第三章函数 第9节 平面直角坐标系和函数的概念
■知识点一:用坐标表示位置
平面直角坐标系的相关内容:
(1)平面直角坐标系的有关概念:在平面内两条 且有公共原点的数轴组成了平面直角坐标系.水平的数轴称为横轴(或x轴),竖直的数轴称为纵轴(或y轴).两条数轴把平面分成四个部分,这四个部分称作四个象限【来源:21·世纪·教育·网】
(2)点的坐标:在平面内,任意一个点都可以用一组 来表示,如A(a,b).(a,b)即为点A的坐标,其中a是点A的 坐标,B是点A的 坐标.
■知识点二:平面直角坐标系内点的坐标特征
【设点P(a,b)】:
①各象限点的特征:
第一象限 ; 第二象限 ;
第三象限 ; 第四象限
②特殊位置点的特征:
若点P在x轴上,则 ;
若点P在y轴上,则 ;
若点P在一、三象限角平分线上,则 ;
若点P在二、四象限角平分线上,则
■知识点三:平面直角坐标系中的对称点的坐标
点P(a,b)关于x轴的对称点P’
点P(a,b)关于y轴的对称点P’
点P(a,b)关于原点的对称点P’
■知识点四:坐标与图形变化
点的坐标延伸【设点P(a,b)、点M(c,d)】:
①点P到y轴的距离为 ,到y轴的距离为 .到原点的距离为 .
②1)将点P沿水平方向平移m(m>0)个单位后坐标变化情况为:
点P沿水平向右方向平移m(m>0)个单位后坐标为(a+m,b);
点P沿水平向左方向平移m(m>0)个单位后坐标为(a-m,b);
2)将点P沿竖直方向平移n(n>0)个单位后坐标变化情况为:
点P沿竖直方向向上平移n(n>0)个单位后坐标为(a,b+n);
点P沿竖直方向向下平移n(n>0)个单位后坐标为(a,b—n).
③若直线PM平行x轴,则b=d;若直线PM平行y轴,则a=c;
④点P到点M的距离:PM=
⑤线段PM的中点坐标:()
■知识点五:函数自变量的取值范围
①函数表达式是整式,自变量的取值是 ;
②函数表达式是分式,自变量的取值要使得 ;
③函数表达式是偶次根式,自变量的取值要使得 为非负数;
④来源于实际问题的函数,自变量的取值要使得实际问题有意义、式子有意义.
失分点警示
函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分.
■知识点六:函数的有关知识及其图象:
(1)常量与变量:在某一变化过程中,始终保持不变的量叫做常量,数值发生 的量叫做变量. 21·cn·jy·com
(2)函数的定义:一般的,在某个变化过程中如果有两个变量x、y,对于x的每一个取值,y都有 的值与之对应,那么x是自变量,y是x的函数.
(3)函数的表示方法:①解析式法;② 图象法;③列表法.
(4)函数解析式(用来表示函数关系的数学式子叫做解析式)与变自量的取值范围:
(5)描点法画图像的一般步骤: 、 、
■知识点七:函数图象的判断
(1)分析实际问题判断函数图象的方法:
①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;
②找特殊点:即交点或转折点,说明图象在此点处将发生变化;
③判断图象趋势:判断出函数的增减性,图象的倾斜方向.
(2)以几何图形(动点)为背景判断函数图象的方法:
①设时间为t(或线段长为x),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示,
再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.
■考点1:用坐标表示位置
◇典例:
1(2018年四川省绵阳)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,﹣1)和(﹣3,1),那么“卒”的坐标为 .
【考点】坐标确定位置
【分析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.
解:“卒”的坐标为(﹣2,﹣2),
故答案为:(﹣2,﹣2).
【点评】此题主要考查了坐标确定位置,关键是正确确定原点位置.
◆变式训练
(2017年山东省济南)定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为 .
■考点2:平面直角坐标系内点的坐标特征
◇典例:
2.(2017年广西贵港)在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【考点】点的坐标.
【分析】分点P的横坐标是正数和负数两种情况讨论求解.
