北师大新版九年级数学上册《第3章 概率的进一步认识》单元测试卷
一.选择题(共8小题,满分24分,每小题3分)
1.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为( )
A.20 B.30 C.40 D.50
2.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是( )
A.8 B.12 C.16 D.20
3.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )
A. B. C. D.
4.某校组织九年级学生参加中考体育测试,共租3辆客车,分别编号为1、2、3,李军和赵娟两人可任选一辆车乘坐,则两人同坐2号车的概率为( )
A. B. C. D.
5.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )
A. B. C. D.
6.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( )
A.6 B.16 C.18 D.24
7.有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有( )种.
A.81 B.64 C.24 D.4
8.2018年某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )
A. B. C. D.
二.填空题(共8小题,满分24分,每小题3分)
9.在某校运动会4×400m接力赛中,甲乙两名同学都是第一棒,他们随机从三个赛道中抽取两个不同赛道,则甲乙两名同学恰好抽中相邻赛道的概率为 .
10.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据:
试验者 试验次数n 正面朝上的次数m 正面朝上的频率
布丰 4040 2048 0.5069
德?摩根 4092 2048 0.5005
费勤 10000 4979 0.4979
那么估计抛硬币正面朝上的概率的估计值是 .
11.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是 .
12.在课外实践活动中,甲、乙、丙、丁四个小组用投掷啤酒瓶盖的方法估计落地时瓶盖“正面朝上”的概率,其试验次数分别为10次、50次、100次、500次,其中试验相对科学的是 组.
13.一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,先从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为 .
14.如图,管中放置着三根同样的绳子AA1、BB1、CC1.小明在左侧选两个打一个结,小红在右侧选两个打一个结,则这三根绳子能连结成一根长绳的概率为 .
15.小明手中有两张卡片分别标有3,﹣1,小华手中有三张卡片分别标有2,0,﹣1.如果两人各随机抽取一张卡片,那么和为正数的概率是 .
16.为了检验一块小麦试验田的质量,抽取了20穗小麦测量它们的长度如下:(单位:cm)
5.5 5.9 6.3 5.8 6.0 4.4 6.2 6.7 6.3
6.4 6.6 6.1 5.3 6.4 6.0 4.9
5.8 5.7 5.6 6.1
(1)填写下表:
分组 频数 频率
4.35~4.85
4.85~5.35
5.35~5.85
5.85~6.35
6.35~6.85
合计
(2)回答下列问题:
①长度在5.85~6.35cm之间的麦穗约占总数的 .
②长度在5.35cm以上的麦穗约占总数的 .
③ ~ cm长度范围内麦穗的比例较大,约是 .
三.解答题(共10小题)
17.体育课上,小明、小强、小华三人在学习训练踢足球,足球从一人传到另一人就记为踢一次.
(1)如果从小强开始踢,经过两次踢后,用树状图表示或列表法求足球踢到了小华处的概率是多少
(2)如果从小明开始踢,经过踢三次后,球踢到了小明处的概率.
18.“时裳”服装店现有A、B、C三种品牌的衣服和D、E两种品牌的裤子,温馨家现要从服装店选购一种品牌的衣服和一种品牌的裤子.
(1)写出所有选购方案(利用树状图或列表方法表示)
(2)如果(1)中各种选购方案被选中的可能性相同,那么A品牌衣服被选中的概率是多少?
19.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:
(1)本次接受调查的总人数是 人,并把条形统计图补充完整;
(2)在扇形统计图中,“步行”的人数所占的百分比是 ,“其他方式”所在扇形的圆心角度数是 ;
(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.
20.小红、小明、小芳在一起做游戏时,需要确定游戏的先后顺序,他们约定用“剪子、锤子、布”的方式确定,问在一个回合中三个人出手互不相同的情况有哪几种?在一个回合中三个人都出剪子的概率是多少?
21.一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.
(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;
(2)求摸出的两个小球号码之和等于4的概率.
22.某教室的开关控制板上有四个外形完全相同的开关,其中两个分别控制A、B两盏电灯,另两个分别控制C、D两个吊扇.已知电灯、吊扇均正常,且处于不工作状态,开关与电灯、电扇的对应关系未知.
