【备考2019】数学中考一轮复习学案 第6节一元二次方程及应用(含解析)

文档属性

名称 【备考2019】数学中考一轮复习学案 第6节一元二次方程及应用(含解析)
格式 zip
文件大小 1.2MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2019-01-14 08:51:57

文档简介


第一章 数与式第6节一元二次方程及应用
■知识点一:一元二次方程的概念、解法
1.一元二次方程的概念:只含有___个未知数,并且未知数的最高次数是 ,这样的整式方程叫做一元二次方程.一元二次方程的一般形式是 ,其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数.
2.一元二次方程的解法
(1)解一元二次方程的基本思想是 .
(2)主要方法有:因式分解法、配方法、直接开平方法、公式法.
①用因式分解法解方程的原理是:若a·b=0,则a=0或______.
②配方法:能通过配方把一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0)变形为(x+)2= 的形式,再利用直接开平方法求解.21cnjy.com
③公式法:一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,x= .
■知识点二: 一元二次方程的根的判别式
一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式为Δ=b2-4ac.
1.b2-4ac>0?一元二次方程ax2+bx+c=0(a≠0)有两个___________的实数根.
2.b2-4ac>0?一元二次方程ax2+bx+c=0(a≠0)有两个___________的实数根.
3.b2-4ac>0?一元二次方程ax2+bx+c=0(a≠0)___________实数根.
■知识点三: 一元二次方程的根与系数的关系
1.若一元二次方程ax2+bx+c=0(a≠0)的两个实数根是x1,x2,则x1+x2= ,x1x2= .【版权所有:21教育】
2.使用一元二次方程的根与系数的关系时,一是要先将一元二次方程化为一般形式;二是方程的解存在,即满足b2-4ac≥0.
■知识点四:一元二次方程的应用
列一元二次方程解应用题的一般步骤:
(1)审题;(2)设未知数;(3)找等量关系;(4)列方程;(5)解方程;(6)检验;(7)写出答案.
■考点1一元二次方程的概念、解法
◇典例:
1.(2007?滨州)关于x的一元二次方程(m+1)xm2+1+4x+2=0的解为(  )
A.x1=1,x2=-1 B.x1=x2=1 C.x1=x2=-1 D.无解
【考点】一元二次方程的定义.
【分析】因为本题是关于x的一元二次方程,所以m2+1=2解得m=±1因为m+1≠0不符合题意所以m=1,把m=1代入原方程得2x2+4x+2=0,解这个方程即可求出x的值.解:根据题意得m2+1=2 ∴m=±1 又m=-1不符合题意 ∴m=1 把m=1代入原方程得2x2+4x+2=0 解得x1=x2=-1. 故选:C.
2. (2018年甘肃省兰州)解方程:3x2﹣2x﹣2=0.
【考点】解一元二次方程﹣公式法
【分析】先找出a,b,c,再求出b2﹣4ac=28,根据公式即可求出答案.
解:=
即,
∴原方程的解为,
【点评】本题主要考查对解一元二次方程﹣提公因式法、公式法,因式分解等知识点的理解和掌握,能熟练地运用公式法解一元二次方程是解此题的关键.
◆变式训练
1.(2018 年广西梧州)解方程:2x2﹣4x﹣30=0.
2. (2017年山东滨州)根据要求,解答下列问题:
①方程x2﹣2x+1=0的解为   ;
②方程x2﹣3x+2=0的解为   ;
③方程x2﹣4x+3=0的解为   ;

(2)根据以上方程特征及其解的特征,请猜想:
①方程x2﹣9x+8=0的解为   ;
②关于x的方程   的解为x1=1,x2=n.
(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.
■考点2. 一元二次方程的根的判别式
◇典例
(2018年青海省) 关于一元二次方程x2-2x-1=0根的情况,下列说法正确的是( )
A.有一个实数根 B.有两个相等的实数根
C.有两个不相等的实数根 D.没有实数根
【考点】根的判别式
【分析】根据根的判别式,可得答案.
解:∵a=-1,b=-2,c=-1,
∴△=b2-4ac=(-2)2-4×1×(-1)-8>0,
一元二次方程x2-2x-1=0有两个不相等的实数根,
故选:C.
【点评】本题考查了根的判别式,利用根的判别式是解题关键.
◆变式训练
(2017.阿坝)若一元二次方程x2+4x+c=0有两个相等的实数根,则c的值是   .
■考点3. 一元二次方程的根与系数的关系
◇典例:
(2017.凉山)一元二次方程3x2﹣1=2x+5两实根的和与积分别是(  )
A.,﹣2 B.,﹣2 C.,2 D.,2
【考点】根与系数的关系.
【分析】设这个一元二次方程的两个根分为x1、x2,然后把方程化为一般形式,然后根据根与系数的关系进行判断.21教育网
解:设这个一元二次方程的两个根分为x1、x2,
方程3x2﹣1=2x+5化为一元二次方程的一般形式为:3x2﹣2x﹣6=0,
所以x1+x2=,x1x2==﹣2.