解:①m﹣3>0,即m>3时,﹣2m<﹣6,
4﹣2m<﹣2,
所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限;
②m﹣3<0,即m<3时,﹣2m>﹣6,
4﹣2m>﹣2,
点P(m﹣3,4﹣2m)可以在第二或三象限,
综上所述,点P不可能在第一象限.
故选A.
【点评】本题考查了点的坐标,判断出纵坐标是负数是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)需熟练掌握.
◆变式训练
(2016·湖北荆门)在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是( )21*cnjy*com
A.第一象限 B.第二象限 C.第三象限 D.第四象限
■考点3:平面直角坐标系中的对称点的坐标
◇典例
(2018年湖北省武汉)点A(2,﹣5)关于x轴对称的点的坐标是( )
A.(2,5) B.(﹣2,5) C.(﹣2,﹣5) D.(﹣5,2)
【考点】关于x轴、y轴对称的点的坐标
【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.
解:点A(2,﹣5)关于x轴的对称点B的坐标为(2,5).
故选:A.
【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
◆变式训练
(2017年宁夏西宁)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为( )
A.(﹣3,﹣2) B.(2,2) C.(﹣2,2) D.(2,﹣2)
■考点4.坐标与图形变化
◇典例:
(2018年浙江省温州)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(﹣1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B的对应点B′的坐标是( )
A.(1,0) B.(,) C.(1,) D.(﹣1,)
【考点】坐标与图形变化﹣平移
【分析】根据平移的性质得出平移后坐标的特点,进而解答即可.
解:因为点A与点O对应,点A(﹣1,0),点O(0,0),
所以图形向右平移1个单位长度,
所以点B的对应点B'的坐标为(0+1,),即(1,),
故选:C.
【点评】此题考查坐标与图形变化,关键是根据平移的性质得出平移后坐标的特点.
◆变式训练
(2018年江苏省宿迁)在平面直角坐标系中,将点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,则所得的点的坐标是________.
■考点5.函数自变量的取值范围
◇典例
(2018年内蒙古包头)函数y=中,自变量x的取值范围是( )
A.x≠1 B.x>0 C.x≥1 D.x>1
【考点】函数自变量的取值范围
【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.
解:由题意得,x﹣1≥0且x﹣1≠0,
解得x>1.
故选:D.
【点评】本题考查了函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
◆变式训练
(2018年黑龙江省大庆市)函数y=的自变量x取值范围是 .
■考点6.函数图象的判断
◇典例
(2018年青海)均匀地向一个容器注水,最后将容器注满在注水过程中,水的高度h随时间t的变化规律如图所示,这个容器的形状可能是( )
A. B. C. D.
【考点】函数的图象
【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.
解:注水量一定,从图中可以看出,OA上升较快,AB上升较慢,BC上升最快,
由此可知这个容器下面容积较大,中间容积最大,上面容积最小,
故选:D.
【点评】本题考查利用函数的图象解决实际问题,正确理解函数的图象所表示的意义是解题的关键,注意容器粗细和水面高度变化的关系.
◆变式训练
(2018年内蒙古赤峰)有一天,兔子和乌龟赛跑.比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行.不一会儿,乌龟就被远远的甩在了后面.兔子想:“这比赛也太轻松了,不如先睡一会儿.”而乌龟一刻不停地继续爬行.当兔子醒来跑到终点时,发现乌龟已经到达了终点.正确反映这则寓言故事的大致图象是( )
A. B. C. D.
一、 、选择题
1.(2018年黑龙江省牡丹江)在函数y=中,自变量x的取值范围是( )
A.x≤﹣3 B.x≥﹣3 C.x<﹣3 D.x>﹣3
2.(2018年四川省甘孜州)在平面直角坐标系中,点A(2,3)与点B关于y轴对称,则点B的坐标为( )
A.(﹣2,3) B.(﹣2,﹣3) C.(2,﹣3) D.(﹣3,﹣2)
3.(2018年浙江省丽水义乌金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是( )
A.(5,30) B.(8,10) C.(9,10) D.(10,10)
4.(2018年四川省成都)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是( )
A.(﹣2,3) B.(3,﹣1) C.(﹣3,1) D.(﹣5,2)
5.(2018年浙江省绍兴)如图,一个函数的图象由射线BA.线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数( )
A.当x<1时,y随x的增大而增大 B.当x<1时,y随x的增大而减小
C.当x>1时,y随x的增大而增大 D.当x>1时,y随x的增大而减小
二、 、填空题
6.(2018年浙江省杭州市临安)P(3,﹣4)到x轴的距离是 .
