2019版高中数学第三章概率练习(打包4套)北师大版必修3

文档属性

名称 2019版高中数学第三章概率练习(打包4套)北师大版必修3
格式 zip
文件大小 480.7KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2019-01-07 22:18:44

文档简介

1.1 频率与概率
1.2 生活中的概率
课后篇巩固提升
A组
1.下列说法中,正确的个数是(  )
①频率是反映事件发生的频繁程度,概率是反映事件发生的可能性的大小;
②做n次随机试验,事件A发生的频率就是事件的概率;
③频率是概率的近似值,概率是频率的稳定值;
④在条件不变的情况下,随机事件的概率不变.
A.1 B.2 C.3 D.4
解析频率是概率的一个近似值,对于一个具体事件而言,概率是一个常数,而频率则随着试验次数的变化而变化,试验次数越多,频率就越接近事件的概率.故②错误,①③④正确.故选C.
答案C
2.设某厂产品的次品率为2%,则该厂8 000件产品中合格品可能为(  )
A.160件 B.7 840件 C.7 998件 D.7 800件
解析次品率为2%,则合格品率为98%,于是合格品可能有8 000×98%=7 840(件).
答案B
3.给出下列四个命题:
①设有一批产品,其次品率为0.05,则从中任取200件,必有10件是次品;
②做100次抛硬币的试验,结果51次出现正面,因此,出现正面的概率是;
③随机事件发生的频率就是这个随机事件发生的概率;
④抛掷骰子100次,得点数1的结果是18次,则出现1点的频率是.
其中正确命题的个数为(  )
A.1 B.2 C.3 D.4
解析只有④正确.
答案A
4.如图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相同,四位同学各自发表了下述见解:
甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;
乙:只要指针连续转六次,一定会有一次停在6号扇形;
丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;
丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大.
其中,你认为正确的见解有(  )
A.1个 B.2个 C.3个 D.4个
解析丙正确.指针停在奇数号扇形的概率与停在偶数号扇形的概率均为.
答案A
5.已知随机事件A发生的频率是0.02,事件A出现了10次,则可能共进行了   次试验.?
解析可能共进行了=500次试验.
答案500
6.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了40 000部汽车,时间从某年的5月1日到下一年的5月1日,共发现有1 200部汽车的挡风玻璃破碎,则一部汽车在一年时间里挡风玻璃破碎的概率近似为     .?
解析挡风玻璃破碎的频率为=0.03,可作为其概率的近似值.
答案0.03
7.从存放号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:
卡片号码
1
2
3
4
5
6
7
8
9
10
取到的次数
13
8
5
7
6
13
18
10
11
9
则取到的卡片的号码为奇数的频率是    .?
解析取到卡片的号码为奇数的次数为13+5+6+18+11=53,则所求的频率为=0.53.
答案0.53
8.某公司在过去几年内使用某种型号的灯管1 000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:
分组
[500,
900)
[900,
1 100)
[1 100,
1 300)
[1 300,
1 500)
[1 500,
1 700)
[1 700,
1 900)
[1 900,
+∞)
频数
48
121
208
223
193
165
42
频率
(1)将各组的频率填入表中;
(2)根据上述统计结果,估计灯管使用寿命不足1 500小时的概率.
解(1)频率依次是:0.048,0.121,0.208,0.223,0.193,0.165,0.042.
(2)样本中寿命不足1 500小时的频数是48+121+208+223=600,
所以样本中灯管使用寿命不足1 500小时的频率是=0.6,
所以灯管使用寿命不足1 500小时的概率约为0.6.
9.导学号36424061假设甲、乙两种品牌的同类产品在某地区市场上销售量相等,为了解他们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:
甲品牌
乙品牌
(1)估计甲品牌产品寿命小于200时的概率.
(2)这两种品牌产品中,某个产品已使用了200时,试估计该产品是甲品牌的概率.
解(1)甲品牌产品寿命小于200时的频率为,用频率估计概率,所以估计甲品牌产品寿命小于200时的概率为.
(2)根据抽样结果,寿命大于200时的产品有75+70=145个,其中甲品牌产品是75个,所以在样本中,寿命大于200时的产品是甲品牌的频率为,用频率估计概率,所以估计已使用了200时的该产品是甲品牌的概率为.