故选B.
◆变式训练
(2017.泸州)已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是(  )2-1-c-n-j-y
A.7 B.11 C.12 D.16
■考点4. 一元二次方程的应用
◇典例:
1.(2017.安徽)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足(  )
A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16
【考点】由实际问题抽象出一元二次方程..
【分析】等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.
解:第一次降价后的价格为:25×(1﹣x);
第二次降价后的价格为:25×(1﹣x)2;
∵两次降价后的价格为16元,
∴25(1﹣x)2=16.
故选D.
2.(2018年贵州省黔南州、黔东南州、黔西南州)“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.
例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?
我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;……;所以容易求出图10、图n中黑点的个数分别是   、   .
请你参考以上“分块计数法”,先将下面的点阵进行分块,再完成以下问题:
(1)第5个点阵中有   个圆圈;第n个点阵中有   个圆圈.
(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.
【考点】规律型:图形的变化类,一元二次方程的应用
【分析】根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;
(1)第2个图中2为一块,分为3块,余1,
第2个图中3为一块,分为6块,余1;
按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,
(2)代入271,列方程,方程有解则存在这样的点阵.
解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,
故答案为:60个,6n个;
(1)如图所示:第1个点阵中有:1个,
第2个点阵中有:2×3+1=7个,
第3个点阵中有:3×6+1=17个,
第4个点阵中有:4×9+1=37个,
第5个点阵中有:5×12+1=60个,

第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,
故答案为:60,3n2﹣3n+1;
(2)3n2﹣3n+1=271,
n2﹣n﹣90=0,
(n﹣10)(n+9)=0,
n1=10,n2=﹣9(舍),
∴小圆圈的个数会等于271,它是第10个点阵.
【点评】本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键. 
◆变式训练
1.(2017.宜宾)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是   .【来源:21cnj*y.co*m】
2.(2018年湖北省宜昌)某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.
(1)求n的值;
(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;
(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.
(2017年湖南娄底 )若关于x的一元二次方程kx2﹣4x+1=0有实数根,则k的取值范围是(  )
A.k=4 B.k>4 C.k≤4且k≠0 D.k≤4
(2018年宁夏 )若2﹣是方程x2﹣4x+c=0的一个根,则c的值是(  )
A.1 B. C. D.
 (2017年山东省东营)若|x2﹣4x+4|与互为相反数,则x+y的值为(  )
A.3 B.4 C.6 D.9
 (2017年四川省绵阳市)关于x的方程2x2+mx+n=0的两个根是﹣2和1,则nm的值为(  )
A.﹣8 B.8 C.16 D.﹣16
(2017年江苏省无锡市 )某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是(  )
A.20% B.25% C.50% D.62.5%
 (2017年四川省巴中)已知x=1是一元二次方程x2+ax+b=0的一个根,则a2+2ab+b2的值为   .
(2018年广西柳州)一元二次方程x2﹣9=0的解是   .
 (2018年山东省烟台)已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是   .
(2018年黑龙江省绥化)已知关于x的一元二次方程x2﹣5x+2m=0有实数根.
(1)求m的取值范围;
(2)当m=时,方程的两
(2017年四川省巴中市)巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,若两次下调的百分率相同,求平均每次下调的百分率.
【考点】一元二次方程的应用.
【分析】设平均每次下调的百分率为x,根据调价前后的价格,即可得出关于x的一元二次方程,解之取小于1的正值即可得出结论.
解:设平均每次下调的百分率为x,
根据题意得:5000(1﹣x)2=4050,
解得:x1=0.1=10%,x2=1.9(不合题意,舍去).
答:平均每次下调的百分率为10%.
一、 、选择题
(2017年浙江省嘉兴、舟山 )用配方法解方程x2+2x﹣1=0时,配方结果正确的是(  )
A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=3
(2017年浙江省杭州 )某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则(  )
A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8
C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.8
(2018年浙江省嘉兴)欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是(  )
A.AC的长 B.AD的长 C.BC的长 D.CD的长
(2016年浙江省金华 )一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是(  )
A.x1=﹣1,x2=2 B.x1=1,x2=﹣2 C.x1+x2=3 D.x1x2=2
(2016年浙江省丽水 )下列一元二次方程没有实数根的是(  )
A.x2+2x+1=0 B.x2+x+2=0 C.x2﹣1=0 D.x2﹣2x﹣1=0
(2017年浙江省温州 )我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是(  )
A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3
(2018年浙江省舟山)欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是(  )
A.AC的长 B.AD的长 C.BC的长 D.CD的长
(2018年浙江省温州)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为(  )
A.20 B.24 C. D.
二、 、填空题
(2018年浙江省台州)已知关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则m=   .
(2018年浙江省杭州)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=   .
(2016年浙江省金华 )如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是   .
三、 、解答题
(2017年浙江省丽水 )解方程:(x﹣3)(x﹣1)=3.
(2017年浙江省衢州 )根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业,第二产业,第三产业所占比例如图2所示.