7.(2018年广西柳州)如图,在平面直角坐标系中,点A的坐标是 .
8.(2018年湖南省长沙)在平面直角坐标系中,将点A(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是 .
9.(2018年江苏省常州)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是 .
三、 、解答题
10.(2018年浙江省舟山)小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.
(1)根据函数的定义,请判断变量h是否为关于t的函数?
(2)结合图象回答:
①当t=0.7s时,h的值是多少?并说明它的实际意义.
②秋千摆动第一个来回需多少时间?
一、选择题
1.(2018年辽宁省大连)在平面直角坐标系中,点(﹣3,2)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.(2018年湖南省娄底)函数y=中自变量x的取值范围是( )
A.x>2 B.x≥2 C.x≥2且x≠3 D.x≠3
3.(2018年四川省内江)如图,在物理课上,小明用弹簧秤将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是( )
A. B. C. D.
4.(2018年重庆市)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于( )
A.9 B. 7 C.﹣9 D.﹣7
5.(2018年广西贵港)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是( )
A.﹣5 B.﹣3 C.3 D.1
6.(2018年山东省枣庄)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为( )
A.(﹣3,﹣2) B.(2,2) C.(﹣2,2) D.(2,﹣2)
7.(2018年北京)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:
①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);
②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);
③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);
④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).
上述结论中,所有正确结论的序号是( )
A.①②③ B.②③④ C.①④ D.①②③④
二、填空题
8.(2018年新疆维吾尔自治区、新疆生产建设兵团)点(﹣1,2)所在的象限是第 象限.
9.函数y=的自变量x的取值范围是 .
10.(2018年江苏省南京)在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是( , ).
11.(2017年湖南湘潭)阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1?y2=x2?y1.根据该材料填空:已知=(2,3),=(4,m),且∥,则m= .
12.(2018年四川省资阳)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是 .
三、解答题
13.(2018年上海)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.
(1)求y关于x的函数关系式;(不需要写定义域)
(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?
14.(2017·金华)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(?
2,?2),B(?4,?1),C(?4,?4).
(1)作出 ABC关于原点O成中心对称的 A1B1C1.
(2)作出点A关于x轴的对称点A'.若把点A'向右平移a个单位长度后落在 A1B1C1的内部
15.(2018年内蒙古呼和浩特)如图,已知A(6,0),B(8,5),将线段OA平移至CB,点D在x轴正半轴上(不与点A重合),连接OC,AB,CD,BD.
(1)求对角线AC的长;
(2)设点D的坐标为(x,0),△ODC与△ABD的面积分别记为S1,S2.设S=S1﹣S2,写出S关于x的函数解析式,并探究是否存在点D使S与△DBC的面积相等?如果存在,用坐标形式写出点D的位置;如果不存在,说明理由.
第三章函数 第9节 平面直角坐标系和函数的概念
■知识点一:用坐标表示位置
平面直角坐标系的相关内容:
(1)平面直角坐标系的有关概念:在平面内两条互相垂直且有公共原点的数轴组成了平面直角坐标系.水平的数轴称为横轴(或x轴),竖直的数轴称为纵轴(或y轴).两条数轴把平面分成四个部分,这四个部分称作四个象限2·1·c·n·j·y
(2)点的坐标:在平面内,任意一个点都可以用一组有序实数对来表示,如A(a,b).(a,b)即为点A的坐标,其中a是点A的 横 坐标,B是点A的 纵坐标.
■知识点二:平面直角坐标系内点的坐标特征
【设点P(a,b)】:
①各象限点的特征:
第一象限(+,+) ; 第二象限(—,+) ;
第三象限(一,一);第四象限(+,一).
②特殊位置点的特征:
若点P在x轴上,则b=0 ;
若点P在y轴上,则a=0 ;
若点P在一、三象限角平分线上,则a=b ;
若点P在二、四象限角平分线上,则a+b=0.