B组
1.下列事件为随机事件的是(  )
A.平时的百分制考试中,小强的考试成绩为105分
B.边长为a,b的长方形的面积为ab
C.100个零件中2个次品,98个正品,从中取出2个,2个都是次品
D.抛一枚均匀硬币,落地后正面朝上或反面朝上
答案C
2.某班有50名同学,其中男女生各25名,今有这个班的一名学生在街上碰到一个同班同学,则下列结论正确的是 (  )
A.碰到异性同学比碰到同性同学的概率大
B.碰到同性同学比碰到异性同学的概率大
C.碰到同性同学和异性同学的概率相等
D.碰到同性同学和异性同学的概率随机变化
答案A
3.据某医疗机构调查,某地区居民血型分布为:O型50%,A型15%,B型30%,AB型5%,现有一血型为A的病人需要输血,若在该地区任选一人,则能为病人输血的概率为 (  )
A.65% B.45% C.20% D.15%
答案A
4.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有(  )
A.64个 B.640个 C.16个 D.160个
解析80×(1-80%)=16(个).
答案C
5.一个容量为20的样本,数据的分组及各组的频数如下:[10,20)2个;[20,30)3个;[30,40)x个;[40,50)5个;[50, 60)4个;[60,70)2个,并且样本在[30,40)之内的频率为0.2,则x等于     ;根据样本的频率分布估计数据落在[10,50)的概率约为     .?
答案4 0.7
6.如果袋中装有数量差别很大而大小、质地都相同的白球和黑球(只是颜色不同),每次从中任取一球,记下颜色后放回并搅匀,取了10次有9次白球,估计袋中数量最多的是     .?
解析取了10次有9次白球,则取出白球的频率是,估计其概率约是,那么取出黑球的概率是,所以取出白球的概率大于取出黑球的概率,所以估计袋中数量最多的是白球.
答案白球
7.(2018广东广州高一练习)李老师在某大学连续3年主讲经济学院的《高等数学》,下表是李老师统计的这门课3年来的学生考试成绩分布:
成绩
人数
90分以上
43
80分~89分
182
70分~79分
260
60分~69分
90
50分~59分
62
50分以下
8
经济学院一年级的学生王小慧下学期将选修李老师的《高等数学》,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位).
(1)90分以上;(2)60分~69分;(3)60分以上.
解总人数为43+182+260+90+62+8=645,根据公式可计算出选修李老师的《高等数学》的人的考试成绩在各个段上的频率依次为:≈0.067,≈0.282,≈0.403,≈0.140,≈0.096,≈0.012.
用已有的信息,可以估计出王小慧下学期选修李老师的《高等数学》得分的概率如下:
(1)将“90分以上”记为事件A,则P(A)≈0.067.
(2)将“60分~69分”记为事件B,则P(B)≈0.140.
(3)将“60分以上”记为事件C,则P(C)≈0.067+0.282+0. 403+0.140=0.892.
8.导学号36424062有一个转盘游戏,转盘被平均分成10等份(如图所示),转动转盘,当转盘停止后,指针指向的数字即为转盘转出的数字.游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜.猜数方案从以下三种方案中选一种:
A.猜“是奇数”或“是偶数”
B.猜“是4的整数倍数”或“不是4的整数倍数”
C.猜“是大于4的数”或“不是大于4的数”
请回答下列问题:
(1)如果你是乙,为了尽可能获胜,你将选择哪种猜数方案,并且怎样猜?为什么?
(2)为了保证游戏的公平性,你认为应选哪种猜数方案?为什么?
(3)请你设计一种其他的猜数方案,并保证游戏的公平性.
解(1)可以选择B,猜“不是4的整数倍数”或选择C,猜“是大于4的数”.“不是4的整数倍数”的概率为=0.8,“是大于4的数”的概率为=0.6,它们都超过了0.5.
(2)为了保证游戏的公平性,应当选择方案A.因为方案A猜“是奇数”或“是偶数”的概率均为0.5,从而保证了该游戏是公平的.
(3)可以设计为:猜“是大于5的数”或“不是大于5的数”,也可以保证游戏的公平性.