请根据图中信息,解答下列问题:
(1)求2016年第一产业生产总值(精确到1亿元)
(2)2016年比2015年的国民生产总值增加了百分之几?(精确到1%)
(3)若要使2018年的国民生产总值达到1573亿元,求2016年至2018年我市国民生产总值的平均增长率(精确到1%)
(2018年浙江省杭州)如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.
(1)若∠A=28°,求∠ACD的度数.
(2)设BC=a,AC=b.
①线段AD的长是方程x2+2ax﹣b2=0的一个根吗?说明理由.
②若AD=EC,求的值.
(2017年浙江省台州 )在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根,比如对于方程 ,操作步骤是:
第一步:根据方程系数特征,确定一对固定点A(0,1),B(5,2);
第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;
第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C 的横坐标m即为该方程的一个实数根(如图1)
第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D 的横坐标为n即为该方程的另一个实数根。
(1)在图2 中,按照“第四步“的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹)
(2)结合图1,请证明“第三步”操作得到的m就是方程 的一个实数根;
(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程 的实数根,请你直接写出一对固定点的坐标;
(4)实际上,(3)中的固定点有无数对,一般地,当 , , , 与a,b,c之间满足怎样的关系时,点P( , ),Q( , )就是符合要求的一对固定点?


第一章 数与式第6节一元二次方程及应用
■知识点一:一元二次方程的概念、解法
1.一元二次方程的概念:只含有__一__个未知数,并且未知数的最高次数是__2__,这样的整式方程叫做一元二次方程.一元二次方程的一般形式是__ax2+bx+c=0(a≠0)__ 其中 ax2 叫做二次项, bx 叫做一次项, c 叫做常数项; a 叫做二次项的系数, b 叫做一次项的系数.
2.一元二次方程的解法
(1)解一元二次方程的基本思想是__降次__.
(2)主要方法有:因式分解法、配方法、直接开平方法、公式法.
①用因式分解法解方程的原理是:若a·b=0,则a=0或__b=0__.
②配方法:能通过配方把一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0)变形为(x+)2=____的形式,再利用直接开平方法求解.
③公式法:一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,x=____.
■知识点二: 一元二次方程的根的判别式
一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式为Δ=b2-4ac.
1.b2-4ac>0?一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根.
2.b2-4ac>0?一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.
3.b2-4ac>0?一元二次方程ax2+bx+c=0(a≠0)无实数根.
■知识点三: 一元二次方程的根与系数的关系
1.若一元二次方程ax2+bx+c=0(a≠0)的两个实数根是x1,x2,则x1+x2=__-__,x1x2=____.
2.使用一元二次方程的根与系数的关系时,一是要先将一元二次方程化为一般形式;二是方程的解存在,即满足b2-4ac≥0.
■知识点四:一元二次方程的应用
列一元二次方程解应用题的一般步骤:
(1)审题;(2)设未知数;(3)找等量关系;(4)列方程;(5)解方程;(6)检验;(7)写出答案.
■考点1一元二次方程的概念、解法
◇典例:
1.(2007?滨州)关于x的一元二次方程(m+1)xm2+1+4x+2=0的解为(  )
A.x1=1,x2=-1 B.x1=x2=1 C.x1=x2=-1 D.无解
【考点】一元二次方程的定义.
【分析】因为本题是关于x的一元二次方程,所以m2+1=2解得m=±1因为m+1≠0不符合题意所以m=1,把m=1代入原方程得2x2+4x+2=0,解这个方程即可求出x的值.解:根据题意得m2+1=2 ∴m=±1 又m=-1不符合题意 ∴m=1 把m=1代入原方程得2x2+4x+2=0 解得x1=x2=-1. 故选:C.
2. (2018年甘肃省兰州)解方程:3x2﹣2x﹣2=0.
【考点】解一元二次方程﹣公式法
【分析】先找出a,b,c,再求出b2﹣4ac=28,根据公式即可求出答案.
解:=
即,
∴原方程的解为,
【点评】本题主要考查对解一元二次方程﹣提公因式法、公式法,因式分解等知识点的理解和掌握,能熟练地运用公式法解一元二次方程是解此题的关键.
◆变式训练
1.(2018 年广西梧州)解方程:2x2﹣4x﹣30=0.
【考点】一元二次方程的解法﹣因式分解法
【分析】利用因式分解法解方程即可;
解:∵2x2﹣4x﹣30=0,
∴x2﹣2x﹣15=0,
∴(x﹣5)(x+3)=0,
∴x1=5,x2=﹣3.
【点评】本题考查一元二次方程的解法﹣因式分解法,解题的关键是熟练掌握解 一元二次方程的解法,属于中考基础题.
2. (2017年山东滨州)根据要求,解答下列问题:
①方程x2﹣2x+1=0的解为   ;
②方程x2﹣3x+2=0的解为   ;
③方程x2﹣4x+3=0的解为   ;

(2)根据以上方程特征及其解的特征,请猜想:
①方程x2﹣9x+8=0的解为   ;
②关于x的方程   的解为x1=1,x2=n.
