【备考2019】中考数学题型解析与技巧点拨专题六 圆综合题解题技巧(含解析)

文档属性

名称 【备考2019】中考数学题型解析与技巧点拨专题六 圆综合题解题技巧(含解析)
格式 zip
文件大小 3.8MB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2019-01-13 13:54:23

文档简介

专题六 中考数学中的圆综合题解题技巧
圆的综合题是历年中考的重头戏,很多省份设置为压轴题,分值6分,7分,9分甚至12分。圆的综合题综合的知识点比较丰富,类型也比较多,难度也比较大,通常要作一至两条辅助线,多的要作三条。很多省份的中考题一个题干,设置两个小问题,或者一个题干,设置三个小问题。只要我们熟记圆的各个性质和判定定理,还有辅助线的各种作法,这类题是可以突破的。
圆的综合题以圆为背景,综合特殊四边形或者三角形,利用三角形相似或解直角三角形等方法,求阴影部分的面积和线段的关系,或者判断圆和线的位置关系等等。主要是记住几个重要定理,会灵活应用定理,根据图形,作辅助线是解题的关键。
类型一:求阴影部分的面积
【例题展示】
例题1(2018山东省临沂市))如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.
(1)求证:AC是⊙O的切线;
(2)若BD=,BE=1.求阴影部分的面积.
【分析】(1)连接OD,作OF⊥AC于F,如图,利用等腰三角形的性质得AO⊥BC,AO平分∠BAC,再根据切线的性质得OD⊥AB,然后利用角平分线的性质得到OF=OD,从而根据切线的判定定理得到结论;
(2)设⊙O的半径为r,则OD=OE=r,利用勾股定理得到r2+()2=(r+1)2,解得r=1,则OD=1,OB=2,利用含30度的直角三角三边的关系得到∠B=30°,∠BOD=60°,则∠AOD=30°,于是可计算出AD=OD=,然后根据扇形的面积公式,利用阴影部分的面积=2S△AOD﹣S扇形DOF进行计算.
【解答】(1)证明:连接OD,作OF⊥AC于F,如图,
∵△ABC为等腰三角形,O是底边BC的中点,
∴AO⊥BC,AO平分∠BAC,
∵AB与⊙O相切于点D,
∴OD⊥AB,
而OF⊥AC,
∴OF=OD,
∴AC是⊙O的切线;
(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,
∴r2+()2=(r+1)2,解得r=1,
∴OD=1,OB=2,
∴∠B=30°,∠BOD=60°,
∴∠AOD=30°,
在Rt△AOD中,AD=OD=,
∴阴影部分的面积=2S△AOD﹣S扇形DOF
=2××1×﹣=﹣.
【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了等腰三角形的性质.
例题2(2018山东省青岛市)如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是   .
【分析】根据扇形面积公式以及三角形面积公式即可求出答案.
【解答】解:∵∠B=90°,∠C=30°,
∴∠A=60°,
∵OA=OF,
∴△AOF是等边三角形,
∴∠COF=120°,
∵OA=2,
∴扇形OGF的面积为:
∵OA为半径的圆与CB相切于点E,
∴∠OEC=90°,
∴OC=2OE=4,
∴AC=OC+OA=6,
∴AB=AC=3,
∴由勾股定理可知:BC=
∴△ABC的面积为:
∵△OAF的面积为:,
∴阴影部分面积为:
故答案为:
【点评】本题考查扇形面积公式,涉及含30度角的直角三角形的性质,勾股定理,切线的性质,扇形的面积公式等知识,综合程度较高.
例题3(2018广东省)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为   .(结果保留π)
【分析】连接OE,如图,利用切线的性质得OD=2,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD﹣S扇形EOD计算由弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.
【解答】解:连接OE,如图,
∵以AD为直径的半圆O与BC相切于点E,
∴OD=2,OE⊥BC,
易得四边形OECD为正方形,
∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=22﹣,
∴阴影部分的面积=×2×4﹣(4﹣π)=π.
故答案为π.
【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.
例题4(2018江苏省泰州市)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.
(1)试判断DE与⊙O的位置关系,并说明理由;
(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.
【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;
(2)利用勾股定理结合扇形面积求法分别分析得出答案.
【解答】解:(1)DE与⊙O相切,
理由:连接DO,
∵DO=BO,
∴∠ODB=∠OBD,
∵∠ABC的平分线交⊙O于点D,
∴∠EBD=∠DBO,
∴∠EBD=∠BDO,
∴DO∥BE,
∵DE⊥BC,
∴∠DEB=∠EDO=90°,
∴DE与⊙O相切;
(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,
∴DE=DF=3,
∵BE=3,
∴BD==6,
∵sin∠DBF==,
∴∠DBA=30°,
∴∠DOF=60°,
∴sin60°===,
∴DO=2,
则FO=,
故图中阴影部分的面积为:﹣××3=2π﹣.
【点评】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.
【跟踪训练】
1.(2018湖北省荆门市)如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为   .
2.(2018湖北省襄阳市)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.
(1)求证:DA=DE;
(2)若AB=6,CD=4,求图中阴影部分的面积.
3.(2018江苏省扬州市)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.
(1)求证:AC是⊙O的切线;
(2)若点F是A的中点,OE=3,求图中阴影部分的面积;
(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.
4.(2018云南省昆明市)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.
(1)求证:CD是⊙O的切线;
(2)若∠D=30°,BD=2,求图中阴影部分的面积.
5.(2018广西贵港市)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为   (结果保留π).
(2018江苏省淮安市)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.
(1)试判断直线DE与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.
7.(2018黑龙江省齐齐哈尔市)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.
(1)求证:BC是⊙O的切线;
(2)若BF=BC=2,求图中阴影部分的面积.
8.(2018四川省达州市)已知:如图,以等边△ABC的边BC为直径作⊙O,分别交AB,AC于点D,E,过点D作DF⊥AC交AC于点F.
(1)求证:DF是⊙O的切线;
(2)若等边△ABC的边长为8,求由、DF、EF围成的阴影部分面积.
类型二:圆和三角函数的综合
【例题展示】
1.(2018甘肃省定西市)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.
(1)求证:∠C=90°;
(2)当BC=3,sinA=时,求AF的长.
【分析】(1)连接OE,BE,因为DE=EF,所以,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;
(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=,从而可求出r的值.
【解答】解:(1)连接OE,BE,
∵DE=EF,

∴∠OBE=∠DBE
∵OE=OB,
∴∠OEB=∠OBE
∴∠OEB=∠DBE,
∴OE∥BC
∵⊙O与边AC相切于点E,
∴OE⊥AC
∴BC⊥AC
∴∠C=90°
(2)在△ABC,∠C=90°,BC=3,sinA=
∴AB=5,
设⊙O的半径为r,则AO=5﹣r,
在Rt△AOE中,sinA=
∴r=
∴AF=5﹣2×=
【点评】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.
2.(2018广东省)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.
(1)证明:OD∥BC;
(2)若tan∠ABC=2,证明:DA与⊙O相切;
(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.
【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;
(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB=,证OE为中位线知OE=a、AE=CE=AC=a,进一步求得DE=,再△AOD中利用勾股定理逆定理证∠OAD=90°即可得;
(3)先证△AFD∽△BAD得DF?BD=AD2①,再证△AED∽△OAD得OD?DE=AD2②,由①②得DF?BD=OD?DE,即,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得,结合(2)可得相关线段的长,代入计算可得.
【解答】解:(1)连接OC,
在△OAD和△OCD中,OA=OC,AD=CD,OD=OD,
∴△OAD≌△OCD(SSS),
∴∠ADO=∠CDO,
又AD=CD,
∴DE⊥AC,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠ACB=90°,即BC⊥AC,
∴OD∥BC;
(2)∵tan∠ABC==2,
∴设BC=a、则AC=2a,
∴AD=AB=,
∵OE∥BC,且AO=BO,
∴OE=BC=a,AE=CE=AC=a,
在△AED中,DE=,
在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,
∴AO2+AD2=OD2,
∴∠OAD=90°,
则DA与⊙O相切;
(3)连接AF,
∵AB是⊙O的直径,
∴∠AFD=∠BAD=90°,
∵∠ADF=∠BDA,
∴△AFD∽△BAD,
∴,即DF?BD=AD2①,
又∵∠AED=∠OAD=90°,∠ADE=∠ODA,
∴△AED∽△OAD,
∴,即OD?DE=AD2②,
由①②可得DF?BD=OD?DE,即,
又∵∠EDF=∠BDO,
∴△EDF∽△BDO,
∵BC=1,
∴AB=AD=、OD=、ED=2、BD=、OB=,
∴,即,
解得:EF=.
【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.典型的中考压轴题.
3.(2018湖北省荆门市)如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC交EC的延长线于点D,AD交⊙O于F,FM⊥AB于H,分别交⊙O、AC于M、N,连接MB,BC.
(1)求证:AC平分∠DAE;
(2)若cosM=,BE=1,①求⊙O的半径;②求FN的长.
【分析】(1)连接OC,如图,利用切线的性质得OC⊥DE,则判断OC∥AD得到∠1=∠3,加上∠2=∠3,从而得到∠1=∠2;
(2)①利用圆周角定理和垂径定理得到,则∠COE=∠FAB,所以∠FAB=∠M=∠COE,设⊙O的半径为r,然后在Rt△OCE中利用余弦的定义得到,从而解方程求出r即可;
②连接BF,如图,先在Rt△AFB中利用余弦定义计算出AF=,再计算出OC=3,接着证明△AFN∽△AEC,然后利用相似比可计算出FN的长.
【解答】(1)证明:连接OC,如图,
∵直线DE与⊙O相切于点C,
∴OC⊥DE,
又∵AD⊥DE,
∴OC∥AD.
∴∠1=∠3
∵OA=OC,
∴∠2=∠3,
∴∠1=∠2,
∴AC平方∠DAE;
(2)解:①∵AB为直径,
∴∠AFB=90°,
而DE⊥AD,
∴BF∥DE,
∴OC⊥BF,
∴,
∴∠COE=∠FAB,
而∠FAB=∠M,
∴∠COE=∠M,
设⊙O的半径为r,
在Rt△OCE中,cos∠COE=,即,解得r=4,
即⊙O的半径为4;
②连接BF,如图,
在Rt△AFB中,cos∠FAB=,
∴AF=8×
在Rt△OCE中,OE=5,OC=4,
∴CE=3,
∵AB⊥FM,
∴,
∴∠5=∠4,
∵FB∥DE,
∴∠5=∠E=∠4,
∵,
∴∠1=∠2,
∴△AFN∽△AEC,
∴,即,
∴FN=.
【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了垂径定理、圆周角定理和相似三角形的判定与性质.
4.(2018四川省内江市)如图,以Rt△ABC的直角边AB为直径作⊙O交斜边AC于点D,过圆心O作OE∥AC,交BC于点E,连接DE.
(1)判断DE与⊙O的位置关系并说明理由;
(2)求证:2DE2=CD?OE;
(3)若tanC=,DE=,求AD的长.
【分析】(1)先判断出DE=BE=CE,得出∠DBE=∠BDE,进而判断出∠ODE=90°,即可得出结论;
(2)先判断出△BCD∽△ACB,得出BC2=CD?AC,再判断出DE=BC,AC=2OE,即可得出结论;
(3)先求出BC,进而求出BD,CD,再借助(2)的结论求出AC,即可得出结论.
【解答】解:(1)DE是⊙O的切线,理由:如图,
连接OD,BD,∵AB是⊙O的直径,
∴∠ADB=∠BDC=90°,
∵OE∥AC,OA=OB,
∴BE=CE,
∴DE=BE=CE,
∴∠DBE=∠BDE,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠ODE=∠OBE=90°,
∵点D在⊙O上,
∴DE是⊙O的切线;
(2)∵∠BCD=∠ABC=90°,∠C=∠C,
∴△BCD∽△ACB,
∴,
∴BC2=CD?AC,
由(1)知DE=BE=CE=BC,
∴4DE2=CD?AC,
由(1)知,OE是△ABC是中位线,
∴AC=2OE,
∴4DE2=CD?2OE,
∴2DE2=CD?OE;
(3)∵DE=,
∴BC=5,
在Rt△BCD中,tanC=,
设CD=3x,BD=4x,根据勾股定理得,(3x)2+(4x)2=25,
∴x=﹣1(舍)或x=1,
∴BD=4,CD=3,
由(2)知,BC2=CD?AC,
∴AC=,
∴AD=AC﹣CD=.