2.1 古典概型的特征和概率计算公式
2.2 建立概率模型
课后篇巩固提升
A组
1.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是(  )
A. B.
C. D.
解析随机选取的a,b组成实数对(a,b),有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共15种,其中b>a的有(1,2),(1,3),(2,3),共3种,所以b>a的概率为.
答案D
2.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(  )
A. B.
C. D.
解析从甲、乙等5名学生中选2人有10种方法,其中2人中包含甲的有4种方法,故所求的概率为.
答案B
3.将一枚质地均匀的骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有相等的实根的概率为 (  )
A. B.
C. D.
解析基本事件总数为6×6=36,若方程有相等的实根,则b2-4c=0,满足这一条件的b,c的值只有两种:b=2,c=1;b=4,c=4,故所求概率为.
答案D
4.20名高一学生、25名高二学生和30名高三学生在一起座谈,如果任意抽其中一名学生讲话,抽到高一学生的概率是   ,抽到高二学生的概率是   ,抽到高三学生的概率是   .?
解析任意抽取一名学生是等可能事件,基本事件总数为75,记事件A,B,C分别表示“抽到高一学生”“抽到高二学生”和“抽到高三学生”,则它们包含的基本事件的个数分别为20,25和30.
故P(A)=,P(B)=,P(C)=.
答案
5.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为    .?
解析“从5根竹竿中一次随机抽取2根竹竿”的所有可能结果为(2.5,2.6),(2.5,2.7),(2.5,2.8),(2.5,2.9),(2.6,2.7),(2.6,2.8),(2.6,2.9),(2.7,2.8),(2.7,2.9),(2.8,2.9),共10种等可能出现的结果,又“它们的长度恰好相差0.3 m”包括(2.5,2.8),(2.6,2.9),共2种结果,由古典概型的概率计算公式可得所求事件的概率为.
答案
6.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为     .?
解析甲、乙、丙三人随机地站成一排有:(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙),(丙,乙,甲),共6种排法,其中甲、乙相邻有:(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4种排法.
所以甲、乙两人相邻而站的概率为.
答案
7.(2018陕西榆林高一测验)某汽车站每天均有3辆开往省城的分上、中、下等级的客车.某天王先生准备在该汽车站乘车去省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先不上第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆,那么他乘上上等车的概率为     .?
解析共有6种发车顺序:①上、中、下;②上、下、中;③中、上、下;④中、下、上;⑤下、中、上;⑥下、上、中(其中画线的表示王先生所乘的车),所以他乘上上等车的概率为.
答案
8.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖(所有的球除颜色外都相同).
(1)用球的标号列出所有可能的摸出结果.
(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.
解(1)所有可能的摸出结果是(A1,a1),(A1,a2),(A1,b1),(A1,b2),(A2,a1),(A2,a2),(A2,b1),(A2,b2),(B,a1),(B,a2),(B,b1),(B,b2).
(2)不正确.理由如下:
由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为(A1,a1),(A1,a2),(A2,a1),(A2,a2),共4种,所以中奖的概率为,不中奖的概率为1-.故这种说法不正确.
9.导学号36424065为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛.该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙、丙三支队伍参加决赛.
(1)求决赛中甲、乙两支队伍恰好排在前两位的概率;
(2)求决赛中甲、乙两支队伍出场顺序相邻的概率.
解三支队伍所有可能的出场顺序的基本事件为:(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙),(丙,乙,甲),共6种.
(1)设“甲、乙两支队伍恰好排在前两位”为事件A,事件A包含的基本事件有:(甲,乙,丙),(乙,甲,丙),共2种,所以P(A)=.
所以甲、乙两支队伍恰好排在前两位的概率为.
(2)设“甲、乙两支队伍出场顺序相邻”为事件B,事件B包含的基本事件有:(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4种,所以P(B)=.
所以甲、乙两支队伍出场顺序相邻的概率为.
B组
1.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且a,b∈{1,2,3,4},若|a-b|≤1,则称甲、乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为(  )
A. B.
C. D.
解析甲、乙所猜数字的情况有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16种情况,其中满足|a-b|≤1的情况有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4)共10种情况,故所求概率为.