(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.
【考点】解一元二次方程﹣配方法;一元二次方程的解;解一元二次方程﹣因式分解法.
【分析】(1)利用因式分解法解各方程即可;
(2)根据以上方程特征及其解的特征,可判定方程x2﹣9x+8=0的解为1和8;②关于x的方程的解为x1=1,x2=n,则此一元二次方程的二次项系数为1,则一次项系数为1和n的和的相反数,常数项为1和n的积.
(3)利用配方法解方程x2﹣9x+8=0可判断猜想结论的正确.
解:(1)①(x﹣1)2=0,解得x1=x2=1,即方程x2﹣2x+1=0的解为x1=x2=1,;
②(x﹣1)(x﹣2)=0,解得x1=1,x2=2,所以方程x2﹣3x+2=0的解为x1=1,x2=2,;
③(x﹣1)(x﹣3)=0,解得x1=1,x2=3,方程x2﹣4x+3=0的解为x1=1,x2=3;

(2)根据以上方程特征及其解的特征,请猜想:
①方程x2﹣9x+8=0的解为x1=1,x2=8;
②关于x的方程x2﹣(1+n)x+n=0的解为x1=1,x2=n.
(3)x2﹣9x=﹣8,
x2﹣9x+=﹣8+,
(x﹣)2=
x﹣=±,
所以x1=1,x2=8;
所以猜想正确.
故答案为x1=x2=1;x1=1,x2=2;x1=1,x2=3;x2﹣(1+n)x+n=0;
【点评】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了因式分解法解一元二次方程. 
■考点2. 一元二次方程的根的判别式
◇典例
(2018年青海省) 关于一元二次方程x2-2x-1=0根的情况,下列说法正确的是( )
A.有一个实数根 B.有两个相等的实数根
C.有两个不相等的实数根 D.没有实数根
【考点】根的判别式
【分析】根据根的判别式,可得答案.
解:∵a=-1,b=-2,c=-1,
∴△=b2-4ac=(-2)2-4×1×(-1)-8>0,
一元二次方程x2-2x-1=0有两个不相等的实数根,
故选:C.
【点评】本题考查了根的判别式,利用根的判别式是解题关键.
◆变式训练
(2017.阿坝)若一元二次方程x2+4x+c=0有两个相等的实数根,则c的值是   .
【考点】根的判别式.
【分析】根据一元二次方程x2+4x+c=0有两个相等的实数根,得出△=16﹣4c=0,解方程即可求出c的值.
解:∵一元二次方程x2+4x+c=0有两个相等的实数根,
∴△=16﹣4c=0,解得c=4.
故答案为4.
■考点3. 一元二次方程的根与系数的关系
◇典例:
(2017.凉山)一元二次方程3x2﹣1=2x+5两实根的和与积分别是(  )
A.,﹣2 B.,﹣2 C.,2 D.,2
【考点】根与系数的关系.
【分析】设这个一元二次方程的两个根分为x1、x2,然后把方程化为一般形式,然后根据根与系数的关系进行判断.21教育网
解:设这个一元二次方程的两个根分为x1、x2,
方程3x2﹣1=2x+5化为一元二次方程的一般形式为:3x2﹣2x﹣6=0,
所以x1+x2=,x1x2==﹣2.
故选B.
◆变式训练
(2017.泸州)已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是(  )2-1-c-n-j-y
A.7 B.11 C.12 D.16
【考点】根与系数的关系.
【分析】由根与系数的关系可得出m+n=2t、mn=t2﹣2t+4,将其代入(m+2)(n+2)=mn+2(m+n)+4中可得出(m+2)(n+2)=(t+1)2+7,由方程有两个实数根结合根的判别式可求出t的取值范围,再根据二次函数的性质即可得出(m+2)(n+2)的最小值.
解:∵m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,
∴m+n=2t,mn=t2﹣2t+4,
∴(m+2)(n+2)=mn+2(m+n)+4=t2+2t+8=(t+1)2+7.
∵方程有两个实数根,
∴△=(﹣2t)2﹣4(t2﹣2t+4)=8t﹣16≥0,
∴t≥2,
∴(t+1)2+7≥(2+1)2+7=16.
故选D.
■考点4. 一元二次方程的应用
◇典例:
1.(2017.安徽)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足(  )
A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16
【考点】由实际问题抽象出一元二次方程..
【分析】等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.
解:第一次降价后的价格为:25×(1﹣x);
第二次降价后的价格为:25×(1﹣x)2;
∵两次降价后的价格为16元,
∴25(1﹣x)2=16.
故选D.
2.(2018年贵州省黔南州、黔东南州、黔西南州)“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.
例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?
我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;……;所以容易求出图10、图n中黑点的个数分别是   、   .
请你参考以上“分块计数法”,先将下面的点阵进行分块,再完成以下问题:
(1)第5个点阵中有   个圆圈;第n个点阵中有   个圆圈.
