n
轻核聚变
除氢弹外
无法控制
H+H→He+n
四 关于核能的计算
1.应用质能方程解题的流程图
→→
(1)根据ΔE=Δmc2计算时,Δm的单位是“kg”,c的单位是“m/s”,ΔE的单位是“J”。
(2)根据ΔE=Δm×931.5 MeV计算时,Δm的单位是“u”,ΔE的单位是“MeV”。
(3)根据核子比结合能来计算核能:
原子核的结合能=核子比结合能×核子数。
2.利用质能方程计算核能时,不能用质量数代替质量进行计算.
3.核反应遵守动量守恒定律和能量守恒定律,因此我们可以结合动量守恒定律和能量守恒定律来计算核能.
一、原子核的衰变与半衰期
【典例1】 (2017·全国卷Ⅱ,15)一静止的铀核放出一个α粒子衰变成钍核,衰变方程为U→Th+He,下列说法正确的是( )
A. 衰变后钍核的动能等于α粒子的动能
B. 衰变后钍核的动量大小等于α粒子的动量大小
C. 铀核的半衰期等于其放出一个α粒子所经历的时间
D. 衰变后α粒子与钍核的质量之和等于衰变前铀核的质量
【解析】静止的铀核在α衰变过程中,满足动量守恒的条件,根据动量守恒定律得pTh+pα=0,即钍核的动量和α粒 子的动量大小相等,方向相反,选项B正确;根据Ek=可知,选项A错误;半衰期的定义是统计规律,对于一个α粒子不适用,选项C错误;铀核在衰变过程中,伴随着一定的能量放出,即衰变过程中有一定的质量亏损,故衰变后α粒子与钍核的质量之和小于衰变前铀核的质量,选项D错误。
【答案】 B
二、原子能级与跃迁
【典例2】(2018届高三·第二次全国大联考)预计2018年,我国将完成“北斗三号”18颗全球组网卫星发射,采用星载氢原子钟。如图所示为氢原子的能级图,以下判断正确的是( )
A.大量氢原子从n=3的激发态向低能级跃迁时,最多能辐射出3种不同频率的光子
B.氢原子的核外电子从半径较小的轨道跃迁到半径较大的轨道时,原子的能量减小
C.当氢原子从n=5的能级跃迁到n=3的能级时,要吸收光子
D.从氢原子的能级图可知原子发射光子的频率也是连续的
【思路点拔】解决本题的关键是理解玻尔理论,知道能级间跃迁所满足的规律。
【解析】根据C=3可知,大量氢原子从n=3的激发态向低能级跃迁时,最多能辐射出3种不同频率的光子,选项A正确;氢原子的核外电子从半径较小的轨道跃迁到半径较大的轨道时,原子的能量增大,选项B错误;氢原子从高能级跃迁到低能级时辐射出光子,选项C错误;玻尔理论指出氢原子能级是分立的,结合题图可知,原子发射光子的频率是不连续的,选项D错误。
【答案】A
【规律方法】1.氢原子的能级跃迁
(1)氢原子从低能级向高能级跃迁:吸收一定频率的光子,当光子的能量满足hν=E末-E初时,才能被某一个原子吸收,否则不吸收。
(2)氢原子从高能级向低能级跃迁:以光子的形式向外辐射能量,所辐射的光子能量恰等于发生跃迁时两能级间的能量差。
2.电离
当光子能量大于等于原子所处的能级的能量值的绝对值时,也可以被氢原子吸收,使氢原子电离,多余的能量作为电子的初动能。
3.光谱线条数
一群氢原子处于量子数为n的激发态时,可能辐射出的光谱线条数为N=。
4.激发跃迁
氢原子还可吸收外来实物粒子的能量而被激发,由于实物粒子的动能可全部或部分地被原子吸收,所以只要入射粒子的能量大于或等于两能级差,均可使原子发生能级跃迁。
5.跃迁时电子动能、原子电势能与总能量变化
当轨道半径减小时,库仑引力做正功,原子电势能减小,电子动能增大,原子总能量减小;反之,轨道半径增大时,原子电势能增大,电子动能减小,原子总能量增大。
三、核反应与核能
【典例3】 (2017·全国Ⅰ卷T17)大科学工程“人造太阳”主要是将氘核聚变反应释放的能量用来发电。氘核聚变反应方程是:H+H―→He+n。已知H的质量为2.0136 u,He的质量为3.0150 u,n的质量为1.0087 u,1 u=931 MeV/c2。氘核聚变反应中释放的核能约为( )
A.3.7 MeV B.3.3 MeV C.2.7 MeV D.0.93 MeV
【思路点拔】本题考查应用爱因斯坦质能方程计算核能。
【解析】氘核聚变反应的质量亏损为Δm=(2×2.0136-3.0150-1.0087)u=0.0035 u,释放的核能为ΔE=Δmc2=0.0035×931 MeV/c2×c2≈3.3 MeV,选项B正确。
【答案】B
【规律方法】1.四种核反应
(1)衰变:原子核放出α粒子或β粒子,由于核电荷数变了,它在周期表中的位置就变了,变成另一种原子核。这种变化称为原子核的衰变。
α衰变
X→Y+He
β衰变
X→Y+e
(2)原子核的人工转变:用人工的方法,使原子核在其他粒子的轰击下产生新原子核的过程。
质子的发现
N+He→O+H(卢瑟福)
中子的发现
Be+He→C+n(查德威克)
(3)裂变:一个重核分裂成两个中等质量的核,这样的核反应叫做裂变。
(4)聚变:两个轻核结合成质量较大的核,这样的核反应叫做聚变。
2.半衰期
放射性元素的原子核有半数发生衰变所需要的时间,叫做这种元素的半衰期。用T表示,即m余=m原(t表示经历的时间)。半衰期是由核内部自身的因素决定的,跟原子所处的化学状态和外部条件无关。
四、两类核衰变在磁场中的径迹
(一)相外切圆的径迹
【典例4】在匀强磁场中,一个原来静止的原子核,由于放出一个α粒子,结果得到一张两个相切圆的径迹照片(如图所示),今测得两个相切圆半径之比r1∶r2=1∶44。则:
(1)图中哪一个圆是α粒子的径迹?(说明理由)
(2)这个原子核原来所含的质子数是多少?