【点评】此题是圆的综合题,主要考查了切线的性质,等腰三角形的性质,三角形的中位线定理,相似三角形的判定和性质,锐角三角函数,判断出△BCD∽△ACB是解本题的关键.
 
【跟踪训练】
(2018浙江省温州市)如如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在上.
(1)求证:AE=AB.
(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.

2.(2018贵州省黔西南)如图,CE是⊙O的直径,BC切⊙O于点C,连接OB,作ED∥OB交⊙O于点D,BD的延长线与CE的延长线交于点A.
(1)求证:AB是⊙O的切线;
(2)若⊙O的半径为1,tan∠DEO=,tan∠A=,求AE的长.
3.(2018四川省宜宾市)如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E.
(1)求证:直线EC为圆O的切线;
(2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.
4.(2018内蒙古包头市)如图,在Rt△ACB中,∠ACB=90°,以点A为圆心,AC长为半径的圆交AB于点D,BA的延长线交⊙A于点E,连接CE,CD,F是⊙A上一点,点F与点C位于BE两侧,且∠FAB=∠ABC,连接BF.
(1)求证:∠BCD=∠BEC;
(2)若BC=2,BD=1,求CE的长及sin∠ABF的值.
5.(2018广西贵港市)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.
(1)求证:BD是⊙O的切线;
(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.
6.(2018湖北省恩施州)如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点.
(1)求证:DE为⊙O切线;
(2)若⊙O的半径为3,sin∠ADP=,求AD;
(3)请猜想PF与FD的数量关系,并加以证明.
7.(2018四川省资阳市)已知:如图,在△ABC中,AB=AC,点P是底边BC上一点且满足PA=PB,⊙O是△PAB的外接圆,过点P作PD∥AB交AC于点D.
(1)求证:PD是⊙O的切线;
(2)若BC=8,tan∠ABC=,求⊙O的半径.
8.(2018深圳市)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=.
(1)求AB的长度;
(2)求AD?AE的值;
(3)过A点作AH⊥BD,求证:BH=CD+DH.
类型三:特殊图形(四边形或三角形)与圆的综合
【例题展示】
例题1(2018山东省菏泽市)如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC的平分线交于点D,BD与AC交于点E,与⊙O交于点F.
(1)求∠DAF的度数;
(2)求证:AE2=EF?ED;
(3)求证:AD是⊙O的切线.
【分析】(1)求出∠ABC、∠ABD、∠CBD的度数,求出∠D度数,根据三角形内角和定理求出∠BAF和∠BAD度数,即可求出答案;
(2)求出△AEF∽△DEA,根据相似三角形的性质得出即可;
(3)连接AO,求出∠OAD=90°即可.
【解答】(1)解:∵AD∥BC,
∴∠D=∠CBD,
∵AB=AC,∠BAC=36°,
∴∠ABC=∠ACB=×(180°﹣∠BAC)=72°,
∴∠AFB=∠ACB=72°,
∵BD平分∠ABC,
∴∠ABD=∠CBD=∠ABC=72°=36°,
∴∠D=∠CBD=36°,
∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,
∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,
∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;
(2)证明:∵∠CBD=36°,∠FAC=∠CBD,
∴∠FAC=36°=∠D,
∵∠AED=∠AEF,
∴△AEF∽△DEA,
∴,
∴AE2=EF×ED;
(3)证明:连接OA、OF,
∵∠ABF=36°,
∴∠AOF=2∠ABF=72°,
∵OA=OF,
∴∠OAF=∠OFA=×(180°﹣∠AOF)=54°,
由(1)知∠ADF=36°,
∴∠OAD=36°+54°=90°,
即OA⊥AD,
∵OA为半径,
∴AD是⊙O的切线.
【点评】本题考查了切线的判定,圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.
例题2(2018湖北省黄石市)如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2,∠BCD=120°,A为的中点,延长BA到点P,使BA=AP,连接PE.
(1)求线段BD的长;
(2)求证:直线PE是⊙O的切线.
【分析】(1)连接DB,如图,利用圆内接四边形的性质得∠DEB=60°,再根据圆周角定理得到∠BDE=90°,然后根据含30度的直角三角形三边的关系计算BD的长;
(2)连接EA,如图,根据圆周角定理得到∠BAE=90°,而A为的中点,则∠ABE=45°,再根据等腰三角形的判定方法,利用BA=AP得到△BEP为等腰直角三角形,所以∠PEB=90°,然后根据切线的判定定理得到结论.
【解答】(1)解:连接DB,如图,
∵∠BCD+∠DEB=90°,
∴∠DEB=180°﹣120°=60°,
∵BE为直径,
∴∠BDE=90°,
在Rt△BDE中,DE=BE=×2=,
BD=DE==3;
(2)证明:连接EA,如图,
∵BE为直径,
∴∠BAE=90°,
∵A为的中点,
∴∠ABE=45°,
∵BA=AP,
而EA⊥BA,
∴△BEP为等腰直角三角形,
∴∠PEB=90°,
∴PE⊥BE,
∴直线PE是⊙O的切线.
【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.
例题3(2018河南省湘潭市 )如图,AB是以O为圆心的半圆的直径,半径CO⊥AO,点M是上的动点,且不与点A、C、B重合,直线AM交直线OC于点D,连结OM与CM.
(1)若半圆的半径为10.
①当∠AOM=60°时,求DM的长;
②当AM=12时,求DM的长.
(2)探究:在点M运动的过程中,∠DMC的大小是否为定值?若是,求出该定值;若不是,请说明理由.
【分析】(1)①当∠AOM=60°时,所以△AMO是等边三角形,从而可知∠MOD=30°,∠D=30°,所以DM=OM=10;
②过点M作MF⊥OA于点F,设AF=x,OF=10﹣x,利用勾股定理即可求出x的值.易证明△AMF∽△ADO,从而可知AD的长度,进而可求出MD的长度.
(2)根据点M的位置分类讨论,然后利用圆周角定理以及圆内接四边形的性质即可求出答案.
【解答】解:(1)①当∠AOM=60°时,
∵OM=OA,
∴△AMO是等边三角形,
∴∠A=∠MOA=60°,
∴∠MOD=30°,∠D=30°,
∴DM=OM=10
②过点M作MF⊥OA于点F,
设AF=x,
∴OF=10﹣x,
∵AM=12,OA=OM=10,
由勾股定理可知:122﹣x2=102﹣(10﹣x)2
∴x=,
∴AF=,
∵MF∥OD,
∴△AMF∽△ADO,
∴,
∴,
∴AD=
∴MD=AD﹣AM=
(2)当点M位于之间时,
连接BC,
∵C是的重点,
∴∠B=45°,
∵四边形AMCB是圆内接四边形,
此时∠CMD=∠B=45°,
当点M位于之间时,
连接BC,
由圆周角定理可知:∠CMD=∠B=45°
综上所述,∠CMD=45°
【点评】本题考查圆的综合问题,涉及圆周角定理,勾股定理,相似三角形的判定与性质,含30度角的直角三角形性质,解方程等知识,综合程度较高,需要学生灵活运用所学知识.
例题4(2018湖北省宜昌市)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.
(1)求证:四边形ABFC是菱形;
(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.
【分析】(1)根据对角线相互平分的四边形是平行四边形,证明是平行四边形,再根据邻边相等的平行四边形是菱形即可证明;
(2)设CD=x,连接BD.利用勾股定理构建方程即可解决问题;
【解答】(1)证明:∵AB是直径,
∴∠AEB=90°,
∴AE⊥BC,
∵AB=AC,
∴BE=CE,
∵AE=EF,
∴四边形ABFC是平行四边形,
∵AC=AB,
∴四边形ABFC是菱形.
(2)设CD=x.连接BD.
∵AB是直径,
∴∠ADB=∠BDC=90°,
∴AB2﹣AD2=CB2﹣CD2,
∴(7+x)2﹣72=42﹣x2,
解得x=1或﹣8(舍弃)
∴AC=8,BD=,∴S菱形ABFC=8.
【点评】本题考查平行四边形的判定和性质、菱形的判定、线段的垂直平分线的性质勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
【跟踪训练】
1.(2018山东省淄博市)如图,以AB为直径的⊙O外接于△ABC,过A点的切线AP与BC的延长线交于点P,∠APB的平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)的长是一元二次方程x2﹣5x+6=0的两个实数根.
(1)求证:PA?BD=PB?AE;
(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.
2.(2018浙江省台州市 )如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.
(1)求证:AC=CE;
(2)求证:BC2﹣AC2=AB?AC;
(3)已知⊙O的半径为3.
①若,求BC的长;
②当为何值时,AB?AC的值最大?
3.(2018福建省 )如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.
(1)求证:BG∥CD;
(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.
4.(2018广西桂林市 )如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.
(1)求证:AC=BC;
(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A做⊙O的切线AH,若AH∥BC,求∠ACF的度数;
(3)在(2)的条件下,若△ABD的面积为,△ABD与△ABC的面积比为2:9,求CD的长.
5.(2018贵州省遵义市 )如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.
(1)求AD的长.
(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF为等腰三角形时,求AP的长.
6.(2018辽宁省盘锦市 )如图,在Rt△ABC中,∠C=90°,点D在线段AB上,以AD为直径的⊙O与BC相交于点E,与AC相交于点F,∠B=∠BAE=30°.
(1)求证:BC是⊙O的切线;
(2)若AC=3,求⊙O的半径r;
(3)在(1)的条件下,判断以A、O、E、F为顶点的四边形为哪种特殊四边形,并说明理由.
7.(2018江苏省苏州市 )如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.
(1)求证:CD=CE;
(2)若AE=GE,求证:△CEO是等腰直角三角形.
 
类型四:圆中求线段或弧的长度,证明三角形相似或线段的关系等的综合
【例题展示】
例题1(2018山东省滨州市)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:
(1)直线DC是⊙O的切线;
(2)AC2=2AD?AO.
【分析】(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;
(2)连接BC,证△DAC∽△CAB即可得.
【解答】解:(1)如图,连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵AC平分∠DAB,
∴∠OAC=∠DAC,
∴∠DAC=∠OCA,
∴OC∥AD,
又∵AD⊥CD,
∴OC⊥DC,
∴DC是⊙O的切线;
(2)连接BC,
∵AB为⊙O的直径,
∴AB=2AO,∠ACB=90°,
∵AD⊥DC,
∴∠ADC=∠ACB=90°,
又∵∠DAC=∠CAB,
∴△DAC∽△CAB,
∴,即AC2=AB?AD,
∵AB=2AO,
∴AC2=2AD?AO.
【点评】本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.
例题2(2018四川省泸州市)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.
(1)求证:CO2=OF?OP;
(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH的长.
【分析】(1)想办法证明△OFD∽△OCP,可得,由OD=OC,可得结论;
(2)如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,利用勾股定理求出r,再利用面积法求出CM,由四边形EFMC是矩形,求出EF,在Rt△EOF中,求出OF,再求出EC,利用平行线分线段成比例定理即可解决问题;
【解答】(1)证明:∵PC是⊙O的切线,
∴OC⊥PC,
∴∠PCO=90°,
∵AB是直径,EF=FD,
∴AB⊥ED,
∴∠OFD=∠OCP=90°,
∵∠FOD=∠COP,
∴△OFD∽△OCP,
∴,∵OD=OC,
∴OC2=OF?OP.
(2)解:如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.
在Rt△POC中,∵PC2+OC2=PO2,
∴(4)2+r2=(r+4)2,
∴r=2,
∵CM=,
∵DC是直径,
∴∠CEF=∠EFM=∠CMF=90°,
∴四边形EFMC是矩形,
∴EF=CM=,
在Rt△OEF中,OF=,
∴EC=2OF=,
∵EC∥OB,
∴,
∵GH∥CM,
∴,
∴GH=.
【点评】本题考查切线的性质、相似三角形的判定和性质、矩形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
例题3(2018湖北省武汉市)如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)若∠APC=3∠BPC,求的值.
【分析】(1)想办法证明△PAO≌△PBO.可得∠PAO=∠PBO=90°;
(2)首先证明BC=2OK,设OK=a,则BC=2a,再证明BC=PB=PA=2a,由△PAK∽△POA,可得PA2=PK?PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=(负根已经舍弃),推出PK=,由PK∥BC,可得;
【解答】(1)证明:连接OP、OB.