(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.
【考点】规律型:图形的变化类,一元二次方程的应用
【分析】根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;
(1)第2个图中2为一块,分为3块,余1,
第2个图中3为一块,分为6块,余1;
按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,
(2)代入271,列方程,方程有解则存在这样的点阵.
解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,
故答案为:60个,6n个;
(1)如图所示:第1个点阵中有:1个,
第2个点阵中有:2×3+1=7个,
第3个点阵中有:3×6+1=17个,
第4个点阵中有:4×9+1=37个,
第5个点阵中有:5×12+1=60个,

第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,
故答案为:60,3n2﹣3n+1;
(2)3n2﹣3n+1=271,
n2﹣n﹣90=0,
(n﹣10)(n+9)=0,
n1=10,n2=﹣9(舍),
∴小圆圈的个数会等于271,它是第10个点阵.
【点评】本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键. 
◆变式训练
1.(2017.宜宾)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是   .【来源:21cnj*y.co*m】
【分析】根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x,可以列出相应的方程即可.【版权所有:21教育】
解:由题意可得,
50(1﹣x)2=32,
故答案为:50(1﹣x)2=32.
2.(2018年湖北省宜昌)某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.
(1)求n的值;
(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;
(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.
【考点】一元一次方程的应用;一元二次方程的应用
【分析】(1)直接利用第一年有40家工厂用乙方案治理,共使Q值降低了12,得出等式求出答案;
(2)利用从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家得出等式求出答案;
(3)利用n的值即可得出关于a的等式求出答案.
解:(1)由题意可得:40n=12,
解得:n=0.3;
(2)由题意可得:40+40(1+m)+40(1+m)2=190,
解得:m1=,m2=﹣(舍去),
∴第二年用乙方案新治理的工厂数量为:40(1+m)=40(1+50%)=60(家),
(3)设第一年用乙方案治理降低了100n=100×0.3=30,
则(30﹣a)+2a=39.5,
解得:a=9.5,
则Q=20.5.
设第一年用甲方案整理降低的Q值为x,
第二年Q值因乙方案治理降低了100n=100×0.3=30,
解法一:(30﹣a)+2a=39.5
a=9.5
x=20.5
解法二:
解得:
【点评】考查了一元二次方程和一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
 
(2017年湖南娄底 )若关于x的一元二次方程kx2﹣4x+1=0有实数根,则k的取值范围是(  )
A.k=4 B.k>4 C.k≤4且k≠0 D.k≤4
【考点】根的判别式,一元二次方程的定义
【分析】根据二次项系数非零结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出结论.
解:∵关于x的一元二次方程kx2﹣4x+1=0有实数根,
∴,
解得:k≤4且k≠0.
故选C.
【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.
(2018年宁夏 )若2﹣是方程x2﹣4x+c=0的一个根,则c的值是(  )
A.1 B. C. D.
【考点】一元二次方程的解
【分析】把2﹣代入方程x2﹣4x+c=0就得到关于c的方程,就可以解得c的值.
解:把2﹣代入方程x2﹣4x+c=0,得(2﹣)2﹣4(2﹣)+c=0,
解得c=1;
故选:A.
【点评】本题考查的是一元二次方程的根即方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
 (2017年山东省东营)若|x2﹣4x+4|与互为相反数,则x+y的值为(  )
A.3 B.4 C.6 D.9
【考点】解一元二次方程﹣配方法,非负数的性质
【分析】根据相反数的定义得到|x2﹣4x+4|+=0,再根据非负数的性质得x2﹣4x+4=0,2x﹣y﹣3=0,然后利用配方法求出x,再求出y,最后计算它们的和即可.
解:根据题意得|x2﹣4x+4|+=0,
所以|x2﹣4x+4|=0, =0,
即(x﹣2)2=0,2x﹣y﹣3=0,
所以x=2,y=1,
所以x+y=3.
故选A.
【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了非负数的性质.
 (2017年四川省绵阳市)关于x的方程2x2+mx+n=0的两个根是﹣2和1,则nm的值为(  )
A.﹣8 B.8 C.16 D.﹣16
【考点】根与系数的关系.
【分析】由方程的两根结合根与系数的关系可求出m、n的值,将其代入nm中即可求出结论.
解:∵关于x的方程2x2+mx+n=0的两个根是﹣2和1,
∴﹣=﹣1,=﹣2,
∴m=2,n=﹣4,
∴nm=(﹣4)2=16.
故选C.
(2017年江苏省无锡市 )某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是(  )
A.20% B.25% C.50% D.62.5%
【考点】一元二次方程的应用.
【分析】设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.21世纪教育网版权所有
解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,www.21-cn-jy.com
由题意可得:2(1+x)2=4.5,
解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),
答:该店销售额平均每月的增长率为50%;
故选:C.
 (2017年四川省巴中)已知x=1是一元二次方程x2+ax+b=0的一个根,则a2+2ab+b2的值为   .
【考点】一元二次方程的解.