■知识点三:平面直角坐标系中的对称点的坐标
点P(a,b)关于x轴的对称点P’(a,一b)
点P(a,b)关于y轴的对称点P’(一a,b)
点P(a,b)关于原点的对称点P’(一a,一b) .
■知识点四:坐标与图形变化
点的坐标延伸【设点P(a,b)、点M(c,d)】:
①点P到y轴的距离为,到y轴的距离为.到原点的距离为.
②1)将点P沿水平方向平移m(m>0)个单位后坐标变化情况为:
点P沿水平向右方向平移m(m>0)个单位后坐标为(a+m,b);
点P沿水平向左方向平移m(m>0)个单位后坐标为(a-m,b);
2)将点P沿竖直方向平移n(n>0)个单位后坐标变化情况为:
点P沿竖直方向向上平移n(n>0)个单位后坐标为(a,b+n);
点P沿竖直方向向下平移n(n>0)个单位后坐标为(a,b—n).
③若直线PM平行x轴,则b=d;若直线PM平行y轴,则a=c;
④点P到点M的距离:PM=
⑤线段PM的中点坐标:()
■知识点五:函数自变量的取值范围
①函数表达式是整式,自变量的取值是__全体实数__;
②函数表达式是分式,自变量的取值要使得__分母不等于0__;
③函数表达式是偶次根式,自变量的取值要使得__被开方数__为非负数;
④来源于实际问题的函数,自变量的取值要使得实际问题有意义、式子有意义.
失分点警示
函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分.
■知识点六:函数的有关知识及其图象:
(1)常量与变量:在某一变化过程中,始终保持不变的量叫做常量,数值发生 变化 的量叫做变量. 21世纪教育网版权所有
(2)函数的定义:一般的,在某个变化过程中如果有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,那么x是自变量,y是x的函数.【来源:21·世纪·教育·网】
(3)函数的表示方法:①解析式法;② 图象法;③列表法.
(4)函数解析式(用来表示函数关系的数学式子叫做解析式)与变自量的取值范围:
(5)描点法画图像的一般步骤:列表、描点、连线
■知识点七:函数图象的判断
(1)分析实际问题判断函数图象的方法:
①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;
②找特殊点:即交点或转折点,说明图象在此点处将发生变化;
③判断图象趋势:判断出函数的增减性,图象的倾斜方向.
(2)以几何图形(动点)为背景判断函数图象的方法:
①设时间为t(或线段长为x),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示,
再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.
■考点1:用坐标表示位置
◇典例:
1(2018年四川省绵阳)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,﹣1)和(﹣3,1),那么“卒”的坐标为 .
【考点】坐标确定位置
【分析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.
解:“卒”的坐标为(﹣2,﹣2),
故答案为:(﹣2,﹣2).
【点评】此题主要考查了坐标确定位置,关键是正确确定原点位置.
◆变式训练
(2017年山东省济南)定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为 .
【考点】坐标确定位置
【分析】若设M(x,y),构建方程组即可解决问题.
解:由题意可得M在第4象限,若设M(x,y),则由题目中对“实际距离”的定义可得方程组:3﹣x+1﹣y=y+5+x+1=5﹣x+3+y,
解得,x=1,y=﹣2,则M(1,﹣2)
故答案为:(1,﹣2).
【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.
■考点2:平面直角坐标系内点的坐标特征
◇典例:
2.(2017年广西贵港)在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【考点】点的坐标.
【分析】分点P的横坐标是正数和负数两种情况讨论求解.
解:①m﹣3>0,即m>3时,﹣2m<﹣6,
4﹣2m<﹣2,
所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限;
②m﹣3<0,即m<3时,﹣2m>﹣6,
4﹣2m>﹣2,
点P(m﹣3,4﹣2m)可以在第二或三象限,
综上所述,点P不可能在第一象限.
故选A.
【点评】本题考查了点的坐标,判断出纵坐标是负数是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)需熟练掌握.
◆变式训练
(2016·湖北荆门)在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是( )21*cnjy*com
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【考点】点的坐标.
【分析】根据各象限内点的坐标特征解答即可.
解:∵点A(a,﹣b)在第一象限内,
∴a>0,﹣b>0,
∴b<0,
∴点B(a,b)所在的象限是第四象限.