∵PA是⊙O的切线,
∴PA⊥OA,
∴∠PAO=90°,
∵PA=PB,PO=PO,OA=OB,
∴△PAO≌△PBO.
∴∠PAO=∠PBO=90°,
∴PB⊥OB,
∴PB是⊙O的切线.
(2)设OP交AB于K.
∵AB是直径,
∴∠ABC=90°,
∴AB⊥BC,
∵PA、PB都是切线,
∴PA=PB,∠APO=∠BPO,
∵OA=OB,
∴OP垂直平分线段AB,
∴OK∥BC,
∵AO=OC,
∴AK=BK,
∴BC=2OK,设OK=a,则BC=2a,
∵∠APC=3∠BPC,∠APO=∠OPB,
∴∠OPC=∠BPC=∠PCB,
∴BC=PB=PA=2a,
∵△PAK∽△POA,
∴PA2=PK?PO,设PK=x,
则有:x2+ax﹣4a2=0,
解得x=(负根已经舍弃),
∴PK=,
∵PK∥BC,
∴.
【点评】本题考查相似三角形的判定和性质、圆周角定理、切线的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.
例题4(2018黑龙江大庆市)如图,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作EC⊥OB,交⊙O于点C,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.
(1)求证:AC平分∠FAB;
(2)求证:BC2=CE?CP;
(3)当AB=4且时,求劣弧的长度.
【分析】(1)根据等角的余角相等证明即可;
(2)只要证明△CBE∽△CPB,可得解决问题;
(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;
【解答】(1)证明:∵AB是直径,
∴∠ACB=90°,
∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,
∵∠BCP=∠BCE,
∴∠ACF=∠ACE,
(2)证明:∵OC=OB,
∴∠OCB=∠OBC,
∵PF是⊙O的切线,CE⊥AB,
∴∠OCP=∠CEB=90°,
∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,
∴∠BCE=∠BCP,
∵CD是直径,
∴∠CBD=∠CBP=90°,
∴△CBE∽△CPB,
∴,
∴BC2=CE?CP;
(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,
∵∠MCB+∠P=90°,∠P+∠PBM=90°,
∴∠MCB=∠PBM,
∵CD是直径,BM⊥PC,
∴∠CMB=∠BMP=90°,
∴△BMC∽△PMB,
∴,
∴BM2=CM?PM=3a2,
∴BM=a,
∴tan∠BCM=,
∴∠BCM=30°,
∴∠OCB=∠OBC=∠BOC=60°,∠BOD=120°
∴的长=.
【跟踪训练】
1.(2018广西柳州市)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.
(1)求证:△DAC∽△DBA;
(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;
(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.
2.(2018广西南宁市)如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.
(1)求证:PG与⊙O相切;
(2)若,求的值;
(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.
3.(2018内蒙古通辽市)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.
(1)求证:PD是⊙O的切线;
(2)求证:△ABD∽△DCP;
(3)当AB=5cm,AC=12cm时,求线段PC的长.
4.(2018山东聊城市)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.
(1)求证:AC是⊙O的切线;
(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.
5.(2018新疆乌鲁木齐)如图,AG是∠HAF的平分线,点E在AF上,以AE为直径的⊙O交AG于点D,过点D作AH的垂线,垂足为点C,交AF于点B.
(1)求证:直线BC是⊙O的切线;
(2)若AC=2CD,设⊙O的半径为r,求BD的长度.
专题六 中考数学中的圆综合题解题技巧
圆的综合题是历年中考的重头戏,很多省份设置为压轴题,分值6分,7分,9分甚至12分。圆的综合题综合的知识点比较丰富,类型也比较多,难度也比较大,通常要作一至两条辅助线,多的要作三条。很多省份的中考题一个题干,设置两个小问题,或者一个题干,设置三个小问题。只要我们熟记圆的各个性质和判定定理,还有辅助线的各种作法,这类题是可以突破的。
圆的综合题以圆为背景,综合特殊四边形或者三角形,利用三角形相似或解直角三角形等方法,求阴影部分的面积和线段的关系,或者判断圆和线的位置关系等等。主要是记住几个重要定理,会灵活应用定理,根据图形,作辅助线是解题的关键。
类型一:求阴影部分的面积
【例题展示】
例题1(2018山东省临沂市))如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.
(1)求证:AC是⊙O的切线;
(2)若BD=,BE=1.求阴影部分的面积.
【分析】(1)连接OD,作OF⊥AC于F,如图,利用等腰三角形的性质得AO⊥BC,AO平分∠BAC,再根据切线的性质得OD⊥AB,然后利用角平分线的性质得到OF=OD,从而根据切线的判定定理得到结论;
(2)设⊙O的半径为r,则OD=OE=r,利用勾股定理得到r2+()2=(r+1)2,解得r=1,则OD=1,OB=2,利用含30度的直角三角三边的关系得到∠B=30°,∠BOD=60°,则∠AOD=30°,于是可计算出AD=OD=,然后根据扇形的面积公式,利用阴影部分的面积=2S△AOD﹣S扇形DOF进行计算.
【解答】(1)证明:连接OD,作OF⊥AC于F,如图,
∵△ABC为等腰三角形,O是底边BC的中点,
∴AO⊥BC,AO平分∠BAC,
∵AB与⊙O相切于点D,
∴OD⊥AB,
而OF⊥AC,
∴OF=OD,
∴AC是⊙O的切线;
(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,
∴r2+()2=(r+1)2,解得r=1,
∴OD=1,OB=2,
∴∠B=30°,∠BOD=60°,
∴∠AOD=30°,
在Rt△AOD中,AD=OD=,
∴阴影部分的面积=2S△AOD﹣S扇形DOF
=2××1×﹣=﹣.
【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了等腰三角形的性质.
例题2(2018山东省青岛市)如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是   .
【分析】根据扇形面积公式以及三角形面积公式即可求出答案.
【解答】解:∵∠B=90°,∠C=30°,
∴∠A=60°,
∵OA=OF,
∴△AOF是等边三角形,
∴∠COF=120°,
∵OA=2,
∴扇形OGF的面积为:
∵OA为半径的圆与CB相切于点E,
∴∠OEC=90°,
∴OC=2OE=4,
∴AC=OC+OA=6,
∴AB=AC=3,
∴由勾股定理可知:BC=
∴△ABC的面积为:
∵△OAF的面积为:,
∴阴影部分面积为:
故答案为:
【点评】本题考查扇形面积公式,涉及含30度角的直角三角形的性质,勾股定理,切线的性质,扇形的面积公式等知识,综合程度较高.
例题3(2018广东省)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为   .(结果保留π)
【分析】连接OE,如图,利用切线的性质得OD=2,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD﹣S扇形EOD计算由弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.
【解答】解:连接OE,如图,
∵以AD为直径的半圆O与BC相切于点E,
∴OD=2,OE⊥BC,
易得四边形OECD为正方形,
∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=22﹣,
∴阴影部分的面积=×2×4﹣(4﹣π)=π.
故答案为π.
【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.
例题4(2018江苏省泰州市)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.
(1)试判断DE与⊙O的位置关系,并说明理由;
(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.
【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;
(2)利用勾股定理结合扇形面积求法分别分析得出答案.
【解答】解:(1)DE与⊙O相切,
理由:连接DO,
∵DO=BO,
∴∠ODB=∠OBD,
∵∠ABC的平分线交⊙O于点D,
∴∠EBD=∠DBO,
∴∠EBD=∠BDO,
∴DO∥BE,
∵DE⊥BC,
∴∠DEB=∠EDO=90°,
∴DE与⊙O相切;
(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,
∴DE=DF=3,
∵BE=3,
∴BD==6,
∵sin∠DBF==,
∴∠DBA=30°,
∴∠DOF=60°,
∴sin60°===,
∴DO=2,
则FO=,
故图中阴影部分的面积为:﹣××3=2π﹣.
【点评】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.
【跟踪训练】
1.(2018湖北省荆门市)如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为   .
【分析】连接半径和弦AE,根据直径所对的圆周角是直角得:∠AEB=90°,可得AE和BE的长,所以图中弓形的面积为扇形OBE的面积与△OBE面积的差,因为OA=OB,所以△OBE的面积是△ABE面积的一半,可得结论.
【解答】解:连接OE、AE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∵四边形ABCD是平行四边形,
∴AB=CD=4,∠B=∠D=30°,
∴AE=AB=2,BE=,
∵OA=OB=OE,
∴∠B=∠OEB=30°,
∴∠BOE=120°,
∴S阴影=S扇形OBE﹣S△BOE,
=,
=,
=,
故答案为:.
【点评】本题考查了扇形的面积计算、平行四边形的性质,直角三角形中30度角等知识点,能求出扇形OBE的面积和△ABE的面积是解此题的关键.
2.(2018湖北省襄阳市)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.
(1)求证:DA=DE;
(2)若AB=6,CD=4,求图中阴影部分的面积.
【分析】(1)连接OE.推知CD为⊙O的切线,即可证明DA=DE;
(2)利用分割法求得阴影部分的面积.
【解答】解:(1)证明:连接OE、OC.
∵OB=OE,
∴∠OBE=∠OEB.
∵BC=EC,
∴∠CBE=∠CEB,
∴∠OBC=∠OEC.
∵BC为⊙O的切线,
∴∠OEC=∠OBC=90°;
∵OE为半径,
∴CD为⊙O的切线,
∵AD切⊙O于点A,
∴DA=DE;
(2)如图,过点D作DF⊥BC于点F,则四边形ABFD是矩形,
∴AD=BF,DF=AB=6,
∴DC=BC+AD=4.
∵BC=,
∴BC﹣AD=2,
∴BC=3.
在直角△OBC中,tan∠BOE==,
∴∠BOC=60°.
在△OEC与△OBC中,OE=OB,OC=OC,CE=CB,
∴△OEC≌△OBC(SSS),
∴∠BOE=2∠BOC=120°.
∴S阴影部分=S四边形BCEO﹣S扇形OBE=2×BC?OB﹣.
【点评】本题考查了切线的判定与性质:从圆外一点引圆的两条切线,它们的切线长相等,运用全等三角形的判定与性质进行计算.
3.(2018江苏省扬州市)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.
(1)求证:AC是⊙O的切线;
(2)若点F是A的中点,OE=3,求图中阴影部分的面积;
(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.
【分析】(1)作OH⊥AC于H,如图,利用等腰三角形的性质得AO平分∠BAC,再根据角平分线性质得OH=OE,然后根据切线的判定定理得到结论;
(2)先确定∠OAE=30°,∠AOE=60°,再计算出AE=,然后根据扇形面积公式,利用图中阴影部分的面积=S△AOE﹣S扇形EOF进行计算;
(3)作F点关于BC的对称点F′,连接EF′交BC于P,如图,利用两点之间线段最短得到此时EP+FP最小,通过证明∠F′=∠EAF′得到PE+PF最小值为,然后计算出OP和OB得到此时PB的长.
【解答】(1)证明:作OH⊥AC于H,如图,
∵AB=AC,AO⊥BC于点O,
∴AO平分∠BAC,
∵OE⊥AB,OH⊥AC,
∴OH=OE,
∴AC是⊙O的切线;
(2)解:∵点F是AO的中点,
∴AO=2OF=3,
而OE=3,
∴∠OAE=30°,∠AOE=60°,
∴AE=OE=3,
∴图中阴影部分的面积=S△AOE﹣S扇形EOF=×3×3﹣;
(3)解:作F点关于BC的对称点F′,连接EF′交BC于P,如图,
∵PF=PF′,
∴PE+PF=PE+PF′=EF′,此时EP+FP最小,
∵OF′=OF=OE,
∴∠F′=∠OEF′,
而∠AOE=∠F′+∠OEF′=60°,
∴∠F′=30°,
∴∠F′=∠EAF′,
∴EF′=EA=3,
即PE+PF最小值为3,
在Rt△OPF′中,OP=OF′=,
在Rt△ABO中,OB=OA=×6=2,
∴BP=2﹣=,
即当PE+PF取最小值时,BP的长为.
【解答】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”.也考查了等腰三角形的性质和最短路径问题.
4.(2018云南省昆明市)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.