(1)若四个开关均正常,则任意按下一个开关,正好一盏灯亮的概率是多少?
(2)若其中一个控制电灯的开关坏了,则任意按下两个开关,正好一盏灯亮和一个扇转的概率是多少?请用树状图法或列表法加以说明.
23.已知一个不透明的袋子中装有7个只有颜色不同的球,其中2个白球,5个红球.
(1)求从袋中随机摸出一个球是红球的概率.
(2)从袋中随机摸出一个球,记录颜色后放回,摇匀,再随机摸出一个球,求两次摸出的球恰好颜色不同的概率.
(3)若从袋中取出若干个红球,换成相同数量的黄球.搅拌均匀后,使得随机从袋中摸出两个球,颜色是一白一黄的概率为,求袋中有几个红球被换成了黄球.
24.在一个不透明的袋子中,装有除颜色外其余均相同的红、蓝两种球,已知其中红球有3个,且从中任意摸出一个红球的概率为0.75.
(1)根据题意,袋中有 个篮球;
(2)若第一次随机摸出一球,不放回,再随机摸出第二个球,请用画树状图或列表法求“摸到两球中至少一个球为篮球(记为事件A)”的概率P(A).
25.某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.
(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;
(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.
26.为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:
(1)本次调查的学生人数是 人;
(2)图2中α是 度,并将图1条形统计图补充完整;
(3)请估算该校九年级学生自主学习时间不少于1.5小时有 人;
(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.
北师大新版九年级数学上册《第3章 概率的进一步认识》单元测试卷
参考答案与试题解析
一.选择题(共8小题,满分24分,每小题3分)
1.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为( )
A.20 B.30 C.40 D.50
【分析】根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据概率公式列出方程求解可得.
【解答】解:根据题意得=0.4,
解得:n=30,
故选:B.
【点评】此题考查了利用频率估计概率,解答此题的关键是了解白球的频率稳定在0.4附近即为概率约为0.4.
2.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是( )
A.8 B.12 C.16 D.20
【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.
【解答】解:根据题意得,=,
解得,m=20.
故选:D.
【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
3.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )
A. B. C. D.
【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.
【解答】解:画树状图如下:
一共有6种情况,“一红一黄”的情况有2种,
∴P(一红一黄)==.
故选:C.
【点评】本题考查了画树状图与列表法,可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
4.某校组织九年级学生参加中考体育测试,共租3辆客车,分别编号为1、2、3,李军和赵娟两人可任选一辆车乘坐,则两人同坐2号车的概率为( )
A. B. C. D.
【分析】先利用画树状图展示所有9种等可能的结果数,再找出两人同坐2号车的结果数,然后根据概率公式求解.
【解答】解:画树状图为:
共有9种等可能的结果数,其中两人同坐2号车的结果数为1,
所以两人同坐2号车的概率=.
故选:A.
【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
5.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )
A. B. C. D.
【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
【解答】解:画树状图如下:
由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,
∴两次都摸到黄球的概率为,
故选:A.
【点评】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
6.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( )
A.6 B.16 C.18 D.24
【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.
【解答】解:∵摸到红色球、黑色球的频率稳定在15%和45%,
∴摸到白球的频率为1﹣15%﹣45%=40%,
故口袋中白色球的个数可能是40×40%=16个.
故选:B.
【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
7.有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有( )种.
A.81 B.64 C.24 D.4
【分析】由有三个不同的信箱,今有四封不同的信欲投其中,可知每封信有3个选择,所以可得有3×3×3×3种投法.
【解答】解:∵有三个不同的信箱,今有四封不同的信欲投其中,
∴不同的投法有:3×3×3×3=81(种).
故选:A.
【点评】此题考查了乘法公式的应用.此题难度适中,注意每封信有3个选择,可得有3×3×3×3种投法.
8.2018年某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )
A. B. C. D.
【分析】直接利用树状图法列举出所有的可能,进而利用概率公式求出答案.
【解答】解:如图所示:
,
一共有9种可能,符合题意的有1种,
故小华和小强都抽到物理学科的概率是:.