故选D.
【点评】本题考查了点的坐标,判断出纵坐标是负数是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)需熟练掌握.
■考点3:平面直角坐标系中的对称点的坐标
◇典例
(2018年湖北省武汉)点A(2,﹣5)关于x轴对称的点的坐标是( )
A.(2,5) B.(﹣2,5) C.(﹣2,﹣5) D.(﹣5,2)
【考点】关于x轴、y轴对称的点的坐标
【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.
解:点A(2,﹣5)关于x轴的对称点B的坐标为(2,5).
故选:A.
【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
◆变式训练
(2017年宁夏西宁)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为( )
A.(﹣3,﹣2) B.(2,2) C.(﹣2,2) D.(2,﹣2)
【考点】关于x轴、y轴对称的点的坐标;坐标与图形变化﹣平移.
【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.
解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),
则点B关于x轴的对称点B′的坐标是(2,2),
故选:B.
【点评】 此题主要考查了坐标与图形变化-平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.
■考点4.坐标与图形变化
◇典例:
(2018年浙江省温州)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(﹣1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B的对应点B′的坐标是( )
A.(1,0) B.(,) C.(1,) D.(﹣1,)
【考点】坐标与图形变化﹣平移
【分析】根据平移的性质得出平移后坐标的特点,进而解答即可.
解:因为点A与点O对应,点A(﹣1,0),点O(0,0),
所以图形向右平移1个单位长度,
所以点B的对应点B'的坐标为(0+1,),即(1,),
故选:C.
【点评】此题考查坐标与图形变化,关键是根据平移的性质得出平移后坐标的特点.
◆变式训练
(2018年江苏省宿迁)在平面直角坐标系中,将点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,则所得的点的坐标是________.
【考点】平移的性质
【分析】根据点坐标平移特征:右加上加,从而得出平移之后的点坐标.
解:∵点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,∴所得的点的坐标为:(5,1).
故答案为:(5,1).
【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.
■考点5.函数自变量的取值范围
◇典例
(2018年内蒙古包头)函数y=中,自变量x的取值范围是( )
A.x≠1 B.x>0 C.x≥1 D.x>1
【考点】函数自变量的取值范围
【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.
解:由题意得,x﹣1≥0且x﹣1≠0,
解得x>1.
故选:D.
【点评】本题考查了函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
◆变式训练
(2018年黑龙江省大庆市)函数y=的自变量x取值范围是 .
【考点】函数自变量的取值范围
【分析】根据二次根式的性质,被开方数大于等于0可知:3﹣x≥0,解得x的范围.
解:根据题意得:3﹣x≥0,
解得:x≤3.
故答案为:x≤3.
【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
■考点6.函数图象的判断
◇典例
(2018年青海)均匀地向一个容器注水,最后将容器注满在注水过程中,水的高度h随时间t的变化规律如图所示,这个容器的形状可能是( )
A. B. C. D.
【考点】函数的图象
【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.
解:注水量一定,从图中可以看出,OA上升较快,AB上升较慢,BC上升最快,
由此可知这个容器下面容积较大,中间容积最大,上面容积最小,
故选:D.
【点评】本题考查利用函数的图象解决实际问题,正确理解函数的图象所表示的意义是解题的关键,注意容器粗细和水面高度变化的关系.
◆变式训练
(2018年内蒙古赤峰)有一天,兔子和乌龟赛跑.比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行.不一会儿,乌龟就被远远的甩在了后面.兔子想:“这比赛也太轻松了,不如先睡一会儿.”而乌龟一刻不停地继续爬行.当兔子醒来跑到终点时,发现乌龟已经到达了终点.正确反映这则寓言故事的大致图象是( )
A. B. C. D.
【考点】函数的图象
【分析】根据题意得出兔子和乌龟的图象进行解答即可.
解:乌龟运动的图象是一条直线,兔子运动的图象路程先增大,而后不变,再增大,并且乌龟所用时间最短,
故选:D.
【点评】此题考查函数图象问题,本题需先读懂题意,根据实际情况找出正确函数图象即可.