(1)求证:CD是⊙O的切线;
(2)若∠D=30°,BD=2,求图中阴影部分的面积.
【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线
(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出影响部分面积
【解答】解:(1)连接OC,
∵OA=OC,
∴∠BAC=∠OCA,
∵∠BCD=∠BAC,
∴∠BCD=∠OCA,
∵AB是直径,
∴∠ACB=90°,
∴∠OCA+OCB=∠BCD+∠OCB=90°
∴∠OCD=90°
∵OC是半径,
∴CD是⊙O的切线
(2)设⊙O的半径为r,
∴AB=2r,
∵∠D=30°,∠OCD=90°,
∴OD=2r,∠COB=60°
∴r+2=2r,
∴r=2,∠AOC=120°
∴BC=2,
∴由勾股定理可知:AC=2
易求S△AOC=×2×1=
S扇形OAC=
∴阴影部分面积为
【点评】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,需要学生灵活运用所学知识.
5.(2018广西贵港市)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为   (结果保留π).
【分析】由将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,可得△ABC≌△A′BC′,由题给图可知:S阴影=S扇形ABA′+S△A′BC﹣S扇形CBC′﹣S△A′BC′可得出阴影部分面积.
【解答】解:∵△ABC中,∠ACB=90°,AB=4,BC=2,
∴∠BAC=30°,∠ABC=60°,AC=2.
∵将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,
∴△ABC≌△A′BC′,
∴∠ABA′=120°=∠CBC′,
∴S阴影=S扇形ABA′+S△A′BC﹣S扇形CBC′﹣S△A′BC′
=S扇形ABA′﹣S扇形CBC′
=
=
=4π.
故答案为4π.
(2018江苏省淮安市)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.
(1)试判断直线DE与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.
【分析】(1)连接OE、OD,如图,根据切线的性质得∠OAC=90°,再证明△AOE≌△DOE得到∠ODE=∠OAE=90°,然后根据切线的判定定理得到DE为⊙O的切线;
(2)先计算出∠AOD=2∠B=100°,利用四边形的面积减去扇形的面积计算图中阴影部分的面积.
【解答】解:(1)直线DE与⊙O相切.理由如下:
连接OE、OD,如图,
∵AC是⊙O的切线,
∴AB⊥AC,
∴∠OAC=90°,
∵点E是AC的中点,O点为AB的中点,
∴OE∥BC,
∴∠1=∠B,∠2=∠3,
∵OB=OD,
∴∠B=∠3,
∴∠1=∠2,
在△AOE和△DOE中,OA=OD,∠1=∠2,OE=OE,
∴△AOE≌△DOE,
∴∠ODE=∠OAE=90°,
∴OA⊥AE,
∴DE为⊙O的切线;
(2)∵点E是AC的中点,
∴AE=AC=2.4,
∵∠AOD=2∠B=2×50°=100°,
∴图中阴影部分的面积=.
【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和扇形的面积公式.
7.(2018黑龙江省齐齐哈尔市)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.
(1)求证:BC是⊙O的切线;
(2)若BF=BC=2,求图中阴影部分的面积.
【分析】(1)求出∠ADB的度数,求出∠ABD+∠DBC=90°,根据切线判定推出即可;
(2)连接OD,分别求出三角形DOB面积和扇形DOB面积,即可求出答案.
【解答】证明:(1)∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠A+∠ABD=90°,
∵∠A=∠DEB,∠DEB=∠DBC,
∴∠A=∠DBC,
∵∠DBC+∠ABD=90°,
∴BC是⊙O的切线;
(2)连接OD,
∵BF=BC=2,且∠ADB=90°,
∴∠CBD=∠FBD,
∵OE∥BD,
∴∠FBD=∠OEB,
∵OE=OB,
∴∠OEB=∠OBE,
∴∠CBD=∠OEB=∠OBE=∠ADB=90°=30°,
∴∠C=60°,
∴AB= BC=2,
∴⊙O的半径为,
∴阴影部分的面积=扇形DOB的面积﹣三角形DOB的面积=.
【点评】本题考查了切线的判定,扇形面积,直角三角形的性质和判定的应用,关键是求出∠ABD+∠DBC=90°和分别求出扇形DOB和三角形DOB的面积.
8.(2018四川省达州市)已知:如图,以等边△ABC的边BC为直径作⊙O,分别交AB,AC于点D,E,过点D作DF⊥AC交AC于点F.
(1)求证:DF是⊙O的切线;
(2)若等边△ABC的边长为8,求由、DF、EF围成的阴影部分面积.
【分析】(1)连接CD、OD,先利用等腰三角形的性质证AD=BD,再证OD为△ABC的中位线得DO∥AC,根据DF⊥AC可得;
(2)连接OE、作OG⊥AC,求出EF、DF的长及∠DOE的度数,根据阴影部分面积=S梯形EFDO﹣S扇形DOE计算可得.
【解答】解:(1)如图,连接CD、OD,
∵BC是⊙O的直径,
∴∠CDB=90°,即CD⊥AB,
又∵△ABC是等边三角形,
∴AD=BD,
∵BO=CO,
∴DO是△ABC的中位线,
∴OD∥AC,
∵DF⊥AC,
∴DF⊥OD,
∴DF是⊙O的切线;
(2)连接OE、作OG⊥AC于点G,
∴∠OGF=∠DFG=∠ODF=90°,
∴四边形OGFD是矩形,
∴FG=OD=4,
∵OC=OE=OD=OB,且∠COE=∠B=60°,
∴△OBD和△OCE均为等边三角形,
∴∠BOD=∠COE=60°,CE=OC=4,
∴EG=CE=2、DF=OG=OCsin60°=2,∠DOE=60°,
∴EF=FG﹣EG=2,
则阴影部分面积为S梯形EFDO﹣S扇形DOE
=×(2+4)×2﹣
=6﹣.
【点评】本题主要考查了切线的判定与性质,等边三角形的性质,垂径定理等知识.判断直线和圆的位置关系,一般要猜想是相切,再证直线和半径的夹角为90°即可.注意利用特殊的三角形和三角函数来求得相应的线段长.
类型二:圆和三角函数的综合
【例题展示】
1.(2018甘肃省定西市)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.
(1)求证:∠C=90°;
(2)当BC=3,sinA=时,求AF的长.
【分析】(1)连接OE,BE,因为DE=EF,所以,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;
(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=,从而可求出r的值.
【解答】解:(1)连接OE,BE,
∵DE=EF,

∴∠OBE=∠DBE
∵OE=OB,
∴∠OEB=∠OBE
∴∠OEB=∠DBE,
∴OE∥BC
∵⊙O与边AC相切于点E,
∴OE⊥AC
∴BC⊥AC
∴∠C=90°
(2)在△ABC,∠C=90°,BC=3,sinA=
∴AB=5,
设⊙O的半径为r,则AO=5﹣r,
在Rt△AOE中,sinA=
∴r=
∴AF=5﹣2×=
【点评】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.
2.(2018广东省)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.
(1)证明:OD∥BC;
(2)若tan∠ABC=2,证明:DA与⊙O相切;
(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.
【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;
(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB=,证OE为中位线知OE=a、AE=CE=AC=a,进一步求得DE=,再△AOD中利用勾股定理逆定理证∠OAD=90°即可得;
(3)先证△AFD∽△BAD得DF?BD=AD2①,再证△AED∽△OAD得OD?DE=AD2②,由①②得DF?BD=OD?DE,即,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得,结合(2)可得相关线段的长,代入计算可得.
【解答】解:(1)连接OC,
在△OAD和△OCD中,OA=OC,AD=CD,OD=OD,
∴△OAD≌△OCD(SSS),
∴∠ADO=∠CDO,
又AD=CD,
∴DE⊥AC,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠ACB=90°,即BC⊥AC,
∴OD∥BC;
(2)∵tan∠ABC==2,
∴设BC=a、则AC=2a,
∴AD=AB=,
∵OE∥BC,且AO=BO,
∴OE=BC=a,AE=CE=AC=a,
在△AED中,DE=,
在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,
∴AO2+AD2=OD2,
∴∠OAD=90°,
则DA与⊙O相切;
(3)连接AF,
∵AB是⊙O的直径,
∴∠AFD=∠BAD=90°,
∵∠ADF=∠BDA,
∴△AFD∽△BAD,
∴,即DF?BD=AD2①,
又∵∠AED=∠OAD=90°,∠ADE=∠ODA,
∴△AED∽△OAD,
∴,即OD?DE=AD2②,
由①②可得DF?BD=OD?DE,即,
又∵∠EDF=∠BDO,
∴△EDF∽△BDO,
∵BC=1,
∴AB=AD=、OD=、ED=2、BD=、OB=,
∴,即,
解得:EF=.
【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.典型的中考压轴题.
3.(2018湖北省荆门市)如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC交EC的延长线于点D,AD交⊙O于F,FM⊥AB于H,分别交⊙O、AC于M、N,连接MB,BC.
(1)求证:AC平分∠DAE;
(2)若cosM=,BE=1,①求⊙O的半径;②求FN的长.
【分析】(1)连接OC,如图,利用切线的性质得OC⊥DE,则判断OC∥AD得到∠1=∠3,加上∠2=∠3,从而得到∠1=∠2;
(2)①利用圆周角定理和垂径定理得到,则∠COE=∠FAB,所以∠FAB=∠M=∠COE,设⊙O的半径为r,然后在Rt△OCE中利用余弦的定义得到,从而解方程求出r即可;
②连接BF,如图,先在Rt△AFB中利用余弦定义计算出AF=,再计算出OC=3,接着证明△AFN∽△AEC,然后利用相似比可计算出FN的长.
【解答】(1)证明:连接OC,如图,
∵直线DE与⊙O相切于点C,
∴OC⊥DE,
又∵AD⊥DE,
∴OC∥AD.
∴∠1=∠3
∵OA=OC,
∴∠2=∠3,
∴∠1=∠2,
∴AC平方∠DAE;
(2)解:①∵AB为直径,
∴∠AFB=90°,
而DE⊥AD,
∴BF∥DE,
∴OC⊥BF,
∴,
∴∠COE=∠FAB,
而∠FAB=∠M,
∴∠COE=∠M,
设⊙O的半径为r,
在Rt△OCE中,cos∠COE=,即,解得r=4,
即⊙O的半径为4;
②连接BF,如图,
在Rt△AFB中,cos∠FAB=,
∴AF=8×
在Rt△OCE中,OE=5,OC=4,
∴CE=3,
∵AB⊥FM,
∴,
∴∠5=∠4,
∵FB∥DE,
∴∠5=∠E=∠4,
∵,
∴∠1=∠2,
∴△AFN∽△AEC,
∴,即,
∴FN=.
【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了垂径定理、圆周角定理和相似三角形的判定与性质.
4.(2018四川省内江市)如图,以Rt△ABC的直角边AB为直径作⊙O交斜边AC于点D,过圆心O作OE∥AC,交BC于点E,连接DE.
(1)判断DE与⊙O的位置关系并说明理由;
(2)求证:2DE2=CD?OE;
(3)若tanC=,DE=,求AD的长.
【分析】(1)先判断出DE=BE=CE,得出∠DBE=∠BDE,进而判断出∠ODE=90°,即可得出结论;
(2)先判断出△BCD∽△ACB,得出BC2=CD?AC,再判断出DE=BC,AC=2OE,即可得出结论;
(3)先求出BC,进而求出BD,CD,再借助(2)的结论求出AC,即可得出结论.
【解答】解:(1)DE是⊙O的切线,理由:如图,
连接OD,BD,∵AB是⊙O的直径,
∴∠ADB=∠BDC=90°,
∵OE∥AC,OA=OB,
∴BE=CE,
∴DE=BE=CE,
∴∠DBE=∠BDE,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠ODE=∠OBE=90°,
∵点D在⊙O上,
∴DE是⊙O的切线;
(2)∵∠BCD=∠ABC=90°,∠C=∠C,
∴△BCD∽△ACB,
∴,
∴BC2=CD?AC,
由(1)知DE=BE=CE=BC,
∴4DE2=CD?AC,
由(1)知,OE是△ABC是中位线,
∴AC=2OE,
∴4DE2=CD?2OE,
∴2DE2=CD?OE;
(3)∵DE=,
∴BC=5,
在Rt△BCD中,tanC=,
设CD=3x,BD=4x,根据勾股定理得,(3x)2+(4x)2=25,
∴x=﹣1(舍)或x=1,
∴BD=4,CD=3,
由(2)知,BC2=CD?AC,
∴AC=,
∴AD=AC﹣CD=.