答案A
2.若A={1,2,3},B={x∈R|x2-ax+b=0,a∈A,b∈A},则A∩B=B的概率是(  )
A. B. C. D.1
解析随着a, b的取值变化,集合B有32=9种可能,如表,经过验证很容易知道其中有8种满足A∩B=B,所以概率是.故选C.
 B   a 
b    
1
2
3
1
?
{1}
2
?
?
{1,2}
3
?
?
?
答案C
3.连续抛掷质地均匀的骰子两次,得到的点数分别记为a和b,则使直线3x-4y=0与圆(x-a)2+(y-b)2=4相切的概率为(  )
A. B. C. D.
解析连续抛掷质地均匀的骰子两次的所有试验结果有36种,要使直线3x-4y=0与圆(x-a)2+(y-b)2=4相切,则应满足=2,即满足|3a-4b|=10,符合题意的(a,b)有(6,2),(2,4),一共2个.所以由古典概型得所求概率为,故选D.
答案D
4.第1,2,5,7路公共汽车都在一个车站停靠,有一位乘客等候着1路或5路公共汽车,假定各路公共汽车首先到站的可能性相等,那么首先到站的正好为这位乘客所要乘的车的概率是     .?
解析因为4种公共汽车先到站共有4种结果,且每种结果出现的可能性相等,所以“首先到站的车正好是所乘车”的结果有2种,故所求概率为.
答案
5.有6根细木棒,长度分别为1,2,3,4,5,6,从中任取3根首尾相接,能搭成三角形的概率是     .?
解析从这6根细木棒中任取3根首尾相接,共有
(1,2,3),(1,2,4),(1,2,5),(1,2,6),(1,3,4),(1,3,5),(1,3,6),(1,4,5),( 1,4,6),(1,5,6),(2,3,4),(2,3,5),(2,3,6),(2,4,5),(2,4,6),(2,5,6),(3,4,5),(3,4,6),(3,5,6),(4,5,6)20种,能构成三角形的取法有(2,3,4),(2,4,5),(2,5,6),(3,4,5),(3,4,6),(3,5,6),(4,5,6),共有7种情况,所以由古典概型概率公式可得所求概率为P=.
答案
6.小敏和小慧利用“土”“口”“木”三个汉字设计一个游戏,规则如下:将这三个汉字分别写在背面都相同的三张卡片上,背面朝上,洗匀后抽出一张,放回洗匀后再抽出一张,若两次抽出的汉字能构成上下结构的汉字(如“土”“土”构成“圭”)则小敏获胜,否则小慧获胜.你认为这个游戏对谁有利?请用列表的方法进行分析,并对构成的汉字进行说明.
解这个游戏对小慧有利.
每次游戏时,所有可能出现的结果如下:
    第二张卡片
第一张卡片    




(土,土)
(土,口)
(土,木)

(口,土)
(口,口)
(口,木)

(木,土)
(木,口)
(木,木)
总共有9种结果,且每种结果出现的可能性相同,其中能组成上下结构的汉字的结果有4种:(土,土)“圭”,(口,口)“吕”,(木,口)“杏”或“呆”,(口,木)“呆”或“杏”.所以小敏获胜的概率为,小慧获胜的概率为.所以这个游戏对小慧有利.
7.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:
①若xy≤3,则奖励玩具一个;
②若xy≥8,则奖励水杯一个;
③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.
(1)求小亮获得玩具的概率;
(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
解用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.
因为S中元素的个数是4×4=16,
所以基本事件总数n=16.
(1)记“xy≤3”为事件A,则事件A包含的基本事件数共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).
所以P(A)=,
即小亮获得玩具的概率为.
(2)记“xy≥8”为事件B,“3则事件B包含的基本事件数共6个,
即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).
所以P(B)=.
事件C包含的基本事件数共5个,
即(1,4),(2,2),(2, 3),(3,2),(4,1).
所以P(C)=.
因为,
所以小亮获得水杯的概率大于获得饮料的概率.