故选:D.
【点评】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.
二.填空题(共8小题,满分24分,每小题3分)
9.在某校运动会4×400m接力赛中,甲乙两名同学都是第一棒,他们随机从三个赛道中抽取两个不同赛道,则甲乙两名同学恰好抽中相邻赛道的概率为 .
【分析】画树状图展示所有6种等可能的结果数,再找出甲乙两名同学恰好抽中相邻赛道的结果数,然后根据概率公式求解.
【解答】解:画树状图为:
共有6种等可能的结果数,其中甲乙两名同学恰好抽中相邻赛道的结果数为4,
所以甲乙两名同学恰好抽中相邻赛道的概率==.
故答案为.
【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
10.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据:
试验者 试验次数n 正面朝上的次数m 正面朝上的频率
布丰 4040 2048 0.5069
德?摩根 4092 2048 0.5005
费勤 10000 4979 0.4979
那么估计抛硬币正面朝上的概率的估计值是 0.5 .
【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.
【解答】解:由表格中的数据得知,抛硬币正面朝上的概率的估计值是0.5.
故本题答案为:0.5.
【点评】本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.
11.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是 .
【分析】由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,根据概率公式计算即可;
【解答】解:由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,
所以恰好选到经过西流湾大桥的路线的概率==.
故答案为.
【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
12.在课外实践活动中,甲、乙、丙、丁四个小组用投掷啤酒瓶盖的方法估计落地时瓶盖“正面朝上”的概率,其试验次数分别为10次、50次、100次、500次,其中试验相对科学的是 丁 组.
【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.
【解答】解:根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.
故答案为:丁.
【点评】考查了利用频率估计概率,选择和抛硬币类似的条件的试验验证抛硬币实验的概率,是一种常用的模拟试验的方法.
13.一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,先从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为 .
【分析】列表得出所有等可能的情况数,找出两个乒乓球上数字之和大于5的情况数,即可求出所求的概率.
【解答】解:列表得:
1 2 3 4
1 ﹣﹣﹣ (2,1) (3,1) (4,1)
2 (1,2) ﹣﹣﹣ (3,2) (4,2)
3 (1,3) (2,3) ﹣﹣﹣ (4,3)
4 (1,4) (2,4) (3,4) ﹣﹣﹣
所有等可能的情况数有12种,其中两个乒乓球上数字之和大于5的情况有4种,
则P==.
故答案为:.
【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
14.如图,管中放置着三根同样的绳子AA1、BB1、CC1.小明在左侧选两个打一个结,小红在右侧选两个打一个结,则这三根绳子能连结成一根长绳的概率为 .
【分析】小明在左侧选两个打一个结有三种可能:AB、AC、BC,小红在右侧选两个打一个结有三种可能:A1B1、A1C1、B1C1,然后画树状图展示所有9种等可能的结果数,可找出这三根绳子能连结成一根长绳的结果数,再利用概率公式求解.
【解答】解:小明在左侧选两个打一个结有三种可能:AB、AC、BC,小红在右侧选两个打一个结有三种可能:A1B1、A1C1、B1C1,
画树状图为:
共有9种等可能的结果数,其中这三根绳子能连结成一根长绳的结果数为6种,
所以这三根绳子能连结成一根长绳的概率==.
故答案为.
【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
15.小明手中有两张卡片分别标有3,﹣1,小华手中有三张卡片分别标有2,0,﹣1.如果两人各随机抽取一张卡片,那么和为正数的概率是 .
【分析】从所有卡片中抽取的可能有2×3=6种,将和为正数的可能列出来,找出满足的个数除以总的个数即可.
【解答】解:两人各随机抽取一张卡片共有6种可能性.满足条件的有四种,因此概率为=.
和 3 ﹣1
2 5 1
0 3 ﹣1
﹣1 2 ﹣2
故答案为.
【点评】本题考查列表法与树状图法求概率,注意找到所有的情况,把和为0和负数的排除在外.用到的知识点为:概率=所求情况数与总情况数之比.