【分析】由x=1是一元二次方程x2+ax+b=0的一个根,可得1+a+b=0,推出a+b=﹣1,可得a2+2ab+b2=(a+b)2=1.
解:∵x=1是一元二次方程x2+ax+b=0的一个根,
∴1+a+b=0,
∴a+b=﹣1,
∴a2+2ab+b2=(a+b)2=1.
故答案为1.
【点评】此题主要考查了方程的解的定义,利用方程的解和完全平方公式即可解决问题. 
(2018年广西柳州)一元二次方程x2﹣9=0的解是   .
【考点】一元二次方程-直接开平方法
【分析】利用直接开平方法解方程得出即可.
解:∵x2﹣9=0,
∴x2=9,
解得:x1=3,x2=﹣3.
故答案为:x1=3,x2=﹣3.
【点评】此题主要考查了直接开平方法解方程,正确开平方是解题关键.
 (2018年山东省烟台)已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是   .
【考点】一元二次方程的根的判别式的应用
【分析】根据根的判别式△>0、根与系数的关系列出关于m的不等式组,通过解该不等式组,求得m的取值范围.
解:依题意得:,
解得3<m≤5.
故答案是:3<m≤5.
【点评】本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m的不等式,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根
(2018年黑龙江省绥化)已知关于x的一元二次方程x2﹣5x+2m=0有实数根.
(1)求m的取值范围;
(2)当m=时,方程的两
【考点】根的判别式;根与系数的关系;矩形的性质
【分析】(1)由根的判别式列出不等式,解不等式可得m的取值范围;
(2)由根与系数的关系可得x1+x2=5、x1x2=5,该矩形外接圆的直径是矩形的对角线AC,根据勾股定理可得结论.
解:(1)∵方程有实数根,
∴△=(﹣5)2﹣4×1×2m≥0,(1分)
m≤,(2分)
∴当m≤时,原方程有实数根;
(2)当m=时,原方程可化为:x2﹣5x+5=0,
设方程的两个根分别为x1、x2,则x1+x2=5,x1?x2=5,(4分)
∵该矩形外接圆的直径是矩形的对角线AC,如图所示,
∴AC====,(5分)
∴该矩形外接圆的直径是.
【点评】本题主要考查一元二次方程根的判别式、根与系数的关系,熟练掌握根与系数的关系和进行变形是解题的关键.
 
(2017年四川省巴中市)巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,若两次下调的百分率相同,求平均每次下调的百分率.
【考点】一元二次方程的应用.
【分析】设平均每次下调的百分率为x,根据调价前后的价格,即可得出关于x的一元二次方程,解之取小于1的正值即可得出结论.
解:设平均每次下调的百分率为x,
根据题意得:5000(1﹣x)2=4050,
解得:x1=0.1=10%,x2=1.9(不合题意,舍去).
答:平均每次下调的百分率为10%.
一、 、选择题
(2017年浙江省嘉兴、舟山 )用配方法解方程x2+2x﹣1=0时,配方结果正确的是(  )
A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=3
【考点】解一元二次方程﹣配方法.
【分析】把左边配成一个完全平方式,右边化为一个常数,判断出配方结果正确的是哪个即可.
解:∵x2+2x﹣1=0,
∴x2+2x+1=2,
∴(x+1)2=2.
故选:B.
【点评】此题主要考查了配方法在解一元二次方程中的应用,要熟练掌握. 
(2017年浙江省杭州 )某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则(  )
A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8
C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.8
【考点】由实际问题抽象出一元二次方程
【分析】设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程即可.
解:设参观人次的平均年增长率为x,由题意得:
10.8(1+x)2=16.8,
故选:C.
【点评】本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
(2018年浙江省嘉兴)欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是(  )
A.AC的长 B.AD的长 C.BC的长 D.CD的长
【考点】解一元二次方程﹣配方法;勾股定理
【分析】表示出AD的长,利用勾股定理求出即可.
解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,
设AD=x,根据勾股定理得:(x+)2=b2+()2,
整理得:x2+ax=b2,
则该方程的一个正根是AD的长,
故选:B.
【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.
(2016年浙江省金华 )一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是(  )
A.x1=﹣1,x2=2 B.x1=1,x2=﹣2 C.x1+x2=3 D.x1x2=2
【分析】根据根与系数的关系找出“x1+x2=﹣=3,x1?x2==﹣2”,再结合四个选项即可得出结论.
解:∵方程x2﹣3x﹣2=0的两根为x1,x2,
∴x1+x2=﹣=3,x1?x2==﹣2,
∴C选项正确.
故选C.
(2016年浙江省丽水 )下列一元二次方程没有实数根的是(  )
A.x2+2x+1=0 B.x2+x+2=0 C.x2﹣1=0 D.x2﹣2x﹣1=0
【考点】根的判别式.
【分析】求出每个方程的根的判别式,然后根据判别式的正负情况即可作出判断.