2.3 互斥事件
课后篇巩固提升
A组
1.从装有2个红球和2个白球的口袋中任取2个球(所有的球除颜色外都相同),则互斥而不对立的两个事件是 (  )
A.至少有1个白球,都是白球
B.至少有1个白球,至少有1个红球
C.恰有1个白球,恰有2个白球
D.至少有1个白球,都是红球
答案C
2.从一批羽毛球产品中任取一个,其质量小于4.8 g的概率为0.3,质量小于4.85 g的概率为0.32,则质量在[4.8,4.85)(g)范围内的概率是(  )
                
A.0.62 B.0.38 C.0.02 D.0.68
答案C
3.某市派出甲、乙两支球队参加全省足球冠军赛,甲、乙两队夺取冠军的概率分别是,则该市球队夺得全省足球冠军的概率为(  )
A. B. C. D.
解析设事件A,B分别表示该市的甲、乙队夺取冠军,则P(A)=,P(B)=,且A,B互斥.该市球队夺得冠军即事件A+B发生.于是P(A+B)=P(A)+P(B)=.
答案D
4.从某班学生中任找一人,如果该同学身高小于160 cm的概率为0.2,该同学的身高大于等于160 cm小于等于175 cm的概率为0.5,那么该同学的身高超过175 cm的概率为(  )
A.0.2 B.0.3 C.0.7 D.0.8
答案B
5.在一次随机试验中,其中3个事件A1,A2,A3发生的概率分别为0.2,0.3,0.5,则下列说法正确的是(  )
A.A1+A2与A3是互斥事件,也是对立事件
B.A1+A2与A3是必然事件
C.P(A2+A3)=0.8
D.P(A1+A2)≤0.5
解析由题意,A1,A2,A3间不一定彼此互斥,这时随机试验的结果不只是A1,A2,A3,还可能有其他结果,故A,B,C均错,只有D正确.
答案D
6.某班派出甲、乙两名同学参加学校举行的数学竞赛,甲、乙两名同学夺得第一名的概率分别是,则该班同学夺得第一名的概率为    .?
答案
7.如图所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ、Ⅱ、Ⅲ的概率分别为0.35、0.30、0.25,则不命中靶的概率是     .?
解析射手命中圆面Ⅰ为事件A,命中圆环Ⅱ为事件B,命中圆环Ⅲ为事件C,不中靶为事件D,则A、B、C互斥,故射手中靶的概率为P(A∪B∪C)=P(A)+P(B)+P(C)=0.35+0.30+0.25=0.90.
因为中靶和不中靶是对立事件,故不命中靶的概率为P(D)=1-P(A∪B∪C)=1-0.90=0.10.
答案0.10
8.已知6名同学中恰有两名女同学,从这6名同学中任选两人参加某项活动,则在选出的同学中至少包括一名女同学的概率是     .?
解析从6名同学中任选两人,用列举法易知共有15种选法.如果从中选2人,全是男生,共有6种选法.故全是男生的概率是.
从而至少有1名女生的概率是1-.
答案
9.在某一时期内,一条河流某处的年最高水位(单位:m)在各个范围内的概率如下表:
年最高水
位/m
[8,10)
[10,12)
[12,14)
[14,16)
[16,18)
概率
0.10
0.28
0.38
0.16
0.08
计算在同一时期内,河流此处的年最高水位在下列范围内的概率:(1)[10,16)m;(2)[8,12)m;(3)[14,18)m.
解记此河流某处的年最高水位在[8,10),[10,12),[12,14),[14,16),[16,18)m分别为事件A,B,C,D,E.
(1)P(B+C+D)=P(B)+P(C)+P(D)=0.28+0.38+0.16=0.82.
(2)P(A+B)=P(A)+P(B)=0.10+0.28=0.38.
(3)P(D+E)=P(D)+P(E)=0.16+0.08=0.24.
所以年最高水位在[10,16),[8,12),[14,18)m的概率分别为0.82,0.38,0.24.
10.导学号36424068一个箱子内有9张票,其号数分别为1,2,…,9.从中任取2张,其号数至少有一个为奇数的概率是多少?
解从9张票中任取2张,有
(1,2),(1,3),…,(1,9);
(2,3),(2,4),…,(2,9);
(3,4),(3,5),…,(3,9);

(7,8),(7,9);
(8,9),共计36种取法.
记“号数至少有一个为奇数”为事件B,“号数全是偶数”为事件C,则事件C为从号数为2,4,6,8的四张票中任取2张有(2,4),(2,6),(2,8),(4,6),(4,8),(6,8)共6种取法.