【解析】(1)因为动量守恒,所以轨道半径与粒子的电荷量成反比,所以圆轨道2是α粒子的径迹,圆轨道1是新生核的径迹,两者电性相同,运动方向相反。
(2)设衰变后新生核的电荷量为q1,α粒子的电荷量为q2=2e,它们的质量分别为m1和m2,衰变后的速度分别为v1和v2,所以原来原子核的电荷量q=q1+q2。
根据轨道半径公式有
==,
又由于衰变过程中遵循动量守恒定律,则
m1v1=m2v2,
以上三式联立解得q=90e。
即这个原子核原来所含的质子数为90。
【答案】(1)圆轨道2是α粒子的径迹,理由见解析 (2)90
(二)相内切圆的径迹
【典例5】在垂直于纸面的匀强磁场中,有一原来静止的原子核,该核衰变后,放出的带电粒子和反冲核的运动轨迹分别如图中a、b所示,由图可以判定( )
A.该核发生的是α衰变
B.该核发生的是β衰变
C.磁场方向一定垂直纸面向里
D.磁场方向一定垂直纸面向外
【解析】本题考查对α粒子及β粒子的性质的了解,对动量守恒定律以及左手定则的应用能力。原来静止的核,放出粒子后,总动量守恒,所以粒子和反冲核的速度方向一定相反,根据图示,它们在同一磁场中是向同一侧偏转的,由左手定则可知它们必带异种电荷,故应为β衰变;由于不知它们的旋转方向,因而无法判定磁场是向里还是向外,即都有可能。
【答案】B
【规律方法】由以上两例解答过程可知,当静止的原子核在匀强磁场中发生衰变时,大圆轨道一定是释放出的带电粒子(α粒子或β粒子)的,小圆轨道一定是反冲核的。α衰变时两圆外切,β衰变时两圆内切。如果已知磁场方向,还可根据左手定则判断绕行方向是顺时针还是逆时针。
一、选择题(1~10题为单项选择题,11~16题为多项选择题)
1.下列说法正确的是( )
A.核反应H+H→He+X是聚变反应,其中X为中子
B.物质发生聚变时释放的能量与同样质量的物质裂变时释放的能量相差不多
C.铀核反应堆是通过调节快中子数目以控制反应速度
D.核电站发电对环境的污染要比火力发电大
2.下列说法正确的是( )
A.Ra→Rn+He是β衰变
B.H+H→He+n是聚变
C.U+n→Xe+Sr+2n是衰变
D.Na→Mg+e是裂变
3.如图1所示为氢原子的能级图,现有一群处于n=3能级的激发态的氢原子,则下列说法正确的是( )
A.能发出6种不同频率的光子
B.波长最长的光是氢原子从n=3能级跃迁到n=1能级产生的
C.发出的光子的最小能量为12.09 eV
D.处于该能级的氢原子至少需吸收1.51 eV能量的光子才能电离
4.(2018·天津理综,1)国家大科学工程——中国散裂中子源(CSNS)于2017年8月28日首次打靶成功,获得中子束流,可以为诸多领域的研究和工业应用提供先进的研究平台。下列核反应中放出的粒子为中子的是( )
A.7N俘获一个α粒子,产生8O并放出一个粒子
B.Al俘获一个α粒子,产生P并放出一个粒子
C.5B俘获一个质子,产生Be并放出一个粒子
D.Li俘获一个质子,产生He并放出一个粒子
5.Cu是铜的一种同位素,研究发现Cu具有放射性,其发生衰变时伴有γ光子辐射,衰变方程为Cu→Co+He,则下列说法中正确的是( )
A.γ光子是衰变过程中Cu核辐射的
B.8个Cu核在经过2个半衰期后,一定还有2个Cu核未发生衰变
C.由于衰变时有能量释放,所以Co比Cu的比结合能小
D.原子核的天然放射现象说明原子核是可分的
6.已知真空中的光速c=3.0×108 m/s,下列说法正确的是( )
A.铋210的半衰期是5天,经过10天,32个铋210衰变后还剩下8个
B.用中子轰击铀核的核反应方程为U+n―→Ba+Kr+3n,属于原子核的衰变
C.若核反应n+H―→H释放出2.2 MeV能量,该过程质量亏损为3.9×10-30 kg
D.某原子核X吸收一个中子后,放出一个电子,最后分裂为两个α粒子,则A=7,Z=2
7.许多情况下光是由原子内部电子的运动产生的,因此光谱研究是探索原子结构的一条重要途径。利用氢气放电管可以获得氢原子光谱,根据玻尔理论可以很好地解释氢原子光谱的产生机理。已知氢原子的基态能量为E1,激发态能量为En=,其中n=2,3,4,…。1885年,巴尔末对当时已知的在可见光区的四条谱线做了分析,发现这些谱线的波长能够用一个公式表示,这个公式写作=R(-),n=3,4,5,…。式中R叫做里德伯常量,这个公式称为巴尔末公式。用h表示普朗克常量,c表示真空中的光速,则里德伯常量R可以表示为( )
A.- B.
C.- D.