解:A.△=22﹣4×1×1=0,方程有两个相等实数根,此选项错误;
B、△=12﹣4×1×2=﹣7<0,方程没有实数根,此选项正确;
C、△=0﹣4×1×(﹣1)=4>0,方程有两个不等的实数根,此选项错误;
D、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不等的实数根,此选项错误;
故选:B.
(2017年浙江省温州 )我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是(  )
A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3
【考点】一元二次方程的解.
【分析】先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可.
解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,
所以2x+3=1或2x+3=﹣3,
所以x1=﹣1,x2=﹣3.
故选D.
【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
(2018年浙江省舟山)欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是(  )
A.AC的长 B.AD的长 C.BC的长 D.CD的长
【考点】解一元二次方程﹣配方法;勾股定理
【分析】表示出AD的长,利用勾股定理求出即可.
解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,
设AD=x,根据勾股定理得:(x+)2=b2+()2,
整理得:x2+ax=b2,
则该方程的一个正根是AD的长,
故选:B.
【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.
(2018年浙江省温州)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为(  )
A.20 B.24 C. D.
【考点】数学常识;勾股定理的证明,一元二次方程的运用
【分析】欲求矩形的面积,则求出小正方形的边长即可,由此可设小正方形的边长为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,解方程求出x的值,进而可求出该矩形的面积.
解:设小正方形的边长为x,
∵a=3,b=4,
∴AB=3+4=7,
在Rt△ABC中,AC2+BC2=AB2,
即(3+x)2+(x+4)2=72,
整理得,x2+7x﹣12=0,
解得x=或x=(舍去),
∴该矩形的面积=(+3)(+4)=24,
故选:B.
【点评】本题考查了勾股定理的证明以及运用和一元二次方程的运用,求出小正方形的边长是解题的关键.
二、 、填空题
(2018年浙江省台州)已知关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则m=   .
【考点】根的判别式
【分析】利用判别式的意义得到△=32﹣4m=0,然后解关于m的方程即可,
解:根据题意得△=32﹣4m=0,
解得m=.
故答案为.
【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
(2018年浙江省杭州)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=   .
【考点】矩形的性质;翻折变换(折叠问题),一元二次方程的应用
【分析】设AD=x,则AB=x+2,利用折叠的性质得DF=AD,EA=EF,∠DFE=∠A=90°,则可判断四边形AEFD为正方形,所以AE=AD=x,再根据折叠的性质得DH=DC=x+2,则AH=AE﹣HE=x﹣1,然后根据勾股定理得到x2+(x﹣1)2=(x+2)2,再解方程求出x即可.
解:设AD=x,则AB=x+2,
∵把△ADE翻折,点A落在DC边上的点F处,
∴DF=AD,EA=EF,∠DFE=∠A=90°,
∴四边形AEFD为正方形,
∴AE=AD=x,
∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,
∴DH=DC=x+2,
∵HE=1,
∴AH=AE﹣HE=x﹣1,
在Rt△ADH中,∵AD2+AH2=DH2,
∴x2+(x﹣1)2=(x+2)2,
整理得x2﹣6x﹣3=0,解得x1=3+2,x2=3﹣2(舍去),
即AD的长为3+2.
故答案为3+2.
【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.
(2016年浙江省金华 )如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是   .
【考点】翻折变换(折叠问题).勾股定理的应用,一元二次方程的应用
【分析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=10,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.
解:∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,
∴AB=10,
∵以AD为折痕△ABD折叠得到△AB′D,
∴BD=DB′,AB′=AB=10.
如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.
设BD=DB′=x,则AF=6+x,FB′=8﹣x.
在Rt△AFB′中,由勾股定理得:AB′2=AF2+FB′2,即(6+x)2+(8﹣x)2=102.
解得:x1=2,x2=0(舍去).
∴BD=2.
如图2所示:当∠B′ED=90°时,C与点E重合.
∵AB′=10,AC=6,
∴B′E=4.
设BD=DB′=x,则CD=8﹣x.
在Rt△′BDE中,DB′2=DE2+B′E2,即x2=(8﹣x)2+42.
解得:x=5.
∴BD=5.
综上所述,BD的长为2或5.
故答案为:2或5.
【点评】本题主要考查的是翻折的性质、勾股定理的应用,根据勾股定理列出关于x的方程是解题的关键. 
三、 、解答题
(2017年浙江省丽水 )解方程:(x﹣3)(x﹣1)=3.
【考点】解一元二次方程﹣因式分解法.
【分析】先把方程化为一般式,然后利用因式分解法解方程.
解:方程化为x2﹣4x=0,
x(x﹣4)=0,
所以x1=0,x2=4.
【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.
(2017年浙江省衢州 )根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业,第二产业,第三产业所占比例如图2所示.
请根据图中信息,解答下列问题:
(1)求2016年第一产业生产总值(精确到1亿元)
(2)2016年比2015年的国民生产总值增加了百分之几?(精确到1%)
(3)若要使2018年的国民生产总值达到1573亿元,求2016年至2018年我市国民生产总值的平均增长率(精确到1%)
【考点】一元二次方程的应用;扇形统计图;条形统计图.