【点评】此题是圆的综合题,主要考查了切线的性质,等腰三角形的性质,三角形的中位线定理,相似三角形的判定和性质,锐角三角函数,判断出△BCD∽△ACB是解本题的关键.
 
【跟踪训练】
(2018浙江省温州市)如如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在上.
(1)求证:AE=AB.
(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.
【分析】(1)由翻折的性质得出△ADE≌△ADC,根据全等三角形对应角相等,对应边相等得出∠AED=∠ACD,AE=AC,根据同弧所对的圆周角相等得出∠ABD=∠AED,根据等量代换得出∠ABD=∠ACD,根据等角对等边得出AB=AC,从而得出结论;
(2)如图,过点A作AH⊥BE于点H,根据等腰三角形的三线合一得出BH=EH=1,根据等腰三角形的性质及圆周角定理得出∠ABE=∠AEB=ADB,根据等角的同名三角函数值相等及余弦函数的定义得出BH ∶AB = 1 ∶3,从而得出AC=AB=3,在Rt三角形ABC中,利用勾股定理得出BC的长。
【解答】(1)解 :由题意得△ADE≌△ADC, ∴∠AED=∠ACD,AE=AC ∵∠ABD=∠AED, ∴∠ABD=∠ACD ∴AB=AC ∴AE=AB (2)解 :如图,过点A作AH⊥BE于点H ∵AB=AE,BE=2 ∴BH=EH=1 ∵∠ABE=∠AEB=ADB,cos∠ADB= ∴cos∠ABE=cos∠ADB= ∴ ∴AC=AB=3 ∵∠BAC=90°,AC=AB ∴BC=
【点评】全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理,翻折变换(折叠问题),锐角三角函数的定义
2.(2018贵州省黔西南)如图,CE是⊙O的直径,BC切⊙O于点C,连接OB,作ED∥OB交⊙O于点D,BD的延长线与CE的延长线交于点A.
(1)求证:AB是⊙O的切线;
(2)若⊙O的半径为1,tan∠DEO=,tan∠A=,求AE的长.
【分析】(1)连接OD,由ED∥OB,得到∠1=∠4,∠2=∠3,通过△DOB≌△COB,得到∠ODB=∠OCB,而由BC切⊙O于点C得出∠OCB=90°,那么∠ODB=90°,问题得证;
(2)根据三角函数tan∠DEO=tan∠2==,得出BC=OC=,再由tan∠A=,得出AC=4BC=4,那么AE=AC﹣CE=4﹣2.
【解答】解:(1)连接OD,如图.
∵ED∥OB,
∴∠1=∠4,∠2=∠3,
∵OD=OE,
∴∠3=∠4,
∴∠1=∠2.
在△DOB与△COB中,OD=OC,∠1=∠2,OB=OB
∴△DOB≌△COB,
∴∠ODB=∠OCB,
∵BC切⊙O于点C,
∴∠OCB=90°,
∴∠ODB=90°,
∴AB是⊙O的切线;
(2)∵∠DEO=∠2,
∴tan∠DEO=tan∠2=,
∵⊙O的半径为1,OC=1,
∴BC=,
tan∠A=,
∴AC=4BC=4,
∴AE=AC﹣CE=4﹣2.
【点评】本题考查了切线的判定和性质,全等三角形的判定与性质,锐角三角函数定义,掌握各定理是解题的关键.
3.(2018四川省宜宾市)如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E.
(1)求证:直线EC为圆O的切线;
(2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.
【分析】(1)说明OC是△BDA的中位线,利用中位线的性质,得到∠OCE=∠CED=90°,从而得到CE是圆O的切线.
(2)利用直径上的圆周角,得到△PEF是直角三角形,利用角相等,可得到△PEF∽△PEA、△PCF∽△PAC,从而得到PC=PE=5.然后求出sin∠PEF的值.
【解答】解:(1)证明:∵CE⊥AD于点E
∴∠DEC=90°,
∵BC=CD,
∴C是BD的中点,又∵O是AB的中点,
∴OC是△BDA的中位线,
∴OC∥AD
∴∠OCE=∠CED=90°
∴OC⊥CE,又∵点C在圆上,
∴CE是圆O的切线.
(2)连接AC
∵AB是直径,点F在圆上
∴∠AFB=∠PFE=90°=∠CEA
∵∠EPF=∠EPA
∴△PEF∽△PEA
∴PE2=PF×PA
∵∠FBC=∠PCF=∠CAF
又∵∠CPF=∠CPA
∴△PCF∽△PAC
∴PC2=PF×PA
∴PE=PC
在直角△PEF中,sin∠PEF=.
【点评】本题考查了切线的判定、三角形的中位线定理、相似三角形的性质和判定等知识点.利用三角形相似,说明PE=PC是解决本题的难点和关键.
4.(2018内蒙古包头市)如图,在Rt△ACB中,∠ACB=90°,以点A为圆心,AC长为半径的圆交AB于点D,BA的延长线交⊙A于点E,连接CE,CD,F是⊙A上一点,点F与点C位于BE两侧,且∠FAB=∠ABC,连接BF.
(1)求证:∠BCD=∠BEC;
(2)若BC=2,BD=1,求CE的长及sin∠ABF的值.
【分析】(1)先利用等角的余角相等即可得出结论;
(2)先判断出△BDC∽△BCE得出比例式求出BE=4,DE=3,利用勾股定理求出CD,CE,再判断出△AFM∽△BAC,进而判断出四边形FNCA是矩形,求出FN,NC,即:BN,再用勾股定理求出BF,即可得出结论.
【解答】解:(1)∵∠ACB=90°,
∴∠BCD+∠ACD=90°,
∵DE是⊙A的直径,
∴∠DCE=90°,
∴∠BEC+∠CDE=90°,
∵AD=AC,
∴∠CDE=∠ACD,
∴∠BCD=∠BEC,
(2)∵∠BCD=∠BEC,∠EBC=∠EBC,
∴△BDC∽△BCE,
∴,
∵BC=2,BD=1,
∴BE=4,EC=2CD,
∴DE=BE﹣BD=3,
在Rt△DCE中,DE2=CD2+CE2=9,
∴CD=,
过点F作FM⊥AB于M,
∵∠FAB=∠ABC,∠FMA=∠ACB=90°,
∴△AFM∽△BAC,
∴,
∵DE=3,
∴AD=AF=AC=,AB=,
∴FM=,
过点F作FN⊥BC于N,
∴∠FNC=90°,
∵∠FAB=∠ABC,
∴FA∥BC,
∴∠FAC=∠ACB=90°,
∴四边形FNCA是矩形,
∴FN=AC=,NC=AF=,
∴BN=,
在Rt△FBN中,BF=,
在Rt△FBM中,sin∠ABF=.
【点评】此题主要考查了圆的有关性质,等角的余角相等,相似三角形的判定和性质,勾股定理,锐角三角函数,正确作出辅助线是解本题的关键.
5.(2018广西贵港市)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.
(1)求证:BD是⊙O的切线;
(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.
【分析】(1)如图1,作直径BE,半径OC,证明四边形ABDC是平行四边形,得∠A=∠D,由等腰三角形的性质得:∠CBD=∠D=∠A=∠OCE,可得∠EBD=90°,所以BD是⊙O的切线;
(2)如图2,根据三角函数设EC=3x,EB=5x,则BC=4x根据AB=BC=10=4x,得x的值,求得⊙O的半径为,作高线CG,根据等腰三角形三线合一得BG=DG,根据三角函数可得结论.
【解答】(1)证明:如图1,作直径BE,交⊙O于E,连接EC、OC,
则∠BCE=90°,
∴∠OCE+∠OCB=90°,
∵AB∥CD,AB=CD,
∴四边形ABDC是平行四边形,
∴∠A=∠D,
∵OE=OC,
∴∠E=∠OCE,
∵BC=CD,
∴∠CBD=∠D,
∵∠A=∠E,
∴∠CBD=∠D=∠A=∠OCE,
∵OB=OC,
∴∠OBC=∠OCB,
∴∠OBC+∠CBD=90°,
即∠EBD=90°,
∴BD是⊙O的切线;
(2)如图2,∵cos∠BAC=cos∠E=,
设EC=3x,EB=5x,则BC=4x,
∵AB=BC=10=4x,
x=,
∴EB=5x=,
∴⊙O的半径为,
过C作CG⊥BD于G,
∵BC=CD=10,
∴BG=DG,
Rt△CGD中,cos∠D=cos∠BAC=,
∴,
∴DG=6,
∴BD=12.
【点评】此题主要考查了圆的有关性质,相似三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.
6.(2018湖北省恩施州)如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点.
(1)求证:DE为⊙O切线;
(2)若⊙O的半径为3,sin∠ADP=,求AD;
(3)请猜想PF与FD的数量关系,并加以证明.
【分析】(1)如图1,连接OD、BD,根据圆周角定理得:∠ADB=90°,则AD⊥BD,OE⊥BD,由垂径定理得:BM=DM,证明△BOE≌△DOE,则∠ODE=∠OBE=90°,可得结论;
(2)设AP=a,根据三角函数得:AD=3a,由勾股定理得:PD=2a,在直角△OPD中,根据勾股定理列方程可得:32=(3﹣a)2+(2a)2,解出a的值可得AD的值;
(3)先证明△APF∽△ABE,得,由△ADP∽△OEB,得,可得PD=2PF,可得结论.
【解答】证明:(1)如图1,连接OD、BD,BD交OE于M,
∵AB是⊙O的直径,
∴∠ADB=90°,AD⊥BD,
∵OE∥AD,
∴OE⊥BD,
∴BM=DM,
∵OB=OD,
∴∠BOM=∠DOM,
∵OE=OE,
∴△BOE≌△DOE(SAS),
∴∠ODE=∠OBE=90°,
∴DE为⊙O切线;
(2)设AP=a,
∵sin∠ADP=,
∴AD=3a,
∴PD=,
∵OP=3﹣a,
∴OD2=OP2+PD2,
∴32=(3﹣a)2+(2a)2,
9=9﹣6a+a2+8a2,
a1=,a2=0(舍),
当a=时,AD=3a=2,
∴AD=2;
(3)PF=FD,
理由是:∵∠APD=∠ABE=90°,∠PAD=∠BAE,
∴△APF∽△ABE,
∴,
∴PF=,
∵OE∥AD,
∴∠BOE=∠PAD,
∵∠OBE=∠APD=90°,
∴△ADP∽△OEB,
∴,
∴PD=,
∵AB=2OB,
∴PD=2PF,
∴PF=FD.
【点评】本题考查了圆的综合问题,熟练掌握切线的判定,锐角三角函数,圆周角定理,垂径定理等知识点的应用,难度适中,连接BD构造直角三角形是解题的关键.
7.(2018四川省资阳市)已知:如图,在△ABC中,AB=AC,点P是底边BC上一点且满足PA=PB,⊙O是△PAB的外接圆,过点P作PD∥AB交AC于点D.
(1)求证:PD是⊙O的切线;
(2)若BC=8,tan∠ABC=,求⊙O的半径.
【分析】(1)先根据圆的性质得:,由垂径定理可得:OP⊥AB,根据平行线可得:OP⊥PD,所以PD是⊙O的切线;
(2)如图2,作辅助线,构建直角三角形,根据三角函数设CG=,BG=2x,利用勾股定理计算x=,设AC=a,则AB=a,AG=﹣a,在Rt△ACG中,由勾股定理列方程可得a的值,同理设⊙O的半径为r,同理列方程可得r的值.
【解答】(1)证明:如图1,连接OP,
∵PA=PB,
∴,
∴OP⊥AB,
∵PD∥AB,
∴OP⊥PD,
∴PD是⊙O的切线;
(2)如图2,过C作CG⊥BA,交BA的延长线于G,
Rt△BCG中,tan∠ABC=,
设CG=,BG=2x,
∴BC=x,
∵BC=8,即x=8,
x=,
∴CG=x=,BG=2x=,
设AC=a,则AB=a,AG=﹣a,
在Rt△ACG中,由勾股定理得:AG2+CG2=AC2,
∴,
a=2,
∴AB=2,BE=,
Rt△BEP中,同理可得:PE=,
设⊙O的半径为r,则OB=r,OE=r﹣,
由勾股定理得:r,
r=,
答:⊙O的半径是.