所以P(C)=,由对立事件的性质得P(B)=1-P(C)=1-.
B组
1.下列四个命题:①对立事件一定是互斥事件;②A,B为两个事件,则P(A+B)=P(A)+P(B);③若事件A,B,C两两互斥,则P(A)+P(B)+P(C)=1;④事件A,B满足P(A)+P(B)=1,则A,B是对立事件,其中错误命题的个数是(  )
A.0 B.1 C.2 D.3
答案D
2.从1,2,3,4,5这5个数字中任取三个不同的数字,求下列事件的概率:
(1)事件A={三个数字中不含1和5};
(2)事件B={三个数字中含1或5}.
解这个试验的基本事件为:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),所以基本事件总数n=10.
(1)因为事件A={(2,3,4)},
所以事件A包含的事件数m=1.
所以P(A)=.
(2)因为事件B={(1,2,3),(1,2,4),(1,2, 5), (1,3,4),(1,3,5),(1,4,5),(2,3,5),(2,4,5),(3,4,5)},
所以事件B包含的基本事件数m=9.
所以P(B)=.
3.掷一枚质地均匀的骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则事件A+发生的概率为    .?
答案
4.某战士射击一次中靶的概率为0.95,中靶环数大于5的概率为0.75,则中靶环数大于0且小于6的概率为     (只考虑整数环数).?
解析因为某战士射击一次“中靶的环数大于5”(事件A)与“中靶的环数大于0且小于6”(事件B)是互斥事件,P(A+B)=0.95,所以P(A)+P(B)=0.95,所以P(B)=0.95-0.75=0.2.
答案0.2
5.对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为     .?
解析设区间[25,30)对应矩形的另一边长为x,则所有矩形面积之和为1,即(0.02+0.04+0.06+x+0.03)×5=1,解得x=0.05.产品为二等品的概率为0.04×5+0.05×5=0.45.
答案0.45
6.袋中有红、黄、白3种颜色的球各1只(所有的球除颜色外都相同),从中每次任取1只,有放回地抽取3次,求:
(1)3只球颜色全相同的概率;
(2)3只球颜色不全相同的概率.
解(1)3只球颜色全相同包括3只球全是红球(记为事件A), 3只球全是黄球(记为事件B),3只球全是白球(记为事件C),且它们彼此互斥,故3只球颜色全相同这个事件可记为A+B+C.
又P(A)=P(B)=P(C)=,
故P(A+B+C)=P(A)+P(B)+P(C)=.
(2)记“3只球颜色不全相同”为事件D,则事件为“3只球颜色全相同”.
又P()=P(A+B+C) =,
所以P(D)=1-P()=1-,故3只球颜色不全相同的概率为.
7.导学号36424069甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数算甲赢,否则算乙赢.
(1)若以A表示和为6的事件,求P(A);
(2)现连玩三次,若以B表示甲至少赢一次的事件,C表示乙至少赢两次的事件,试问B与C是否为互斥事件?为什么?
(3)这种游戏规则公平吗?试说明理由.
解(1)如表所示:
1
2
3
4
5
1
(1,1)
(1,2)
(1,3)
(1,4)
(1,5)
2
(2,1)
(2,2)
(2,3)
(2,4)
(2,5)
3
(3,1)
(3,2)
(3,3)
(3,4)
(3,5)
4
(4,1)
(4,2)
(4,3)
(4,4)
(4,5)
5
(5,1)
(5,2)
(5,3)
(5,4)
(5,5)
由表可知:基本事件的总数为5×5=25(个),事件A包含的基本事件数共5个:(1,5),(2,4),(3,3),(4,2),(5,1),由此得到P(A)=.
(2)B与C不是互斥事件.因为事件B与C可以同时发生,如甲赢一次,乙赢两次的事件即符合题意.
(3)这种游戏规则不公平.由(1)知,和为偶数的基本事件数共13个:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).
所以甲赢的概率为,乙赢的概率为,因此这种游戏规则不公平,对甲有利.