一、 、选择题
1.(2018年黑龙江省牡丹江)在函数y=中,自变量x的取值范围是( )
A.x≤﹣3 B.x≥﹣3 C.x<﹣3 D.x>﹣3
【考点】函数自变量的取值范围
【分析】直接利用二次根式的定义得出x的取值范围.
解:在函数y=中,x+3≥0,
解得:x≥﹣3,
故自变量x的取值范围是:x≥﹣3.
故选:B.
【点评】此题主要考查了函数自变量的取值范围,正确把握二次根式的定义是解题关键.
2.(2018年四川省甘孜州)在平面直角坐标系中,点A(2,3)与点B关于y轴对称,则点B的坐标为( )
A.(﹣2,3) B.(﹣2,﹣3) C.(2,﹣3) D.(﹣3,﹣2)
【考点】关于x轴、y轴对称的点的坐标
【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.
解:点A(2,3)关于y轴对称点的坐标为B(﹣2,3).
故选:A.
【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
3.(2018年浙江省丽水义乌金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是( )
A.(5,30) B.(8,10) C.(9,10) D.(10,10)
【考点】坐标确定位置
【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.
解:如图,
过点C作CD⊥y轴于D,
∴BD=5,CD=50÷2﹣16=9,
OA=OD﹣AD=40﹣30=10,
∴P(9,10);
故选:C.
【点评】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.
4.(2018年四川省成都)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是( )
A.(﹣2,3) B.(3,﹣1) C.(﹣3,1) D.(﹣5,2)
【考点】坐标与图形的变化﹣平移
【分析】根据点的平移的规律:向左平移a个单位,坐标P(x,y)?P(x﹣a,y),据此求解可得.
解:∵点B的坐标为(3,1),
∴向左平移6个单位后,点B1的坐标(﹣3,1),
故选:C.
【点评】本题主要考查坐标与图形的变化﹣平移,解题的关键是掌握点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.
5.(2018年浙江省绍兴)如图,一个函数的图象由射线BA.线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数( )
A.当x<1时,y随x的增大而增大 B.当x<1时,y随x的增大而减小
C.当x>1时,y随x的增大而增大 D.当x>1时,y随x的增大而减小
【考点】函数的图象
【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.
解:由函数图象可得,
当x<1时,y随x的增大而增大,故选项A正确,选项B错误,
当1<x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,故选项C、D错误,
故选:A.
【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.
二、 、填空题
6.(2018年浙江省杭州市临安)P(3,﹣4)到x轴的距离是 .
【考点】点的坐标
【分析】根据点在坐标系中坐标的几何意义即可解答.
解:根据点在坐标系中坐标的几何意义可知,P(3,﹣4)到x轴的距离是|﹣4|=4.
故答案为:4.
【点评】本题考查的是点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离.
7.(2018年广西柳州)如图,在平面直角坐标系中,点A的坐标是 .
【考点】点的坐标
【分析】直接利用平面直角坐标系得出A点坐标.
解:由坐标系可得:点A的坐标是(﹣2,3).
故答案为:(﹣2,3).
【点评】此题主要考查了点的坐标,正确利用平面坐标系是解题关键.
8.(2018年湖南省长沙)在平面直角坐标系中,将点A(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是 .
【考点】坐标与图形变化﹣平移
【分析】直接利用平移的性质分别得出平移后点的坐标得出答案.
解:∵将点A′(﹣2,3)向右平移3个单位长度,
∴得到(1,3),
∵再向下平移2个单位长度,
∴平移后对应的点A′的坐标是:(1,1).
故答案为:(1,1).
【点评】此题主要考查了平移,正确掌握平移规律是解题关键.
9.(2018年江苏省常州)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是 .
【考点】关于x轴对称的对称
【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.
解:点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),
故答案为:(﹣2,﹣1).
【点评】本题考查了关于x轴对称的对称点,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.
三、 、解答题
10.(2018年浙江省舟山)小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.
(1)根据函数的定义,请判断变量h是否为关于t的函数?
(2)结合图象回答:
①当t=0.7s时,h的值是多少?并说明它的实际意义.
②秋千摆动第一个来回需多少时间?
【考点】函数的概念;函数的图象
【分析】(1)根据图象和函数的定义可以解答本题;
(2)①根据函数图象可以解答本题;
②根据函数图象中的数据可以解答本题.