【点评】本题考查了切线的判定,等腰三角形的性质,直角三角形的性质,三角函数和勾股定理的计算,利用勾股定理列方程是解题的关键.
8.(2018深圳市)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=.
(1)求AB的长度;
(2)求AD?AE的值;
(3)过A点作AH⊥BD,求证:BH=CD+DH.
【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;
(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;
(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN全等,由全等三角形对应边相等及等量代换即可得证.
【解答】解:(1)作AM⊥BC,
∵AB=AC,AM⊥BC,BC=2BM,
∴CM=BC=1,
∵cosB=,
在Rt△AMB中,BM=1,
∴AB=;
(2)连接DC,
∵AB=AC,
∴∠ACB=∠ABC,
∵四边形ABCD内接于圆O,
∴∠ADC+∠ABC=180°,
∵∠ACE+∠ACB=180°,
∴∠ADC=∠ACE,
∵∠CAE公共角,
∴△EAC∽△CAD,
∴,
∴AD?AE=AC2=10;
(3)在BD上取一点N,使得BN=CD,
在△ABN和△ACD中 AB=AC,∠3=∠1,BN=CD,
∴△ABN≌△ACD(SAS),
∴AN=AD,
∵AN=AD,AH⊥BD,
∴NH=HD,
∵BN=CD,NH=HD,
∴BN+NH=CD+HD=BH.
【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.
类型三:特殊图形(四边形或三角形)与圆的综合
【例题展示】
例题1(2018山东省菏泽市)如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC的平分线交于点D,BD与AC交于点E,与⊙O交于点F.
(1)求∠DAF的度数;
(2)求证:AE2=EF?ED;
(3)求证:AD是⊙O的切线.
【分析】(1)求出∠ABC、∠ABD、∠CBD的度数,求出∠D度数,根据三角形内角和定理求出∠BAF和∠BAD度数,即可求出答案;
(2)求出△AEF∽△DEA,根据相似三角形的性质得出即可;
(3)连接AO,求出∠OAD=90°即可.
【解答】(1)解:∵AD∥BC,
∴∠D=∠CBD,
∵AB=AC,∠BAC=36°,
∴∠ABC=∠ACB=×(180°﹣∠BAC)=72°,
∴∠AFB=∠ACB=72°,
∵BD平分∠ABC,
∴∠ABD=∠CBD=∠ABC=72°=36°,
∴∠D=∠CBD=36°,
∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,
∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,
∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;
(2)证明:∵∠CBD=36°,∠FAC=∠CBD,
∴∠FAC=36°=∠D,
∵∠AED=∠AEF,
∴△AEF∽△DEA,
∴,
∴AE2=EF×ED;
(3)证明:连接OA、OF,
∵∠ABF=36°,
∴∠AOF=2∠ABF=72°,
∵OA=OF,
∴∠OAF=∠OFA=×(180°﹣∠AOF)=54°,
由(1)知∠ADF=36°,
∴∠OAD=36°+54°=90°,
即OA⊥AD,
∵OA为半径,
∴AD是⊙O的切线.
【点评】本题考查了切线的判定,圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.
例题2(2018湖北省黄石市)如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2,∠BCD=120°,A为的中点,延长BA到点P,使BA=AP,连接PE.
(1)求线段BD的长;
(2)求证:直线PE是⊙O的切线.
【分析】(1)连接DB,如图,利用圆内接四边形的性质得∠DEB=60°,再根据圆周角定理得到∠BDE=90°,然后根据含30度的直角三角形三边的关系计算BD的长;
(2)连接EA,如图,根据圆周角定理得到∠BAE=90°,而A为的中点,则∠ABE=45°,再根据等腰三角形的判定方法,利用BA=AP得到△BEP为等腰直角三角形,所以∠PEB=90°,然后根据切线的判定定理得到结论.
【解答】(1)解:连接DB,如图,
∵∠BCD+∠DEB=90°,
∴∠DEB=180°﹣120°=60°,
∵BE为直径,
∴∠BDE=90°,
在Rt△BDE中,DE=BE=×2=,
BD=DE==3;
(2)证明:连接EA,如图,
∵BE为直径,
∴∠BAE=90°,
∵A为的中点,
∴∠ABE=45°,
∵BA=AP,
而EA⊥BA,
∴△BEP为等腰直角三角形,
∴∠PEB=90°,
∴PE⊥BE,
∴直线PE是⊙O的切线.
【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.
例题3(2018河南省湘潭市 )如图,AB是以O为圆心的半圆的直径,半径CO⊥AO,点M是上的动点,且不与点A、C、B重合,直线AM交直线OC于点D,连结OM与CM.
(1)若半圆的半径为10.
①当∠AOM=60°时,求DM的长;
②当AM=12时,求DM的长.
(2)探究:在点M运动的过程中,∠DMC的大小是否为定值?若是,求出该定值;若不是,请说明理由.
【分析】(1)①当∠AOM=60°时,所以△AMO是等边三角形,从而可知∠MOD=30°,∠D=30°,所以DM=OM=10;
②过点M作MF⊥OA于点F,设AF=x,OF=10﹣x,利用勾股定理即可求出x的值.易证明△AMF∽△ADO,从而可知AD的长度,进而可求出MD的长度.
(2)根据点M的位置分类讨论,然后利用圆周角定理以及圆内接四边形的性质即可求出答案.
【解答】解:(1)①当∠AOM=60°时,
∵OM=OA,
∴△AMO是等边三角形,
∴∠A=∠MOA=60°,
∴∠MOD=30°,∠D=30°,
∴DM=OM=10
②过点M作MF⊥OA于点F,
设AF=x,
∴OF=10﹣x,
∵AM=12,OA=OM=10,
由勾股定理可知:122﹣x2=102﹣(10﹣x)2
∴x=,
∴AF=,
∵MF∥OD,
∴△AMF∽△ADO,
∴,
∴,
∴AD=
∴MD=AD﹣AM=
(2)当点M位于之间时,
连接BC,
∵C是的重点,
∴∠B=45°,
∵四边形AMCB是圆内接四边形,
此时∠CMD=∠B=45°,
当点M位于之间时,
连接BC,
由圆周角定理可知:∠CMD=∠B=45°
综上所述,∠CMD=45°
【点评】本题考查圆的综合问题,涉及圆周角定理,勾股定理,相似三角形的判定与性质,含30度角的直角三角形性质,解方程等知识,综合程度较高,需要学生灵活运用所学知识.
例题4(2018湖北省宜昌市)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.
(1)求证:四边形ABFC是菱形;
(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.
【分析】(1)根据对角线相互平分的四边形是平行四边形,证明是平行四边形,再根据邻边相等的平行四边形是菱形即可证明;
(2)设CD=x,连接BD.利用勾股定理构建方程即可解决问题;
【解答】(1)证明:∵AB是直径,
∴∠AEB=90°,
∴AE⊥BC,
∵AB=AC,
∴BE=CE,
∵AE=EF,
∴四边形ABFC是平行四边形,
∵AC=AB,
∴四边形ABFC是菱形.
(2)设CD=x.连接BD.
∵AB是直径,
∴∠ADB=∠BDC=90°,
∴AB2﹣AD2=CB2﹣CD2,
∴(7+x)2﹣72=42﹣x2,
解得x=1或﹣8(舍弃)
∴AC=8,BD=,
∴S菱形ABFC=8.
【点评】本题考查平行四边形的判定和性质、菱形的判定、线段的垂直平分线的性质勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
【跟踪训练】
1.(2018山东省淄博市)如图,以AB为直径的⊙O外接于△ABC,过A点的切线AP与BC的延长线交于点P,∠APB的平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)的长是一元二次方程x2﹣5x+6=0的两个实数根.
(1)求证:PA?BD=PB?AE;
(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.
【分析】(1)易证∠APE=∠BPD,∠EAP=∠B,从而可知△PAE∽△PBD,利用相似三角形的性质即可求出答案.
(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,易求得AE=2,BD=3,由(1)可知:,从而可知cos∠BDF=cos∠BAC=cos∠APC=,从而可求出AD和DG的长度,进而证明四边形ADFE是菱形,此时F点即为M点,利用平行四边形的面积即可求出菱形ADFE的面积.
【解答】解:(1)∵DP平分∠APB,
∴∠APE=∠BPD,
∵AP与⊙O相切,
∴∠BAP=∠BAC+∠EAP=90°,
∵AB是⊙O的直径,
∴∠ACB=∠BAC+∠B=90°,
∴∠EAP=∠B,
∴△PAE∽△PBD,
∴,
∴PA?BD=PB?AE;
(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,
∵DP平分∠APB,
AD⊥AP,DF⊥PB,
∴AD=DF,
∵∠EAP=∠B,
∴∠APC=∠BAC,
易证:DF∥AC,
∴∠BDF=∠BAC,
由于AE,BD(AE<BD)的长是x2﹣5x+6=0,
解得:AE=2,BD=3,
∴由(1)可知:,
∴cos∠APC=,
∴cos∠BDF=cos∠APC=,
∴,
∴DF=2,
∴DF=AE,
∴四边形ADFE是平行四边形,
∵AD=AE,
∴四边形ADFE是菱形,
此时点F即为M点,
∵cos∠BAC=cos∠APC=,
∴sin∠BAC=,
∴,
∴DG=,
∴在线段BC上是否存在一点M,使得四边形ADME是菱形
其面积为:DG?AE=2×=
【点评】本题考查圆的综合问题,涉及圆周角定理,锐角三角函数的定义,平行四边形的判定及其面积公式,相似三角形的判定与性质,综合程度较高,考查学生的灵活运用知识的能力.
2.(2018浙江省台州市 )如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.
(1)求证:AC=CE;
(2)求证:BC2﹣AC2=AB?AC;
(3)已知⊙O的半径为3.
①若,求BC的长;
②当为何值时,AB?AC的值最大?
【分析】(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;
(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证△BEF∽△BGA得,即BF?BG=BE?AB,将BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC代入可得;
(3)①设AB=5k、AC=3k,由BC2﹣AC2=AB?AC知BC=2k,连接ED交BC于点M,Rt△DMC中由DC=AC=3k、MC=BC=k求得DM=,可知OM=OD﹣DM=,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,继而知BC2=(2MC)2=36﹣4d2、AC2=DC2=DM2+CM2=(3﹣d)2+9﹣d2,由(2)得AB?AC=BC2﹣AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.
【解答】解:(1)∵四边形EBDC为菱形,
∴∠D=∠BEC,
∵四边形ABDC是圆的内接四边形,
∴∠A+∠D=180°,
又∠BEC+∠AEC=180°,
∴∠A=∠AEC,
∴AC=AE;
(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,
由(1)知AC=CE=CD,
∴CF=CG=AC,
∵四边形AEFG是⊙C的内接四边形,
∴∠G+∠AEF=180°,
又∵∠AEF+∠BEF=180°,
∴∠G=∠BEF,
∵∠EBF=∠GBA,
∴△BEF∽△BGA,
∴,即BF?BG=BE?AB,
∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,
∴(BC﹣AC)(BC+AC)=AB?AC,即BC2﹣AC2=AB?AC;
(3)设AB=5k、AC=3k,
∵BC2﹣AC2=AB?AC,
∴BC=2k,
连接ED交BC于点M,
∵四边形BDCE是菱形,
∴DE垂直平分BC,
则点E、O、M、D共线,
在Rt△DMC中,DC=AC=3k,MC=BC=k,
∴DM=,
∴OM=OD﹣DM=3﹣k,
在Rt△COM中,由OM2+MC2=OC2得(3﹣k)2+(k)2=32,
解得:k=或k=0(舍),
∴BC=2k=4;
②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,
∴BC2=(2MC)2=36﹣4d2,
AC2=DC2=DM2+CM2=(3﹣d)2+9﹣d2,
由(2)得AB?AC=BC2﹣AC2
=﹣4d2+6d+18
=﹣4(d﹣)2+,
∴当x=,即OM=时,AB?AC最大,最大值为,
∴DC2=,
∴AC=DC=,
∴AB=,此时.
【点评】本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.
3.(2018福建省 )如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.