8.14C发生放射性衰变,衰变为14N,半衰期约为5 700年。已知植物存活期间,其体内14C与12C的比例不变;生命活动结束后,14C的比例持续减少。现通过测量得知,某古木样品中14C的比例正好是现代植物所制样品的二分之一。下列说法正确的是( )
A.增加样品测量环境的温度能改变14C的衰变速度
B.12C、13C、14C具有相同的中子数
C.14C衰变为14N的过程中放出的电子来源于原子核外的电子
D.该古木的年代距今约为5 700年
9如图所示为氢原子的能级示意图,一群氢原子处于n=3的激发态,在向较低能级跃迁的过程中向外辐射出光子,用这些光子照射逸出功为2.49 eV的金属钠。下列说法正确的是( )
A.这群氢原子能辐射出3种不同频率的光子,其中从n=3 跃迁到n=2所辐射出的光子波长最短
B.这群氢原子能辐射出2种不同频率的光子,其中从n=3 跃迁到n=1所辐射出的光子频率最低
C.金属钠表面辐射出的光电子的最大初动能为9.60 eV
D.金属钠表面辐射出的光电子的最大初动能为11.11 eV
10匀强电场中有一个原来静止的碳14原子核,它衰变时放射出的粒子与反冲核的径迹是两个内切的圆,两圆的直径之比为7∶1,如图所示,那么碳14的衰变方程为( )
A. C→e+B B. C→He+Be
C. C→H+B D. C→ e+N
11.如图4所示为卢瑟福的α粒子散射实验的经典再现,用放射性元素发出的α粒子轰击金箔,用显微镜观测在环形荧光屏上所产生的亮点,关于该实验的实验目的及实验装置的设计思想,有下列说法,你认为正确的是( )
图4
A.卢瑟福的实验目的是验证汤姆孙原子模型的正确性,进一步探究原子的结构与组成,试图有新的发现与突破
B.之所以设计成环形荧光屏,是因为卢瑟福在实验前认为α粒子可能穿过金箔,也可能穿不过而反弹回来
C.整个装置封闭在玻璃罩内,且抽成真空,是为了避免粒子与气体分子碰撞而偏离了原来的运动方向
D.采用金箔的原因是金的化学性质稳定,避免粒子与金箔发生化学反应
12.“轨道电子俘获”也是放射性同位素衰变的一种形式,它是指原子核(称为母核)俘获一个核外电子,其内部一个质子转变为中子,从而变成一个新核(称为子核),并且放出一个中微子的过程。中微子的质量极小,不带电,很难探测到,人们最早就是通过子核的反冲而间接证明中微子的存在的。若一个静止的原子核发生“轨道电子俘获”(电子的初动量可不计),则( )
A.母核的质量数等于子核的质量数
B.母核的电荷数大于子核的电荷数
C.子核的动量等于中微子的动量
D.子核的动能大于中微子的动能
13.一个静止的镭核(Ra)发生α衰变,假设释放的能量全部转化为氡核(Rn)和α粒子的动能,已知镭核(Ra)、氡核(Rn)、α粒子的质量分别是226.025 4 u,222.017 5 u,4.002 6 u,1 u相当于931 MeV的能量。则下列说法正确的是( )
A.镭核的衰变方程为Ra→Rn+He
B.衰变后生成的氡核比原来的镭核少了4个中子
C.衰变过程中释放的核能约为4.93 MeV
D.衰变后氡核(Rn)与α粒子的速度之比约为1∶43
14.下列说法正确的是( )
A.铀核裂变的核反应是U→Ba+Kr+2n
B.原子从低能级向高能级跃迁,不一定通过吸收光子来实现
C.根据爱因斯坦的“光子说”可知光的波长越大,光子的能量越小
D.氕和氚结合成氦原子核时,其质量亏损所对应的能量等于该氦原子核的结合能
15.某次用中子轰击U原子核的核反应方程为U+n―→Y+Xe+10n,U、n、Y、Xe的质量分别为m1、m2、m3、m4,真空中的光速为c.下列说法正确的是( )
A.该反应过程中的质量亏损为m1-9m2-m3-m4
B.该反应过程中释放的能量为(m1-9m2-m3-m4)c2
C.该核反应属于聚变
D.Y原子核中含有36个中子
16.图示为氢原子能级图以及从n=3、4、5、6能级跃迁到n=2能级时辐射的四条光谱线,已知从n=3跃迁到n=2的能级时辐射光的波长为656 nm,下列叙述正确的有( )
A.四条谱线中频率最大的是Hδ
B.用633 nm的光照射能使氢原子从n=2跃迁到n=3的能级
C.一群处于n=3能级上的氢原子向低能级跃迁时,最多产生3种谱线
D.如果Hδ可以使某种金属发生光电效应,只要照射时间足够长,光的强度足够大,Hβ也可以使该金属发生光电效应
二、计算题
17.(2017·扬州中学12月月考)太阳现在正处于主序星演化阶段.它主要是由电子和H、He等原子核组成.维持太阳辐射的是它内部的核聚变反应,核反应方程是:2e+4H→He+释放核能,这些核能最后转化为辐射能.
(1)已知质子质量mp,氦核的质量mα,电子质量me,光速c.试求每发生一次上述核反应所释放的核能;
(2)用上述辐射中产生的波长为400 nm某一单色光去照射逸出功为3.0×10-19 J金属材料铯时,能否产生光电效应?若能,试求出产生的光电子的最大初动能.(保留三位有效数字,普朗克常量h=6.63×10-34 J·s)
18.(2018·淮海中学质检)1926年美国波士顿的内科医生卢姆加特等首次应用放射性氡研究人体动、静脉血管床之间的循环时间,被誉为“临床核医学之父”.氡的放射性同位素有27种,其中最常用的是Rn.Rn经过m次α衰变和n次β衰变后变成稳定的Pb.
(1)求m、n的值;
(2)一个静止的氡核(Rn)放出一个α粒子后变成钋核(Po).已知钋核的速率v=1×106 m/s,求α粒子的速率.
19.(2017·北京高考)在磁感应强度为B的匀强磁场中,一个静止的放射性原子核发生了一次α衰变。放射出的α粒子(He)在与磁场垂直的平面内做圆周运动,其轨道半径为R。以m、q分别表示α粒子的质量和电荷量。
(1)放射性原子核用X表示,新核的元素符号用Y表示,写出该α衰变的核反应方程。
(2)α粒子的圆周运动可以等效成一个环形电流,求圆周运动的周期和环形电流大小。
(3)设该衰变过程释放的核能都转化为α粒子和新核的动能,新核的质量为M,求衰变过程的质量亏损Δm。
专题十八 原子结构与原子核(解析版)
考点
要求
考点解读及预测
.氢原子光谱 氢原子的能级结构、能级公式
Ⅰ
1.考查方式
从近几年高考题来看,对于选修3-5内容的考查,内容和形式都比较固定,一般第(1)(2)问为选择题和填空题,考查原子和原子核的基本概念和规律.第(3)问计算题是考查碰撞中的动量和能量的综合应用.