【分析】(1)2016年第一产业生产总值=2016年国民生产总值×2016年第一产业国民生产总值所占百分率列式计算即可求解;
(2)先求出2016年比2015年的国民生产总值增加了多少,再除以2015年的国民生产总值即可求解;
(3)设2016年至2018年我市国民生产总值的平均增长率为x,那么2017年我市国民生产总值为1300(1+x)亿元,2018年我市国民生产总值为1300(1+x)(1+x)亿元,然后根据2018年的国民生产总值要达到1573亿元即可列出方程,解方程就可以求出年平均增长率.
解:(1)1300×7.1%≈92(亿元).
答:2016年第一产业生产总值大约是92亿元;
(2)(1300﹣1204)÷1204×100%
=96÷1204×100%
≈8%.
答:2016年比2015年的国民生产总值大约增加了8%;
(3)设2016年至2018年我市国民生产总值的年平均增长率为x,
依题意得1300(1+x)2=1573,
∴1+x=±1.1,
∴x=10%或x=﹣2.1(不符合题意,故舍去).
答:2016年至2018年我市国民生产总值的年平均增长率约为10%.
【点评】此题主要考查了一元二次方程的应用中增长率的问题,一般公式为原来的量×(1±x)2=后来的量,其中增长用+,减少用-. 
(2018年浙江省杭州)如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.
(1)若∠A=28°,求∠ACD的度数.
(2)设BC=a,AC=b.
①线段AD的长是方程x2+2ax﹣b2=0的一个根吗?说明理由.
②若AD=EC,求的值.
【考点】一元二次方程的解;直角三角形的性质;勾股定理
【分析】(1)根据三角形内角和定理求出∠B,根据等腰三角形的性质求出∠BCD,计算即可;
(2)①根据勾股定理求出AD,利用求根公式解方程,比较即可;
②根据勾股定理列出算式,计算即可.
解:(1)∵∠ACB=90°,∠A=28°,
∴∠B=62°,
∵BD=BC,
∴∠BCD=∠BDC=59°,
∴∠ACD=90°﹣∠BCD=31°;
(2)①由勾股定理得,AB==,
∴AD=﹣a,
解方程x2+2ax﹣b2=0得,x==﹣a,
∴线段AD的长是方程x2+2ax﹣b2=0的一个根;
②∵AD=AE,
∴AE=EC=,
由勾股定理得,a2+b2=(b+a)2,
整理得,=.
【点评】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.
(2017年浙江省台州 )在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根,比如对于方程 ,操作步骤是:
第一步:根据方程系数特征,确定一对固定点A(0,1),B(5,2);
第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;
第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C 的横坐标m即为该方程的一个实数根(如图1)
第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D 的横坐标为n即为该方程的另一个实数根。
(1)在图2 中,按照“第四步“的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹)
(2)结合图1,请证明“第三步”操作得到的m就是方程 的一个实数根;
(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程 的实数根,请你直接写出一对固定点的坐标;
(4)实际上,(3)中的固定点有无数对,一般地,当 , , , 与a,b,c之间满足怎样的关系时,点P( , ),Q( , )就是符合要求的一对固定点?
【考点】一元二次方程的解,根与系数的关系,作图—基本作图,相似三角形的判定与性质
【分析】(1)根据题目中给的操作步骤操作即可得出图2中的图.
(2)在图1中,过点B作BD⊥x轴,交x轴于点D.依题意可证△AOC∽△CDB.然后根据相似三角形对应边的比相等列出式子,化简后为m2-5m+2=0,从而得证。
(3)将方程ax2+bx+c=0(a≠0)可化为x2+x+=0.模仿研究小组作法即可得答案。
(4)以图3为例:P(m1,n1)Q(m2,n2),设方程的根为x,根据三角形相似可得.=.化简后为x2-(m1+m2)x+m1m2+n1n2=0.
又x2+x+=0.再依据相对应的系数相等即可求出。
(1)解:如图所示:
(2)证明:如图,过点B作BD⊥x轴,交x轴于点D.
根据题意可证△AOC∽△CDB.
∴.
∴.
∴m(5-m)=2.
∴m2-5m+2=0.
∴m是方程x2-5x+2=0的实数根.
(3)解:方程ax2+bx+c=0(a≠0)可化为
x2+x+=0.
模仿研究小组作法可得:A(0,1),B(-,)或A(0,),B(-,c)等.
(4)解:以图3为例:P(m1,n1)Q(m2,n2),
设方程的根为x,根据三角形相似可得.=.
上式可化为x2-(m1+m2)x+m1m2+n1n2=0.
又ax2+bx+c=0,
即x2+x+=0.
比较系数可得:m1+m2=-.
m1m2+n1n2=.
【点评】本题属于三角形综合题,主要考查的是一元二次方程的解,相似三角形的判定与性质的综合应用,解决问题的关键是作辅助线构造相似三角形,依据相似三角形的对应边成比例,列出比例式并转化为等积式.
同课章节目录