(1)求证:BG∥CD;
(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.
【分析】(1)根据等边对等角得:∠PCB=∠PBC,由四点共圆的性质得:∠BAD+∠BCD=180°,从而得:∠BFD=∠PCB=∠PBC,根据平行线的判定得:BC∥DF,可得∠ABC=90°,AC是⊙O的直径,从而得:∠ADC=∠AGB=90°,根据同位角相等可得结论;
(2)先证明四边形BCDH是平行四边形,得BC=DH,根据特殊的三角函数值得:∠ACB=60°,∠BAC=30°,所以DH=AC,分两种情况:
①当点O在DE的左侧时,如图2,作辅助线,构建直角三角形,由同弧所对的圆周角相等和互余的性质得:∠AMD=∠ABD,则∠ADM=∠BDE,并由DH=OD,可得结论;
②当点O在DE的右侧时,如图3,同理作辅助线,同理有∠ADE=∠BDN=20°,∠ODH=20°,得结论.
【解答】(1)证明:如图1,∵PC=PB,
∴∠PCB=∠PBC,
∵四边形ABCD内接于圆,
∴∠BAD+∠BCD=180°,
∵∠BCD+∠PCB=180°,
∴∠BAD=∠PCB,
∵∠BAD=∠BFD,
∴∠BFD=∠PCB=∠PBC,
∴BC∥DF,
∵DE⊥AB,
∴∠DEB=90°,
∴∠ABC=90°,
∴AC是⊙O的直径,
∴∠ADC=90°,
∵BG⊥AD,
∴∠AGB=90°,
∴∠ADC=∠AGB,
∴BG∥CD;
(2)由(1)得:BC∥DF,BG∥CD,
∴四边形BCDH是平行四边形,
∴BC=DH,
在Rt△ABC中,∵AB=DH,
∴tan∠ACB=,
∴∠ACB=60°,∠BAC=30°,
∴∠ADB=60°,BC=AC,
∴DH=AC,
①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,
∴∠AMD+∠ADM=90°
∵DE⊥AB,
∴∠BED=90°,
∴∠BDE+∠ABD=90°,
∵∠AMD=∠ABD,
∴∠ADM=∠BDE,
∵DH=AC,
∴DH=OD,
∴∠DOH=∠OHD=80°,
∴∠ODH=20°
∵∠AOB=60°,
∴∠ADM+∠BDE=40°,
∴∠BDE=∠ADM=20°,
②当点O在DE的右侧时,如图3,作直径DN,连接BN,
由①得:∠ADE=∠BDN=20°,∠ODH=20°,
∴∠BDE=∠BDN+∠ODH=40°,
综上所述,∠BDE的度数为20°或40°.
4.(2018广西桂林市 )如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.
(1)求证:AC=BC;
(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A做⊙O的切线AH,若AH∥BC,求∠ACF的度数;
(3)在(2)的条件下,若△ABD的面积为,△ABD与△ABC的面积比为2:9,求CD的长.
【分析】(1)先判断出∠ADC=∠BDC,再用圆的性质即可得出结论;
(2)先判断出AI⊥BC,进而求出∠IAC=30°,即可得出结论;
(3)先判断出△ABC为等边三角形,进而判断出AB⊥CF,即:AE=BE,利用等边三角形的面积求出AB=,CE=9,再利用勾股定理求OE,进而得出OA,利用面积关系求出DG=2,再判断出四边形PDGE为矩形,得出PE=DG=2,即:CP=11,求出DP=,最后用勾股定理即可得出结论.
【解答】解:(1)∵DC平分∠ADB,
∴∠ADC=∠BDC,
∴,
∴AC=BC
(2)连接AO并延长交BC于I交⊙O于J,
∵AH是⊙O的切线且AH∥BC,
∴AI⊥BC,
由垂径定理得,BI=IC,
∵AC=BC,
∴IC=AC,
在Rt△AIC中,IC=AC,
∴∠IAC=30°
∴∠ABC=60°=∠F=∠ACB,
∵FC是直径,
∴∠FAC=90°,
∴∠ACF=180°﹣90°﹣60°=30°;
(3)过点D作DG⊥AB,连接AO
由(1)(2)知,△ABC为等边三角形,
∵∠ACF=30°,
∴AB⊥CF,
∴AE=BE,
∴,
∴AB=,
∴,
在Rt△AEC中,CE=AE=9,
在Rt△AEO中,设EO=x,则AO=2x,
∴AO2=AE2+OE2,
∴,
∴x=6,
∴⊙O的半径为6,
∴CF=12,
∵,
∴DG=2,
过点D作DP⊥CF,连接OD,
∵AB⊥CF,DG⊥AB,
∴CF∥DG,
∴四边形PDGE为矩形,
∴PE=DG=2,
∴CP=PE+CE=2+9=11
在Rt△OPD中,OP=5,OD=6,
∴DP=,
∴在Rt△CPD中,根据勾股定理得,CD=.
【点评】此题是圆的综合题,主要考查了圆的性质,垂径定理,矩形判定和性质,等边三角形的判定和性质,勾股定理,切线的判定和性质,三角形的面积公式,求出∠ACF=30°是解本题的关键.
5.(2018贵州省遵义市 )如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.
(1)求AD的长.
(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF为等腰三角形时,求AP的长.
【分析】(1)先求出AC,进而求出AE=4,再用勾股定理求出DE即可得出结论;
(2)分三种情况,利用相似三角形得出比例式,即可得出结论.
【解答】解:(1)如图1,连接OD,∵OA=OD=3,BC=2,
∴AC=8,
∵DE是AC的垂直平分线,
∴AE=AC=4,
∴OE=AE﹣OA=1,
在Rt△ODE中,DE=;
在Rt△ADE中,AD=;
(2)当DP=DF时,如图2,
点P与A重合,F与C重合,则AP=0;
当DP=PF时,如图4,∴∠CDP=∠PFD,
∵DE是AC的垂直平分线,∠DPF=∠DAC,
∴∠DPF=∠C,
∵∠PDF=∠CDP,
∴△PDF∽△CDP,
∴∠DFP=∠DPC,
∴∠CDP=∠CPD,
∴CP=CD,
∴AP=AC﹣CP=AC﹣CD=AC﹣AD=8﹣2;
当PF=DF时,如图3,
∴∠FDP=∠FPD,
∵∠DPF=∠DAC=∠C,
∴△DAC∽△PDC,
∴,
∴,
∴AP=5,
即:当△DPF是等腰三角形时,AP的长为0或5或8﹣2.
6.(2018辽宁省盘锦市 )如图,在Rt△ABC中,∠C=90°,点D在线段AB上,以AD为直径的⊙O与BC相交于点E,与AC相交于点F,∠B=∠BAE=30°.
(1)求证:BC是⊙O的切线;
(2)若AC=3,求⊙O的半径r;
(3)在(1)的条件下,判断以A、O、E、F为顶点的四边形为哪种特殊四边形,并说明理由.
【解答】解:(1)如图1,连接OE,
∴OA=OE,
∴∠BAE=∠OEA.
∵∠BAE=30°,∴∠OEA=30°,
∴∠AOE=∠BAE+∠OEA=60°.
在△BOE中,∠B=30°,
∴∠OEB=180°﹣∠B﹣∠BOE=90°,
∴OE⊥BC.
∵点E在⊙O上,∴BC是⊙O的切线;
如图2,∠B=∠BAE=30°,
∴∠AEC=∠B+∠BAE=60°.
在Rt△ACE中,AC=3,sin∠AEC=,
∴AE=,
连接DE,AD是⊙O的直径,
∴∠AED=90°.在Rt△ADE中,∠BAE=30°,
cos∠DAE=,∴AD=,
∴⊙O的半径r=AD=2;
以A、O、E、F为顶点的四边形是菱形,理由:
如图3.在Rt△ABC中,∠B=30°,
∴∠BAC=60°,连接OF,∴OA=OF,
∴△AOF是等边三角形,
∴OA=AF,∠AOF=60°,
连接EF,OE,∴OE=OF.
∵∠OEB=90°,∠B=30°,
∴∠AOE=90°+30°=120°,
∴∠EOF=∠AOE﹣∠AOF=60°.
∵OE=OF,∴△OEF是等边三角形,∴OE=EF.
∵OA=OE,∴OA=AF=EF=OE,∴四边形OAFE是菱形.
7.(2018江苏省苏州市 )如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.
(1)求证:CD=CE;
(2)若AE=GE,求证:△CEO是等腰直角三角形.
【分析】(1)连接AC,根据切线的性质和已知得:AD∥OC,得∠DAC=∠ACO,根据AAS证明△CDA≌△CEA(AAS),可得结论;
(2)介绍两种证法:
证法一:根据△CDA≌△CEA,得∠DCA=∠ECA,由等腰三角形三线合一得:∠F=∠ACE=∠DCA=∠ECG,在直角三角形中得:∠F=∠DCA=∠ACE=∠ECG=22.5°,可得结论;
证法二:设∠F=x,则∠AOC=2∠F=2x,根据平角的定义得:∠DAC+∠EAC+∠OAF=180°,则3x+3x+2x=180,可得结论.
【解答】证明:(1)连接AC,
∵CD是⊙O的切线,
∴OC⊥CD,
∵AD⊥CD,
∴∠DCO=∠D=90°,
∴AD∥OC,
∴∠DAC=∠ACO,
∵OC=OA,
∴∠CAO=∠ACO,
∴∠DAC=∠CAO,
∵CE⊥AB,
∴∠CEA=90°,
在△CDA和△CEA中,∠D=∠CEA,∠DAC=∠EAC,AC=AC,
∴△CDA≌△CEA(AAS),
∴CD=CE;
(2)证法一:连接BC,
∵△CDA≌△CEA,
∴∠DCA=∠ECA,
∵CE⊥AG,AE=EG,
∴CA=CG,
∴∠ECA=∠ECG,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵CE⊥AB,
∴∠ACE=∠B,
∵∠B=∠F,
∴∠F=∠ACE=∠DCA=∠ECG,
∵∠D=90°,
∴∠DCF+∠F=90°,
∴∠F=∠DCA=∠ACE=∠ECG=22.5°,
∴∠AOC=2∠F=45°,
∴△CEO是等腰直角三角形;
证法二:设∠F=x,则∠AOC=2∠F=2x,
∵AD∥OC,
∴∠OAF=∠AOC=2x,
∴∠CGA=∠OAF+∠F=3x,
∵CE⊥AG,AE=EG,
∴CA=CG,
∴∠EAC=∠CGA,
∵CE⊥AG,AE=EG,
∴CA=CG,
∴∠EAC=∠CGA,
∴∠DAC=∠EAC=∠CGA=3x,
∵∠DAC+∠EAC+∠OAF=180°,
∴3x+3x+2x=180,
x=22.5°,
∴∠AOC=2x=45°,
∴△CEO是等腰直角三角形.
【点评】此题考查了切线的性质、全等三角形的判定与性质、圆周角定理、勾股定理、三角形内角和定理以及等腰三角形和等腰直角三角形的判定与性质等知识.此题难度适中,本题相等的角较多,注意各角之间的关系,注意掌握数形结合思想的应用.
 
类型四:圆中求线段或弧的长度,证明三角形相似或线段的关系等的综合
【例题展示】
例题1(2018山东省滨州市)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:
(1)直线DC是⊙O的切线;
(2)AC2=2AD?AO.
【分析】(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;
(2)连接BC,证△DAC∽△CAB即可得.
【解答】解:(1)如图,连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵AC平分∠DAB,
∴∠OAC=∠DAC,
∴∠DAC=∠OCA,
∴OC∥AD,
又∵AD⊥CD,
∴OC⊥DC,
∴DC是⊙O的切线;
(2)连接BC,
∵AB为⊙O的直径,
∴AB=2AO,∠ACB=90°,
∵AD⊥DC,
∴∠ADC=∠ACB=90°,
又∵∠DAC=∠CAB,
∴△DAC∽△CAB,
∴,即AC2=AB?AD,
∵AB=2AO,
∴AC2=2AD?AO.
【点评】本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.
例题2(2018四川省泸州市)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.
(1)求证:CO2=OF?OP;
(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH的长.