2.命题趋势
试题将坚持立足基本概念,贴近教材和教学实际,情境接近生活经历,关注社会问题,亲近自然,体现“从生活走向物理,从物理走向社会”的课程理念.试题关注学科素养,引导学以致用,引导高中教学注重培养学生应用知识解决实际问题的能力.
原子核的组成
Ⅰ
.原子核的衰变 半衰期
Ⅰ
.放射性同位素 放射性的应用与防护
Ⅰ
核力与结合能 质量亏损
Ⅰ
.核反应方程
Ⅰ
裂变反应 聚变反应 链式反应
Ⅰ
一、玻尔理论的理解与计算
1.原子的跃迁条件:hν=E初-E终,适用于光子和原子作用而使原子在各定态之间跃迁的情况.(1)从低能级(n小)高能级(n大)―→吸收能量。hν=En大-En小
(2)从高能级(n大)低能级(n小)―→放出能量。hν=En大-En小
2.两类能级跃迁
(1)自发跃迁:高能级→低能级,释放能量,发出光子。
光子的频率ν==。
(2)受激跃迁:低能级→高能级,吸收能量。
①光照(吸收光子):光子的能量必须恰等于能级差,hν=ΔE。
②实物粒子和原子作用而使原子激发的情况
当实物粒子和原子相碰时,由于实物粒子的动能可全部或部分地被原子吸收,所以只要入射粒子的动能大于或等于原子某两定态能量之差,均可以使原子受激发而向较高能级跃迁,但原子所吸收的能量仍不是任意的,一定等于原子发生跃迁的两个能级间的能量差.
碰撞、加热等:只要入射粒子能量大于或等于能级差即可,E外≥ΔE。
③大于电离能的光子被吸收,将原子电离。
3.谱线条数的确定方法
一个原子和一群原子
氢原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨道时,可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现了.即:一群氢原子处于量子数为n的激发态时,可能辐射出的光谱条数为N==C,而一个氢原子处于量子数为n的激发态上时,最多可辐射出n-1条光谱线.
二 原子核的衰变
1.衰变规律及实质
衰变类型
α衰变
β衰变
衰变方程
X→Y+He
X→Y+e
衰变实质
2个质子和2个中子结合成一个整体射出
中子转化为质子和电子
2H+2n→He
n→H+e
衰变规律
电荷数守恒、质量数守恒
3.确定衰变次数的方法
(1)设放射性元素X经过n次α衰变和m次β衰变后,变成稳定的新元素Y,则表示该核反应的方程为X→Y+nHe+me
根据电荷数守恒和质量数守恒可列方程A=A′+4n,Z=Z′+2n-m
(2)确定衰变次数,因为β衰变对质量数无影响,先由质量数的改变确定α衰变的次数,然后再根据衰变规律确定β衰变的次数.
4.对半衰期的理解
(1)半衰期公式:N余=N原,m余=m原。
(2)半衰期的物理意义:半衰期是表示放射性元素衰变快慢的物理量,同一放射性元素的衰变速率一定,不同的放射性元素半衰期不同,有的差别很大。
(3)半衰期的适用条件:半衰期是一个统计规律,是对大量的原子核衰变规律的总结,对于一个特定的原子核,无法确定何时发生衰变。
三 核反应类型及核反应方程
类型
可控性
核反应方程典例
衰变
α衰变
自发
U→Th+He
β衰变
自发
Th→Pa+e
人工转变
人工控制
N+He→O+H
(卢瑟福发现质子)
He+Be→C+n
(查德威克发现中子)
Al+He→P+n
约里奥·居里夫妇发现放射性同位素,同时发现正电子
P→Si+e
重核裂变
比较容易进行人工
控制
U+n→Ba+Kr+3n
U+n→Xe+Sr+10n
轻核聚变
除氢弹外
无法控制
H+H→He+n
四 关于核能的计算
1.应用质能方程解题的流程图
→→
(1)根据ΔE=Δmc2计算时,Δm的单位是“kg”,c的单位是“m/s”,ΔE的单位是“J”。
(2)根据ΔE=Δm×931.5 MeV计算时,Δm的单位是“u”,ΔE的单位是“MeV”。
(3)根据核子比结合能来计算核能:
原子核的结合能=核子比结合能×核子数。
2.利用质能方程计算核能时,不能用质量数代替质量进行计算.
3.核反应遵守动量守恒定律和能量守恒定律,因此我们可以结合动量守恒定律和能量守恒定律来计算核能.