解:(1)由图象可知,
对于每一个摆动时间t,h都有唯一确定的值与其对应,
∴变量h是关于t的函数;
(2)①由函数图象可知,
当t=0.7s时,h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度是0.5m;
②由图象可知,
秋千摆动第一个来回需2.8s.
【点评】本题考查函数图象和函数概念,解答本题的关键是明确题意,利用数形结合的思想解答.
一、选择题
1.(2018年辽宁省大连)在平面直角坐标系中,点(﹣3,2)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【考点】点的坐标
【分析】直接利用第二象限内点的符号特点进而得出答案.
解:点(﹣3,2)所在的象限在第二象限.
故选:B.
【点评】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.
2.(2018年湖南省娄底)函数y=中自变量x的取值范围是( )
A.x>2 B.x≥2 C.x≥2且x≠3 D.x≠3
【考点】函数自变量的取值范围
【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.
解:根据题意得:,
解得:x≥2且x≠3.
故选:C.
【点评】函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
3.(2018年四川省内江)如图,在物理课上,小明用弹簧秤将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是( )
A. B. C. D.
【考点】函数的图象
【分析】根据在铁块开始露出水面到完全露出水面时,排开水的体积逐渐变小,根据阿基米德原理和称重法可知y的变化,注意铁块露出水面前读数y不变,离开水面后y不变,即可得出答案.
解:露出水面前排开水的体积不变,受到的浮力不变,根据称重法可知y不变;
铁块开始露出水面到完全露出水面时,排开水的体积逐渐变小,根据阿基米德原理可知受到的浮力变小,根据称重法可知y变大;
铁块完全露出水面后一定高度,不再受浮力的作用,弹簧秤的读数为铁块的重力,故y不变.
故选:C.
【点评】本题考查了函数的图象,用到的知识点是函数值随高度的变化,注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.
4.(2018年重庆市)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于( )
A.9 B. 7 C.﹣9 D.﹣7
【考点】函数值
【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.
解:∵当x=7时,y=6﹣7=﹣1,
∴当x=4时,y=2×4+b=﹣1,
解得:b=﹣9,
故选:C.
【点评】本题主要考查函数值,解题的关键是掌握函数值的计算方法.
5.(2018年广西贵港)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是( )
A.﹣5 B.﹣3 C.3 D.1
【考点】关于x、y轴的对称点的坐标特点
【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.
解:∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,
∴1+m=3、1﹣n=2,
解得:m=2、n=﹣1,
所以m+n=2﹣1=1,
故选:D.
【点评】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
6.(2018年山东省枣庄)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为( )
A.(﹣3,﹣2) B.(2,2) C.(﹣2,2) D.(2,﹣2)
【考点】坐标与图形变化﹣平移
【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.
解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),
则点B关于x轴的对称点B′的坐标是(2,2),
故选:B.
【点评】此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.
7.(2018年北京)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:
①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);
②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);
③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);
④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).
上述结论中,所有正确结论的序号是( )
A.①②③ B.②③④ C.①④ D.①②③④
【考点】坐标确定位置
【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.
解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;
②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;
③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;
④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.
故选:C.
【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.
二、填空题
8.(2018年新疆维吾尔自治区、新疆生产建设兵团)点(﹣1,2)所在的象限是第 象限.
【考点】各象限内点的坐标的符号特征
【分析】根据各象限内点的坐标特征解答.
解:点(﹣1,2)所在的象限是第二象限.
故答案为:二.
【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
9.函数y=的自变量x的取值范围是 .
【考点】函数自变量的取值范围
【分析】根据被开方数大于等于0,分母不等于0列式求解即可.
解:根据题意得2x+1≥0,x﹣3≠0,
解得x≥﹣且x≠3.
故答案为:x≥﹣且x≠3.
【点评】本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.
10.(2018年江苏省南京)在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是( , ).
【考点】关于x轴、y轴对称的点的坐标;坐标与图形变化﹣平移
【分析】直接利用关于y轴对称点的性质得出点A'坐标,再利用平移的性质得出答案.
解:∵点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',
∴A′(1,2),
∵将点A'向下平移4个单位,得到点A″,
∴点A″的坐标是:(1,﹣2).