【分析】(1)想办法证明△OFD∽△OCP,可得,由OD=OC,可得结论;
(2)如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,利用勾股定理求出r,再利用面积法求出CM,由四边形EFMC是矩形,求出EF,在Rt△EOF中,求出OF,再求出EC,利用平行线分线段成比例定理即可解决问题;
【解答】(1)证明:∵PC是⊙O的切线,
∴OC⊥PC,
∴∠PCO=90°,
∵AB是直径,EF=FD,
∴AB⊥ED,
∴∠OFD=∠OCP=90°,
∵∠FOD=∠COP,
∴△OFD∽△OCP,
∴,∵OD=OC,
∴OC2=OF?OP.
(2)解:如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.
在Rt△POC中,∵PC2+OC2=PO2,
∴(4)2+r2=(r+4)2,
∴r=2,
∵CM=,
∵DC是直径,
∴∠CEF=∠EFM=∠CMF=90°,
∴四边形EFMC是矩形,
∴EF=CM=,
在Rt△OEF中,OF=,
∴EC=2OF=,
∵EC∥OB,
∴,
∵GH∥CM,
∴,
∴GH=.
【点评】本题考查切线的性质、相似三角形的判定和性质、矩形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
例题3(2018湖北省武汉市)如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)若∠APC=3∠BPC,求的值.
【分析】(1)想办法证明△PAO≌△PBO.可得∠PAO=∠PBO=90°;
(2)首先证明BC=2OK,设OK=a,则BC=2a,再证明BC=PB=PA=2a,由△PAK∽△POA,可得PA2=PK?PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=(负根已经舍弃),推出PK=,由PK∥BC,可得;
【解答】(1)证明:连接OP、OB.
∵PA是⊙O的切线,
∴PA⊥OA,
∴∠PAO=90°,
∵PA=PB,PO=PO,OA=OB,
∴△PAO≌△PBO.
∴∠PAO=∠PBO=90°,
∴PB⊥OB,
∴PB是⊙O的切线.
(2)设OP交AB于K.
∵AB是直径,
∴∠ABC=90°,
∴AB⊥BC,
∵PA、PB都是切线,
∴PA=PB,∠APO=∠BPO,
∵OA=OB,
∴OP垂直平分线段AB,
∴OK∥BC,
∵AO=OC,
∴AK=BK,
∴BC=2OK,设OK=a,则BC=2a,
∵∠APC=3∠BPC,∠APO=∠OPB,
∴∠OPC=∠BPC=∠PCB,
∴BC=PB=PA=2a,
∵△PAK∽△POA,
∴PA2=PK?PO,设PK=x,
则有:x2+ax﹣4a2=0,
解得x=(负根已经舍弃),
∴PK=,
∵PK∥BC,
∴.
【点评】本题考查相似三角形的判定和性质、圆周角定理、切线的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.
例题4(2018黑龙江大庆市)如图,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作EC⊥OB,交⊙O于点C,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.
(1)求证:AC平分∠FAB;
(2)求证:BC2=CE?CP;
(3)当AB=4且时,求劣弧的长度.
【分析】(1)根据等角的余角相等证明即可;
(2)只要证明△CBE∽△CPB,可得解决问题;
(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;
【解答】(1)证明:∵AB是直径,
∴∠ACB=90°,
∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,
∵∠BCP=∠BCE,
∴∠ACF=∠ACE,
(2)证明:∵OC=OB,
∴∠OCB=∠OBC,
∵PF是⊙O的切线,CE⊥AB,
∴∠OCP=∠CEB=90°,
∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,
∴∠BCE=∠BCP,
∵CD是直径,
∴∠CBD=∠CBP=90°,
∴△CBE∽△CPB,
∴,
∴BC2=CE?CP;
(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,
∵∠MCB+∠P=90°,∠P+∠PBM=90°,
∴∠MCB=∠PBM,
∵CD是直径,BM⊥PC,
∴∠CMB=∠BMP=90°,
∴△BMC∽△PMB,
∴,
∴BM2=CM?PM=3a2,
∴BM=a,
∴tan∠BCM=,
∴∠BCM=30°,
∴∠OCB=∠OBC=∠BOC=60°,∠BOD=120°
∴的长=.
【跟踪训练】
1.(2018广西柳州市)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.
(1)求证:△DAC∽△DBA;
(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;
(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.
【分析】(1)利用AB是⊙O的直径和AD是⊙O的切线判断出∠ACD=∠DAB=90°,即可得出结论;
(2)利用切线长定理判断出AE=CE,进而得出∠DAC=∠EAC,再用等角的余角相等判断出∠D=∠DCE,得出DE=CE,即可得出结论;
(3)先求出tan∠ABD值,进而得出GH=2CH,进而得出BC=3BH,再求出BC建立方程求出BH,进而得出GH,即可得出结论.
【解答】解:(1)∵AB是⊙O直径,
∴∠ACD=∠ACB=90°,
∵AD是⊙O的切线,
∴∠BAD=90°,
∴∠ACD=∠DAB=90°,
∵∠D=∠D,
∴△DAC∽△DBA;
(2)∵EA,EC是⊙O的切线,
∴AE=CE(切线长定理),
∴∠DAC=∠ECA,
∵∠ACD=90°,
∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,
∴∠D=∠DCE,
∴DE=CE,
∴AD=AE+DE=CE+CE=2CE,
∴CE=AD;
(3)如图,在Rt△ABD中,AD=6,AB=3,
∴tan∠ABD==2,
过点G作GH⊥BD于H,
∴tan∠ABD==2,
∴GH=2BH,
∵点F是直径AB下方半圆的中点,
∴∠BCF=45°,
∴∠CGH=∠CHG﹣∠BCF=45°,
∴CH=GH=2BH,
∴BC=BH+CH=3BH,
在Rt△ABC中,tan∠ABC==2,
∴AC=2BC,
根据勾股定理得,AC2+BC2=AB2,
∴4BC2+BC2=9,
∴BC=,
∴3BH=,
∴BH=,
∴GH=2BH=,
在Rt△CHG中,∠BCF=45°,
∴CG=GH=.
【点评】此题是圆的综合题,主要考查了切线的性质,切线长定理,锐角三角函数,相似三角形的判定和性质,勾股定理,求出tan∠ABD的值是解本题的关键.
2.(2018广西南宁市)如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.
(1)求证:PG与⊙O相切;
(2)若,求的值;
(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.
【分析】(1)要证PG与⊙O相切只需证明∠OBG=90°,由∠A与∠BDC是同弧所对圆周角且∠BDC=∠DBO可得∠CBG=∠DBO,结合∠DBO+∠OBC=90°即可得证;
(2)求需将BE与OC或OC相等线段放入两三角形中,通过相似求解可得,作OM⊥AC、连接OA,证△BEF∽△OAM得,由AM=AC、OA=OC知,结合即可得;
(3)Rt△DBC中求得BC=8、∠DCB=30°,在Rt△EFC中设EF=x,知EC=2x、FC=x、BF=8﹣x,继而在Rt△BEF中利用勾股定理求出x的,从而得出答案.
【解答】解:(1)如图,连接OB,则OB=OD,
∴∠BDC=∠DBO,
∵∠BAC=∠BDC、∠BDC=∠GBC,
∴∠GBC=∠BDC,
∵CD是⊙O的切线,
∴∠DBO+∠OBC=90°,
∴∠GBC+∠OBC=90°,
∴∠GBO=90°,
∴PG与⊙O相切;
(2)过点O作OM⊥AC于点M,连接OA,
则∠AOM=∠COM=∠AOC,
∵,
∴∠ABC=∠AOC,
又∵∠EFB=∠OGA=90°,
∴△BEF∽△OAM,
∴,
∵AM=AC,OA=OC,
∴,
又∵,
∴;
(3)∵PD=OD,∠PBO=90°,
∴BD=OD=8,
在Rt△DBC中,BC=,
又∵OD=OB,
∴△DOB是等边三角形,
∴∠DOB=60°,
∵∠DOB=∠OBC+∠OCB,OB=OC,
∴∠OCB=30°,
∴,,
∴可设EF=x,则EC=2x、FC=x,
∴BF=8﹣x,
在Rt△BEF中,BE2=EF2+BF2,
∴100=x2+(8﹣x)2,
解得:x=6±,
∵6+>8,舍去,
∴x=6﹣,
∴EC=12﹣2,
∴OE=8﹣(12﹣2)=2﹣4.
【点评】本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、圆心角定理、相似三角形的判定与性质、直角三角形的性质等知识点.
 
3.(2018内蒙古通辽市)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.
(1)求证:PD是⊙O的切线;
(2)求证:△ABD∽△DCP;
(3)当AB=5cm,AC=12cm时,求线段PC的长.
【分析】(1)先判断出∠BAC=2∠BAD,进而判断出∠BOD=∠BAC=90°,得出PD⊥OD即可得出结论;
(2)先判断出∠ADB=∠P,再判断出∠DCP=∠ABD,即可得出结论;
(3)先求出BC,再判断出BD=CD,利用勾股定理求出BC=BD=,最后用△ABD∽△DCP得出比例式求解即可得出结论.
【解答】解:(1)如图,连接OD,
∵BC是⊙O的直径,
∴∠BAC=90°,
∵AD平分∠BAC,
∴∠BAC=2∠BAD,
∵∠BOD=2∠BAD,
∴∠BOD=∠BAC=90°,
∵DP∥BC,
∴∠ODP=∠BOD=90°,
∴PD⊥OD,
∵OD是⊙O半径,
∴PD是⊙O的切线;
(2)∵PD∥BC,
∴∠ACB=∠P,
∵∠ACB=∠ADB,
∴∠ADB=∠P,
∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,
∴∠DCP=∠ABD,
∴△ABD∽△DCP,
(3)∵BC是⊙O的直径,
∴∠BDC=∠BAC=90°,
在Rt△ABC中,BC=cm,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠BOD=∠COD,
∴BD=CD,
在Rt△BCD中,BD2+CD2=BC2,
∴BC=CD=BC=,
∵△ABD∽△DCP,
∴,
∴,
∴CP=16.9cm.
 
4.(2018山东聊城市)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.
(1)求证:AC是⊙O的切线;
(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.
【分析】(1)连接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,据此得∠OEB=∠CBE,从而得出OE∥BC,进一步即可得证;
(2)证△BDE∽△BEC得,据此可求得BC的长度,再证△AOE∽△ABC得,据此可得AD的长.
【解答】解:(1)如图,连接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC,
∴∠OBE=∠CBE,
∴∠OEB=∠CBE,
∴OE∥BC,
又∵∠C=90°,
∴∠AEO=90°,即OE⊥AC,
∴AC为⊙O的切线;
(2)∵ED⊥BE,
∴∠BED=∠C=90°,
又∵∠DBE=∠EBC,
∴△BDE∽△BEC,
∴,即,
∴BC=;
∵∠AEO=∠C=90°,∠A=∠A,
∴△AOE∽△ABC,
∴,即,
解得:AD=.
【点评】本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质.
5.(2018新疆乌鲁木齐)如图,AG是∠HAF的平分线,点E在AF上,以AE为直径的⊙O交AG于点D,过点D作AH的垂线,垂足为点C,交AF于点B.
(1)求证:直线BC是⊙O的切线;
(2)若AC=2CD,设⊙O的半径为r,求BD的长度.
【分析】(1)根据角平分线的定义和同圆的半径相等可得OD∥AC,证明OD⊥CB,可得结论;
(2)在Rt△ACD中,设CD=a,则AC=2a,AD=a,证明△ACD∽△ADE,表示a=,由平行线分线段成比例定理得:,代入可得结论.
【解答】(1)证明:连接OD,
∵AG是∠HAF的平分线,
∴∠CAD=∠BAD,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠CAD=∠ODA,
∴OD∥AC,
∵∠ACD=90°,
∴∠ODB=∠ACD=90°,即OD⊥CB,
∵D在⊙O上,
∴直线BC是⊙O的切线;
(2)解:在Rt△ACD中,设CD=a,则AC=2a,AD=a,
连接DE,
∵AE是⊙O的直径,
∴∠ADE=90°,
由∠CAD=∠BAD,∠ACD=∠ADE=90°,
∴△ACD∽△ADE,
∴,
即,
∴a=,
由(1)知:OD∥AC,
∴,即,
∵a=,解得BD=.
【点评】此题考查了切线的判定、勾股定理、相似三角形的判定与性质,根据相似三角形的性质列方程解决问题是关键.
同课章节目录