§3 模拟方法——概率的应用
课后篇巩固提升
1.将一个长与宽不相等的矩形沿对角线分成四个区域(如图),并涂上四种颜色,中间装个指针,使其可以自由转动.对该指针在各区域停留的可能性下列说法正确的是 (  )
A.一样大
B.蓝白区域大
C.红黄区域大
D.由指针转动圈数决定
答案B
2.在长为10 cm的线段AB上任取一点G,用AG为半径作圆,则圆的面积介于36π cm2到64π cm2之间的概率是(  )
                
A. B. C. D.
解析以AG为半径作圆,面积介于36π cm2到64π cm2之间,则AG的长度应介于6 cm到8 cm之间.
∴所求概率P(A)=.
答案D
3.在长为10 cm的线段AB上任取一点P,并以线段AP为边作正方形,这个正方形的面积介于25 cm2与49 cm2之间的概率为(  )
A. B. C. D.
答案B
4.在面积为S的△ABC的边AB上任取一点P,则△PBC的面积不小于的概率是(  )
A. B. C. D.
解析如图,在边AB上取点P',使,则点P应在线段AP'上运动,则所求概率为.故选C.
答案C
5.在区间[0,1]上任取两个数,则这两个数的平方和在区间[0,1]上的概率是(  )
A. B. C. D.
解析设任意在[0,1]上取出的数为a,b,若a2+b2也在[0,1]上,则有0≤a2+b2≤1(如图),试验的全部结果所构成的区域为边长为1的正方形,满足a2+b2在[0,1]内的点在单位圆内(如图阴影部分),故所求概率P=.
答案A
6.(2018安徽蚌埠高一检测)如图,在一个边长为a、b(a>b>0)的矩形内画一个梯形,梯形上、下底长分别为a与a,高为b,向该矩形内随机投一点,则所投的点落在梯形内部的概率为     .?
解析直接套用几何概型的概率公式.S矩形=ab,S梯形=·b=ab,所以所投的点落在梯形内部的概率为.
答案
7.如图所示,在平面直角坐标系内,射线OT落在60°角的终边上,任作一条射线OA,则射线OA落在∠xOT内的概率为     .?
解析以O为起点作射线OA是随机的,因而射线OA落在任何位置都是等可能的.落在∠xOT内的概率只与∠xOT的大小有关,符合几何概型的条件.记事件B={射线OA落在∠xOT内},因为∠xOT=60°,所以P(B)=.
答案
8.已知一个球内切于棱长为2的正方体(与各个面相切).若在正方体内任取一点,则这一点不在球内的概率为     .?
解析由题意知,正方体内切球的半径为1,则V球=π,所以所求概率为=1-.
答案1-
9.在单位圆O的某一直径上随机地取一点Q,求过点Q且与该直径垂直的弦的长度不超过1的概率.
解弦长不超过1,即|OQ|≥,而点Q在直径AB上,是随机的,事件A={弦长超过1}.
由几何概型的概率公式,得P(A)=.
所以弦长不超过1的概率为1-P(A)=1-.
10.已知正三棱锥S-ABC的底面边长为a,高为h,在正三棱锥内取点M,试求点M到底面的距离小于的概率.
解如图,分别在SA,SB,SC上取点A1,B1,C1,使A1,B1,C1分别为SA,SB,SC的中点,则当点M位于平面ABC和平面A1B1C1之间时,点M到底面的距离小于.
设△ABC的面积为S,由△ABC∽△A1B1C1,且相似比为2,得△A1B1C1的面积为.
由题意知区域D(三棱锥S-ABC)的体积为Sh,
区域d(三棱台ABC-A1B1C1)的体积为Sh-Sh.
所以点M到底面的距离小于的概率为P=.
11.导学号36424072已知函数f(x)=-x2+ax-b.
(1)若a,b都是从0,1,2,3,4五个数中任取的一个数,求f(x)有零点的概率;
(2)若a,b都是从区间[0,4]上任取的一个数,求f(1)>0的概率.
解(1)a,b都是从0,1,2,3,4五个数中任取的一个数,则基本事件的总数为5×5=25.
f(x)有零点的条件为Δ=a2-4b≥0.即a2≥4b;而事件“a2≥4b”包含12个基本事件:(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2),(4,3),(4,4).所以f(x)有零点的概率P1=.
(2)a,b都是从区间[0,4]上任取的一个数,f(1)=-1+a-b>0,即a-b>1,由图可知f(1)>0的概率P2=.