一、原子核的衰变与半衰期
【典例1】 (2017·全国卷Ⅱ,15)一静止的铀核放出一个α粒子衰变成钍核,衰变方程为U→Th+He,下列说法正确的是( )
A. 衰变后钍核的动能等于α粒子的动能
B. 衰变后钍核的动量大小等于α粒子的动量大小
C. 铀核的半衰期等于其放出一个α粒子所经历的时间
D. 衰变后α粒子与钍核的质量之和等于衰变前铀核的质量
【解析】静止的铀核在α衰变过程中,满足动量守恒的条件,根据动量守恒定律得pTh+pα=0,即钍核的动量和α粒 子的动量大小相等,方向相反,选项B正确;根据Ek=可知,选项A错误;半衰期的定义是统计规律,对于一个α粒子不适用,选项C错误;铀核在衰变过程中,伴随着一定的能量放出,即衰变过程中有一定的质量亏损,故衰变后α粒子与钍核的质量之和小于衰变前铀核的质量,选项D错误。
【答案】 B
二、原子能级与跃迁
【典例2】(2018届高三·第二次全国大联考)预计2018年,我国将完成“北斗三号”18颗全球组网卫星发射,采用星载氢原子钟。如图所示为氢原子的能级图,以下判断正确的是( )
A.大量氢原子从n=3的激发态向低能级跃迁时,最多能辐射出3种不同频率的光子
B.氢原子的核外电子从半径较小的轨道跃迁到半径较大的轨道时,原子的能量减小
C.当氢原子从n=5的能级跃迁到n=3的能级时,要吸收光子
D.从氢原子的能级图可知原子发射光子的频率也是连续的
【思路点拔】解决本题的关键是理解玻尔理论,知道能级间跃迁所满足的规律。
【解析】根据C=3可知,大量氢原子从n=3的激发态向低能级跃迁时,最多能辐射出3种不同频率的光子,选项A正确;氢原子的核外电子从半径较小的轨道跃迁到半径较大的轨道时,原子的能量增大,选项B错误;氢原子从高能级跃迁到低能级时辐射出光子,选项C错误;玻尔理论指出氢原子能级是分立的,结合题图可知,原子发射光子的频率是不连续的,选项D错误。
【答案】A
【规律方法】1.氢原子的能级跃迁
(1)氢原子从低能级向高能级跃迁:吸收一定频率的光子,当光子的能量满足hν=E末-E初时,才能被某一个原子吸收,否则不吸收。
(2)氢原子从高能级向低能级跃迁:以光子的形式向外辐射能量,所辐射的光子能量恰等于发生跃迁时两能级间的能量差。
2.电离
当光子能量大于等于原子所处的能级的能量值的绝对值时,也可以被氢原子吸收,使氢原子电离,多余的能量作为电子的初动能。
3.光谱线条数
一群氢原子处于量子数为n的激发态时,可能辐射出的光谱线条数为N=。
4.激发跃迁
氢原子还可吸收外来实物粒子的能量而被激发,由于实物粒子的动能可全部或部分地被原子吸收,所以只要入射粒子的能量大于或等于两能级差,均可使原子发生能级跃迁。
5.跃迁时电子动能、原子电势能与总能量变化
当轨道半径减小时,库仑引力做正功,原子电势能减小,电子动能增大,原子总能量减小;反之,轨道半径增大时,原子电势能增大,电子动能减小,原子总能量增大。
三、核反应与核能
【典例3】 (2017·全国Ⅰ卷T17)大科学工程“人造太阳”主要是将氘核聚变反应释放的能量用来发电。氘核聚变反应方程是:H+H―→He+n。已知H的质量为2.0136 u,He的质量为3.0150 u,n的质量为1.0087 u,1 u=931 MeV/c2。氘核聚变反应中释放的核能约为( )
A.3.7 MeV B.3.3 MeV C.2.7 MeV D.0.93 MeV
【思路点拔】本题考查应用爱因斯坦质能方程计算核能。
【解析】氘核聚变反应的质量亏损为Δm=(2×2.0136-3.0150-1.0087)u=0.0035 u,释放的核能为ΔE=Δmc2=0.0035×931 MeV/c2×c2≈3.3 MeV,选项B正确。
【答案】B
【规律方法】1.四种核反应
(1)衰变:原子核放出α粒子或β粒子,由于核电荷数变了,它在周期表中的位置就变了,变成另一种原子核。这种变化称为原子核的衰变。
α衰变
X→Y+He
β衰变
X→Y+e
(2)原子核的人工转变:用人工的方法,使原子核在其他粒子的轰击下产生新原子核的过程。
质子的发现
N+He→O+H(卢瑟福)
中子的发现
Be+He→C+n(查德威克)
(3)裂变:一个重核分裂成两个中等质量的核,这样的核反应叫做裂变。
(4)聚变:两个轻核结合成质量较大的核,这样的核反应叫做聚变。
2.半衰期
放射性元素的原子核有半数发生衰变所需要的时间,叫做这种元素的半衰期。用T表示,即m余=m原(t表示经历的时间)。半衰期是由核内部自身的因素决定的,跟原子所处的化学状态和外部条件无关。
四、两类核衰变在磁场中的径迹
(一)相外切圆的径迹
【典例4】在匀强磁场中,一个原来静止的原子核,由于放出一个α粒子,结果得到一张两个相切圆的径迹照片(如图所示),今测得两个相切圆半径之比r1∶r2=1∶44。则:
(1)图中哪一个圆是α粒子的径迹?(说明理由)
(2)这个原子核原来所含的质子数是多少?
【解析】(1)因为动量守恒,所以轨道半径与粒子的电荷量成反比,所以圆轨道2是α粒子的径迹,圆轨道1是新生核的径迹,两者电性相同,运动方向相反。
(2)设衰变后新生核的电荷量为q1,α粒子的电荷量为q2=2e,它们的质量分别为m1和m2,衰变后的速度分别为v1和v2,所以原来原子核的电荷量q=q1+q2。
根据轨道半径公式有
==,
又由于衰变过程中遵循动量守恒定律,则
m1v1=m2v2,
以上三式联立解得q=90e。
即这个原子核原来所含的质子数为90。
【答案】(1)圆轨道2是α粒子的径迹,理由见解析 (2)90
(二)相内切圆的径迹
【典例5】在垂直于纸面的匀强磁场中,有一原来静止的原子核,该核衰变后,放出的带电粒子和反冲核的运动轨迹分别如图中a、b所示,由图可以判定( )
A.该核发生的是α衰变
B.该核发生的是β衰变
