2018_2019学年高中数学第三章数系的扩充与复数的引入滚动训练三(§3.1~§3.2)新人教B版选修1_2

文档属性

名称 2018_2019学年高中数学第三章数系的扩充与复数的引入滚动训练三(§3.1~§3.2)新人教B版选修1_2
格式 zip
文件大小 52.3KB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2019-01-07 21:27:58

图片预览

文档简介

第三章 数系的扩充与复数的引入
滚动训练三(§3.1~§3.2)
一、选择题
1.欧拉公式eix=cos x+isin x(i为虚数单位)是由瑞士著名数学家欧拉发明的,将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,e2i表示的复数在复平面中位于(  )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
考点 复数的几何意义
题点 复数与点的对应关系
答案 B
解析 e2i=cos 2+isin 2,
由于<2<π,
因此cos 2<0,sin 2>0,点(cos 2,sin 2)在第二象限,故选B.
2.若|z-1|=|z+1|,则复数z对应的点在(  )
A.实轴上 B.虚轴上
C.第一象限 D.第二象限
考点 复数的几何意义
题点 复数与点的对应关系
答案 B
解析 ∵|z-1|=|z+1|,∴点Z到(1,0)和(-1,0)的距离相等,即点Z在以(1,0)和(-1,0)为端点的线段的中垂线上.
3.已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
考点 复数的乘除法运算法则
题点 利用乘除法求复数中的未知数
答案 A
解析 当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,
故“a=b=1”是“(a+bi)2=2i”的充分条件;
当“(a+bi)2=a2-b2+2abi=2i”时,
“a=b=1”或“a=b=-1”,
故“a=b=1”是“(a+bi)2=2i”的不必要条件;
综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件.
4.设复数z=,则z·等于(  )
A.1 B.
C.2 D.4
考点 复数四则运算的综合应用
题点 复数的混合运算
答案 C
解析 ∵z==
=-1+i,
∴=-1-i,∴z·=(-1+i)(-1-i)=2.
5.若复数z满足z(i+1)=,则复数z的虚部为(  )
A.-1 B.0
C.i D.1
考点 复数的乘除法运算法则
题点 利用乘除法求复数中的未知数
答案 B
解析 ∵z(i+1)=,
∴z===-1,
∴z的虚部为0.
6.已知复数z=1+ai(a∈R)(i是虚数单位),=-+i,则a等于(  )
A.2 B.-2
C.±2 D.-
考点 复数的乘除法运算法则
题点 利用乘除法求复数中的未知数
答案 B
解析 由题意可得=-+i,
即==+i=-+i,
∴=-,=,∴a=-2,故选B.
7.设z1,z2是复数,则下列命题中的假命题是(  )
A.若|z1-z2|=0,则1=2
B.若z1=2,则1=z2
C.若|z1|=|z2|,则z1·1=z2·2
D.若|z1|=|z2|,则z=z
考点 共轭复数的定义及应用
题点 与共轭复数有关的综合问题
答案 D
解析 对于A,若|z1-z2|=0,则z1-z2=0,z1=z2,
所以1=2为真;
对于B,若z1=2,则z1和z2互为共轭复数,
所以1=z2为真;
对于C,设z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R),若|z1|=|z2|,
则=,z1·1=a+b,z2·2=a+b,
所以z1·1=z2·2为真;
对于D,若z1=1,z2=i,则|z1|=|z2|为真,而z=1,z=-1,所以z=z为假.故选D.
二、填空题
8.已知z是纯虚数,是实数,那么z=________.
考点 复数的乘除法运算法则
题点 利用乘除法求复数中的未知数
答案 -2i
解析 设z=bi(b∈R,b≠0),则====+i是实数,
所以b+2=0,b=-2,所以z=-2i.
9.复数z满足(3-4i)z=5+10i,则|z|=________.
考点 复数的模的定义与应用
题点 利用定义求复数的模
答案 
解析 由(3-4i)z=5+10i知,|3-4i|·|z|=|5+10i|,
即5|z|=5,解得|z|=.
10.设复数z1=i,z2=,z=z1+z2,则z在复平面内对应的点位于第________象限.
考点 复数四则运算的综合应用
题点 与混合运算有关的几何意义
答案 一
解析 z2====-i,z1=i,
则z=z1+z2=i+-i=+i.
∴z在复平面内对应的点的坐标为,位于第一象限.
11.已知复数z=(2a+i)(1-bi)的实部为2,i是虚数单位,其中a,b为正实数,则4a+1-b的最小值为________.
考点 复数的乘除法运算法则
题点 利用乘除法求复数中的未知数
答案 2
解析 复数z=(2a+i)(1-bi)=2a+b+(1-2ab)i的实部为2,其中a,b为正实数,
∴2a+b=2,∴b=2-2a.
则4a+1-b=4a+21-2a=4a+
≥2=2,
当且仅当a=,b=时取等号.
三、解答题
12.计算:(1);
(2);
(3)+;
(4).
考点 复数四则运算的综合运算
题点 复数的混合运算
解 (1)
===-1-3i.
(2)
==
==+i.
(3)+
=+=+=-1.
(4)==
==--i.
13.复数z满足|z+3-i|=,求|z|的最大值和最小值.
考点 复数的几何意义的综合应用
题点 利用几何意义解决距离、角、面积
解 方法一 |z+3-i|≥||z|-|3-i||,
又∵|z+3-i|=,
|3-i|==2,
∴||z|-2|≤,
即≤|z|≤3,
∴|z|的最大值为3,最小值为.
方法二 |z+3-i|=表示以-3+i对应的点P为圆心,以为半径的圆,如图所示,
则|OP|=|-3+i|==2,
显然|z|max=|OA|=|OP|+=3,
|z|min=|OB|=|OP|-=.
四、探究与拓展
14.设复数z=(x-1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为(  )
A.+ B.+
C.- D.-
考点 复数的几何意义的综合应用
题点 利用几何意义解决距离、角、面积
答案 C
解析 复数z=(x-1)+yi(x,y∈R),若|z|≤1,它的几何意义是以(1,0)为圆心,1为半径的圆以及内部部分.
y≥x的图形是图形中阴影部分,如图,
复数z=(x-1)+yi(x,y∈R),若|z|≤1,
则y≥x的概率为=-.
15.设z是虚数,w=z+是实数,且-1解 ∵z是虚数,
∴可设z=x+yi(x,y∈R且y≠0),
则w=z+=x+yi+
=x+yi+
=+i.
∵w是实数且y≠0,
∴y-=0,
即x2+y2=1,∴|z|=1,此时w=2x.
由-1∴-