故答案为:1,﹣2.
【点评】此题主要考查了关于y轴对称点的性质以及平移变换,正确掌握相关平移规律是解题关键.
11.(2017年湖南湘潭)阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1?y2=x2?y1.根据该材料填空:已知=(2,3),=(4,m),且∥,则m= .
【考点】坐标与图形性质.
【分析】由题意设=(x1,y1),=(x2,y2),∥,则x1?y2=x2?y1,由此列出方程即可解决问题.
解:由题意:∵=(2,3),=(4,m),且∥,
∴2m=12,
∴m=6,
故答案为6.
【点评】本题考查坐标与图形的性质,解题的关键是理解题意,学会构建方程解决问题,属于基础题
12.(2018年四川省资阳)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是 .
【考点】规律型:点的坐标
【分析】本题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.
解:由已知,点A每次旋转转动45°,则转动一周需转动8次,每次转动点A到原点的距离变为转动前的倍
∵2018=252×8+2
∴点A2018的在y轴正半轴上,OA2018==21009
故答案为:(0,21009)
【点评】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.
三、解答题
13.(2018年上海)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.
(1)求y关于x的函数关系式;(不需要写定义域)
(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?
【考点】一次函数的图象,一次函数图象上点的坐标特征
【分析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式,再根据一次函数图象上点的坐标特征即可求出剩余油量为5升时行驶的路程,此题得解.
解:(1)设该一次函数解析式为y=kx+b,
将(150,45)、(0,60)代入y=kx+b中,
,解得:,
∴该一次函数解析式为y=﹣x+60.
(2)当y=﹣x+60=8时,
解得x=520.
即行驶520千米时,油箱中的剩余油量为8升.
530﹣520=10千米,
油箱中的剩余油量为8升时,距离加油站10千米.
∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
14.(2017·金华)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(?
2,?2),B(?4,?1),C(?4,?4).
(1)作出 ABC关于原点O成中心对称的 A1B1C1.
(2)作出点A关于x轴的对称点A'.若把点A'向右平移a个单位长度后落在 A1B1C1的内部【考点】坐标与图形性质,关于原点对称的点的坐标 【分析】(1)分别作出点A、B、C关于圆点O对称的点,然后顺次连接即可;(2)作出点A关于X轴的对称点即可。再向右平移即可。 21·世纪*教育网
包括顶点和边界),求a的取值范围.
解:(1)如下图: (2)解:A′如图所示。
a的取值范围是4<a<6.
【点评】本题主要考查作图-中心对称和轴对称、平移,熟练掌握中心对称和轴对称、平移变换的性质是解题的关键.
15.(2018年内蒙古呼和浩特)如图,已知A(6,0),B(8,5),将线段OA平移至CB,点D在x轴正半轴上(不与点A重合),连接OC,AB,CD,BD.
(1)求对角线AC的长;
(2)设点D的坐标为(x,0),△ODC与△ABD的面积分别记为S1,S2.设S=S1﹣S2,写出S关于x的函数解析式,并探究是否存在点D使S与△DBC的面积相等?如果存在,用坐标形式写出点D的位置;如果不存在,说明理由.
【考点】一元一次方程的应用,平移的性质,两点间的距离公式
【分析】(1)根据平移的性质可以求得点C的坐标,然后根据两点间的距离公式即可求得AC的长;
(2)根据题意,可以分别表示出S1,S2,从而可以得到S关于x的函数解析式,由图和题目中的条件可以求得△CDB的面积,从而可以求得满足条件的点D的坐标,本题得以解决.
解:(1)∵A(6,0),B(8,5),线段OA平移至CB,
∴点C的坐标为(2,5),
∴AC==;
(2)当点D在线段OA上时,
S1==,S2==,
∴S=S1﹣S2==5x﹣15,
当点D在OA的延长线上时,
S1==,S2==,
∴S=S1﹣S2==15,
由上可得,S=,
∵S△DBC==15,
∴点D在OA的延长线上的任意一点都满足条件,
∴点D的坐标为(x,0)(x>6).
【点评】本题考查一元一次方程的应用、平移的性质、两点间的距离公式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和分类讨论的数学思想解答.