C.磁场方向一定垂直纸面向里
D.磁场方向一定垂直纸面向外
【解析】本题考查对α粒子及β粒子的性质的了解,对动量守恒定律以及左手定则的应用能力。原来静止的核,放出粒子后,总动量守恒,所以粒子和反冲核的速度方向一定相反,根据图示,它们在同一磁场中是向同一侧偏转的,由左手定则可知它们必带异种电荷,故应为β衰变;由于不知它们的旋转方向,因而无法判定磁场是向里还是向外,即都有可能。
【答案】B
【规律方法】由以上两例解答过程可知,当静止的原子核在匀强磁场中发生衰变时,大圆轨道一定是释放出的带电粒子(α粒子或β粒子)的,小圆轨道一定是反冲核的。α衰变时两圆外切,β衰变时两圆内切。如果已知磁场方向,还可根据左手定则判断绕行方向是顺时针还是逆时针。
一、选择题(1~10题为单项选择题,11~16题为多项选择题)
1.下列说法正确的是( )
A.核反应H+H→He+X是聚变反应,其中X为中子
B.物质发生聚变时释放的能量与同样质量的物质裂变时释放的能量相差不多
C.铀核反应堆是通过调节快中子数目以控制反应速度
D.核电站发电对环境的污染要比火力发电大
【解析】较轻原子核(氘和氚)结合成较重的原子核(氦)时能放出巨大能量,这种核反应称为核聚变,根据在核反应中,质量数守恒、电荷数守恒,可知X为n,是中子,选项A正确;相同质量的物质发生聚变时释放的能量比较多,选项B错误;铀核反应堆是通过调节慢中子数目以控制反应速度,选项C错误;核电站发电对环境的污染要比火力发电小,选项D错误。
【答案】A
2.下列说法正确的是( )
A.Ra→Rn+He是β衰变
B.H+H→He+n是聚变
C.U+n→Xe+Sr+2n是衰变
D.Na→Mg+e是裂变
【解析】A项中自发地放出氦原子核,是α衰变,选项A错误;聚变是质量轻的核结合成质量大的核,选项B正确;裂变是质量较大的核分裂成质量较轻的几个核,C项中的反应是裂变,选项C错误;D项中自发地放出电子,是β衰变,选项D错误。
【答案】B
3.如图1所示为氢原子的能级图,现有一群处于n=3能级的激发态的氢原子,则下列说法正确的是( )
A.能发出6种不同频率的光子
B.波长最长的光是氢原子从n=3能级跃迁到n=1能级产生的
C.发出的光子的最小能量为12.09 eV
D.处于该能级的氢原子至少需吸收1.51 eV能量的光子才能电离
【解析】一群处于n=3能级的激发态的氢原子能发出C=3种不同频率的光子,选项A错误;由辐射条件知氢原子由n=3能级跃迁到n=1能级辐射出的光子频率最大,波长最小,选项B错误;发出的光子的最小能量为E3-E2=1.89 eV,选项C错误;n=3能级对应的氢原子能量是-1.51 eV,所以处于该能级的氢原子至少需吸收1.51 eV能量的光子才能电离,故选项D正确。
【答案】D
4.(2018·天津理综,1)国家大科学工程——中国散裂中子源(CSNS)于2017年8月28日首次打靶成功,获得中子束流,可以为诸多领域的研究和工业应用提供先进的研究平台。下列核反应中放出的粒子为中子的是( )
A.7N俘获一个α粒子,产生8O并放出一个粒子
B.Al俘获一个α粒子,产生P并放出一个粒子
C.5B俘获一个质子,产生Be并放出一个粒子
D.Li俘获一个质子,产生He并放出一个粒子
【解析】根据核反应过程中质量数守恒及电荷数守恒可知,7N+He→8O+H,A项错误;Al+He→P+n,B项正确;B+H→Be+He,C项错误;Li+H→He+He,D项错误。
【答案 B
5.Cu是铜的一种同位素,研究发现Cu具有放射性,其发生衰变时伴有γ光子辐射,衰变方程为Cu→Co+He,则下列说法中正确的是( )
A.γ光子是衰变过程中Cu核辐射的
B.8个Cu核在经过2个半衰期后,一定还有2个Cu核未发生衰变
C.由于衰变时有能量释放,所以Co比Cu的比结合能小
D.原子核的天然放射现象说明原子核是可分的
【解析】衰变时,蕴含在Cu核内的能量会释放出来,使产生的新核Co处于激发态,当它向低能级跃迁时辐射出γ光子,故选项A错误;半衰期是统计规律,对大量的原子核适用,对少数原子核不适用,故选项B错误;由于衰变时有能量释放,所以Co比Cu的比结合能大,故选项C错误;原子核的天然放射现象说明原子核内部具有复杂结构,并且说明原子核是可分的,故选项D正确。
【答案】D
6.已知真空中的光速c=3.0×108 m/s,下列说法正确的是( )
A.铋210的半衰期是5天,经过10天,32个铋210衰变后还剩下8个
B.用中子轰击铀核的核反应方程为U+n―→Ba+Kr+3n,属于原子核的衰变
C.若核反应n+H―→H释放出2.2 MeV能量,该过程质量亏损为3.9×10-30 kg
D.某原子核X吸收一个中子后,放出一个电子,最后分裂为两个α粒子,则A=7,Z=2
【解析】半衰期是针对大量原子核的衰变行为的统计规律,少数原子核不适用此规律,选项A错误;U+n―→Ba+Kr+3n是原子核的裂变,选项B错误;根据ΔE=Δmc2,可得Δm=3.9×10-30 kg,选项C正确;核反应方程为X+n→+2He,根据质量数和电荷数守恒可知A+1=8,Z+1=4,则A=7,Z=3,选项D错误。
【答案】C
7.许多情况下光是由原子内部电子的运动产生的,因此光谱研究是探索原子结构的一条重要途径。利用氢气放电管可以获得氢原子光谱,根据玻尔理论可以很好地解释氢原子光谱的产生机理。已知氢原子的基态能量为E1,激发态能量为En=,其中n=2,3,4,…。1885年,巴尔末对当时已知的在可见光区的四条谱线做了分析,发现这些谱线的波长能够用一个公式表示,这个公式写作=R(-),n=3,4,5,…。式中R叫做里德伯常量,这个公式称为巴尔末公式。用h表示普朗克常量,c表示真空中的光速,则里德伯常量R可以表示为( )
A.- B.
C.- D.
【解析】若氢原子从n>2的能级跃迁到n=2的能级,由玻尔理论可得-=hν=,按照巴尔末公式,氢原子由n>2的能级跃到n=2的能级,放出的谱线的波长满足=R(-),以上两式相比较可得-E1=hcR,故里德伯常量R可以表示为R=-,选项C正确。
【答案】 C
8.14C发生放射性衰变,衰变为14N,半衰期约为5 700年。已知植物存活期间,其体内14C与12C的比例不变;生命活动结束后,14C的比例持续减少。现通过测量得知,某古木样品中14C的比例正好是现代植物所制样品的二分之一。下列说法正确的是( )
A.增加样品测量环境的温度能改变14C的衰变速度
B.12C、13C、14C具有相同的中子数
C.14C衰变为14N的过程中放出的电子来源于原子核外的电子
D.该古木的年代距今约为5 700年
【解析】放射性元素的半衰期与物理环境以及化学环境无关,选项A错误;12C、13C、14C具有相同的质子数和不同的中子数,选项B错误;14C衰变为14N的过程中质量数没有变化而核电荷数增加1,所以是14C原子核中的一个中子变成了一个质子和一个电子,所以14C衰变过程中放出β射线,选项C错误;设原来14C的质量为M0,衰变后剩余质量为M,则有M=M0()n,其中n为发生半衰期的次数,由题意可知剩余质量为原来质量的,故n=1,所以该古木的年代距今约5 700年,选项D正确。
【答案】 D
9如图所示为氢原子的能级示意图,一群氢原子处于n=3的激发态,在向较低能级跃迁的过程中向外辐射出光子,用这些光子照射逸出功为2.49 eV的金属钠。下列说法正确的是( )
A.这群氢原子能辐射出3种不同频率的光子,其中从n=3 跃迁到n=2所辐射出的光子波长最短
B.这群氢原子能辐射出2种不同频率的光子,其中从n=3 跃迁到n=1所辐射出的光子频率最低
C.金属钠表面辐射出的光电子的最大初动能为9.60 eV
D.金属钠表面辐射出的光电子的最大初动能为11.11 eV
【解析】一群氢原子处于n=3的激发态,可能辐射出3种不同频率的光子,因为n=3和n=2间能级差最小,所以从n=3跃迁到n=2发出的光子频率最低,根据ΔE=hν=,可知波长最长;因为n=3和n=1间能级差最大,所以从n=3跃迁到n=1辐射出的光子频率最高,波长最短,故A、B错误;从n=3跃迁到n=1辐射出的光子频率最高,辐射出的光子能量为ΔE=(13.60-1.51)eV=12.09 eV,根据光电效应方程Ekm=hν-W0得,最大初动能Ekm =(12.09-2.49)eV=9.60 eV,故D错误,C正确。
【答案】C
10匀强电场中有一个原来静止的碳14原子核,它衰变时放射出的粒子与反冲核的径迹是两个内切的圆,两圆的直径之比为7∶1,如图所示,那么碳14的衰变方程为( )
A. C→e+B B. C→He+Be
C. C→H+B D. C→ e+N
【解析】原子核的衰变过程满足动量守恒,粒子与反冲核的速度方向相反,根据左手定则判断得知,粒子与反冲核的电性相反,则知粒子带负电,所以该衰变是β衰变,此粒子是β粒子,符号为 e。两带电粒子动量大小相等,方向相反,动量大小:m1v1=m2v2,由带电粒子在匀强磁场中圆周运动的半径公式可得:r=,可见r与q成反比。由题意知,大圆与小圆的直径之比为7∶1,半径之比为7∶1,则粒子与反冲核的电荷量之比为1∶7,所以反冲核的电荷量为7e,电荷数是7,其符号为N,所以碳14的衰变方程为C→e+N,故D正确。
【答案】D
11.如图4所示为卢瑟福的α粒子散射实验的经典再现,用放射性元素发出的α粒子轰击金箔,用显微镜观测在环形荧光屏上所产生的亮点,关于该实验的实验目的及实验装置的设计思想,有下列说法,你认为正确的是( )
图4
A.卢瑟福的实验目的是验证汤姆孙原子模型的正确性,进一步探究原子的结构与组成,试图有新的发现与突破
B.之所以设计成环形荧光屏,是因为卢瑟福在实验前认为α粒子可能穿过金箔,也可能穿不过而反弹回来
C.整个装置封闭在玻璃罩内,且抽成真空,是为了避免粒子与气体分子碰撞而偏离了原来的运动方向
D.采用金箔的原因是金的化学性质稳定,避免粒子与金箔发生化学反应
【解析】汤姆孙提出了枣糕式原子模型,卢瑟福为了验证汤姆孙原子模型的正确性,进一步探究原子的结构与组成,设计了该实验,选项A正确;卢瑟福在实验前认为α粒子可能穿过金箔,也可能穿不过而反弹回来,所以将荧光屏设计成环形,选项B正确;将装置放置在接近真空的环境中,是因为α粒子的电离能力较强,在空气中运动的距离短,选项C错误;采用金箔的原因是因为金的质量大,延展性好,故选项D错误。
【答案】AB
12.“轨道电子俘获”也是放射性同位素衰变的一种形式,它是指原子核(称为母核)俘获一个核外电子,其内部一个质子转变为中子,从而变成一个新核(称为子核),并且放出一个中微子的过程。中微子的质量极小,不带电,很难探测到,人们最早就是通过子核的反冲而间接证明中微子的存在的。若一个静止的原子核发生“轨道电子俘获”(电子的初动量可不计),则( )
A.母核的质量数等于子核的质量数
B.母核的电荷数大于子核的电荷数
C.子核的动量等于中微子的动量
D.子核的动能大于中微子的动能
【解析】母核俘获一个核外电子,核内一个质子转变为中子,并放出一个中微子(质量极小,不带电),从而变成一个新核(子核),此过程中核内电荷数减小1,质量数不变。故选项A、B正确;母核俘获电子发生衰变,放出中微子,全过程中系统动量守恒。因初始总动量为0,故子核的动量和中微子的动量等大反向。由于动量是矢量,矢量相等的条件是大小相等,方向相同,故选项C错误;子核的动量和中微子的动量大小相等,而中微子的质量极小,由Ek=知,中微子的动能大于子核的动能,故选项D错误。
【答案】AB
13.一个静止的镭核(Ra)发生α衰变,假设释放的能量全部转化为氡核(Rn)和α粒子的动能,已知镭核(Ra)、氡核(Rn)、α粒子的质量分别是226.025 4 u,222.017 5 u,4.002 6 u,1 u相当于931 MeV的能量。则下列说法正确的是( )
A.镭核的衰变方程为Ra→Rn+He
B.衰变后生成的氡核比原来的镭核少了4个中子
C.衰变过程中释放的核能约为4.93 MeV
D.衰变后氡核(Rn)与α粒子的速度之比约为1∶43
【解析】根据质量数和电荷数守恒可知,镭核的衰变方程为Ra→Rn+He,选项A正确;氡核的质量数为222,电荷数为86,所以中子数为136,同理可得镭核的中子数为138,所以氡核的中子数比镭核的中子数少2,选项B错误;根据E=Δmc2,可算出衰变过程中释放的核能约为4.93 MeV,选项C正确;衰变过程中动量守恒,根据动量守恒定律可知氡核与α粒子的动量大小相等,所以它们的速度与质量成反比,选项D错误。
【答案】AC
14.下列说法正确的是( )
A.铀核裂变的核反应是U→Ba+Kr+2n
B.原子从低能级向高能级跃迁,不一定通过吸收光子来实现
C.根据爱因斯坦的“光子说”可知光的波长越大,光子的能量越小
D.氕和氚结合成氦原子核时,其质量亏损所对应的能量等于该氦原子核的结合能
【解析】铀核裂变的核反应是用一个中子轰击铀核得到三个中子,但是方程式中中子不能约去,故A错误;从低能级向高能级跃迁时,可能通过粒子的碰撞获得能量来实现,故B正确;根据E=hν=,可知,光的波长越大,光子的能量越小,故C正确;氚核本身有一定的结合能,所以氕和氚结合成氦原子核时,其质量亏损所对应的能量小于该氦原子核的结合能,故D错误.
【答案】BC
15.某次用中子轰击U原子核的核反应方程为U+n―→Y+Xe+10n,U、n、Y、Xe的质量分别为m1、m2、m3、m4,真空中的光速为c.下列说法正确的是( )
A.该反应过程中的质量亏损为m1-9m2-m3-m4
B.该反应过程中释放的能量为(m1-9m2-m3-m4)c2
C.该核反应属于聚变
D.Y原子核中含有36个中子
【解析】该过程中,质量亏损为m1+m2-10m2-m3-m4=m1-9m2-m3-m4,选项A正确;根据爱因斯坦质能方程,该反应过程中释放的能量为(m1-9m2-m3-m4)c2,选项B错误;该反应属于裂变反应,选项C错误;Y原子核中含有的中子数为235-92+1-(136-38)-10=36,选项D正确.
【答案】AD
16.图示为氢原子能级图以及从n=3、4、5、6能级跃迁到n=2能级时辐射的四条光谱线,已知从n=3跃迁到n=2的能级时辐射光的波长为656 nm,下列叙述正确的有( )
A.四条谱线中频率最大的是Hδ
B.用633 nm的光照射能使氢原子从n=2跃迁到n=3的能级
C.一群处于n=3能级上的氢原子向低能级跃迁时,最多产生3种谱线
D.如果Hδ可以使某种金属发生光电效应,只要照射时间足够长,光的强度足够大,Hβ也可以使该金属发生光电效应
【解析】频率最大的光子对应的能量最大,即跃迁时能量差最大,故从n=6跃迁到n=2的频率最大,选项A正确;原子跃迁过程中,吸收光子的能量应刚好等于两能级的能量差,选项B错误;从n=3向低能级跃迁时,可以是从3→2、2→1或者是3→1,即有三种频率不同的光子,选项C正确;光电效应与光照的时间无关,Hδ光子的能量最大,故其他光子不一定可以使该金属产生光电效应,选项D错误.
【答案】AC
二、计算题
17.(2017·扬州中学12月月考)太阳现在正处于主序星演化阶段.它主要是由电子和H、He等原子核组成.维持太阳辐射的是它内部的核聚变反应,核反应方程是:2e+4H→He+释放核能,这些核能最后转化为辐射能.
(1)已知质子质量mp,氦核的质量mα,电子质量me,光速c.试求每发生一次上述核反应所释放的核能;
(2)用上述辐射中产生的波长为400 nm某一单色光去照射逸出功为3.0×10-19 J金属材料铯时,能否产生光电效应?若能,试求出产生的光电子的最大初动能.(保留三位有效数字,普朗克常量h=6.63×10-34 J·s)
【解析】(1)根据爱因斯坦质能方程得,ΔE=Δmc2=(4mp+2me-mα)c2
(2)单色光的能量为E=h=6.63×10-34× J=4.97×10-19 J>3.0×10-19 J
所以可以产生光电效应,最大初动能为Ekm=hν-W0=4.97×10-19 J-3.0×10-19 J=1.97×10-19 J.
【答案】(1)(4mp+2me-mα)c2 (2)能 1.97×10-19 J
18.(2018·淮海中学质检)1926年美国波士顿的内科医生卢姆加特等首次应用放射性氡研究人体动、静脉血管床之间的循环时间,被誉为“临床核医学之父”.氡的放射性同位素有27种,其中最常用的是Rn.Rn经过m次α衰变和n次β衰变后变成稳定的Pb.
(1)求m、n的值;
(2)一个静止的氡核(Rn)放出一个α粒子后变成钋核(Po).已知钋核的速率v=1×106 m/s,求α粒子的速率.
【解析】(1)衰变方程可写成Rn→Pb+mHe+ne
根据质量数守恒得4m=222-206,m=4
根据电荷数守恒得86=82+2m-n,n=4
(2)由动量守恒定律得mαvα-mPov=0
vα=5.45×107 m/s
【答案】(1)4 4 (2)5.45×107 m/s
19.(2017·北京高考)在磁感应强度为B的匀强磁场中,一个静止的放射性原子核发生了一次α衰变。放射出的α粒子(He)在与磁场垂直的平面内做圆周运动,其轨道半径为R。以m、q分别表示α粒子的质量和电荷量。
(1)放射性原子核用X表示,新核的元素符号用Y表示,写出该α衰变的核反应方程。
(2)α粒子的圆周运动可以等效成一个环形电流,求圆周运动的周期和环形电流大小。
(3)设该衰变过程释放的核能都转化为α粒子和新核的动能,新核的质量为M,求衰变过程的质量亏损Δm。
【解析】(1)X―→Y+He。
(3)由qvB=m,得v=
设衰变后新核Y的速度大小为v′,系统动量守恒
Mv′-mv=0
v′==
由Δmc2=Mv′2+mv2
得Δm=。
说明:若利用M=m解答,亦可。
【答案】:(1)X―→Y+He (2) (3)