16.为了检验一块小麦试验田的质量,抽取了20穗小麦测量它们的长度如下:(单位:cm)
5.5 5.9 6.3 5.8 6.0 4.4 6.2 6.7 6.3
6.4 6.6 6.1 5.3 6.4 6.0 4.9
5.8 5.7 5.6 6.1
(1)填写下表:
分组 频数 频率
4.35~4.85
4.85~5.35
5.35~5.85
5.85~6.35
6.35~6.85
合计
(2)回答下列问题:
①长度在5.85~6.35cm之间的麦穗约占总数的 40% .
②长度在5.35cm以上的麦穗约占总数的 15% .
③ 5.85 ~ 6.35 cm长度范围内麦穗的比例较大,约是 40% .
【分析】(1)根据各数段之间的数据,除以总数计算并填表即可;
(2)根据各数段之间数的频率计算;
【解答】解:(1)在4.35﹣4.85之间的数为4.4一个,故其频率为=0.05;
在4.85﹣5.35之间的数为5.3,4.9两个,故其频率为=0.1;
在5.35﹣5.85之间的数为5.5,5.8,5.8,5.7,5.6五个,故其频率为=0.25;
在5.85﹣6.35.之间的数为5.9,6.3,6.0,6.2,6.3,6.4,6.0,6.1共8个,故其频率为=0.4;
在6.35﹣6.85之间的数为6.7,6.4,6.6,6.4四个,故其频率为=1.0;
分组 频数 频率
4.35~4.85 1 0.05
4.85~5.35 2 0.1
5.35~5.85 5 0.25
5.85~6.35 8 0.4
6.35~6.85 4 0.2
合计 20 1.00
(2)①长度在5.85~6.35cm之间的麦穗约占总数的×100%=40%,
②长度在5.35cm以上的麦穗约占总数的×100%=15%,
③5.85~6.35cm长度范围内麦穗的比例较大,约是40%.
【点评】用到的知识点为:频率=所求情况数与总情况数之比.
三.解答题(共10小题)
17.体育课上,小明、小强、小华三人在学习训练踢足球,足球从一人传到另一人就记为踢一次.
(1)如果从小强开始踢,经过两次踢后,用树状图表示或列表法求足球踢到了小华处的概率是多少
(2)如果从小明开始踢,经过踢三次后,球踢到了小明处的概率.
【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与经过两次踢后,足球踢到了小华处的情况,再利用概率公式求解即可求得答案.
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与经过踢三次后,球踢到了小明处的情况,再利用概率公式求解即可求得答案.
【解答】解:(1)画树状图得:
∵共有4种等可能的结果,经过两次踢后,足球踢到了小华处的有1种情况,
∴足球踢到了小华处的概率是:;
(2)画树状图得:
∵共有8种等可能的结果,经过踢三次后,球踢到了小明处的有2种情况,
∴经过踢三次后,球踢到了小明处的概率为:=.
【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
18.“时裳”服装店现有A、B、C三种品牌的衣服和D、E两种品牌的裤子,温馨家现要从服装店选购一种品牌的衣服和一种品牌的裤子.
(1)写出所有选购方案(利用树状图或列表方法表示)
(2)如果(1)中各种选购方案被选中的可能性相同,那么A品牌衣服被选中的概率是多少?
【分析】(1)根据已知利用树状图列举出所有可能即可;
(2)根据(1)中树状图,即可得出A品牌衣服被选中的概率.
【解答】解:画树状图得:
;
(2)∵共6种选购方案,其中A品牌衣服被选中的方案有2种,
∴A品牌衣服被选中的概率是.
【点评】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.
19.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:
(1)本次接受调查的总人数是 300 人,并把条形统计图补充完整;
(2)在扇形统计图中,“步行”的人数所占的百分比是 29.3% ,“其他方式”所在扇形的圆心角度数是 24° ;
(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.
【分析】(1)根据上学方式为“骑自行”的学生数除以所占的百分比即可求出调查的学生总数;根据总学生数求出上学方式为“步行”的学生数,补全条形统计图即可;
(2)由×100%可以求得在扇形统计图中,“步行”的人数所占的百分比;同理求得“其他方式”所占的百分比,进而求得“其他方式”所在扇形的圆心角度数;
(3)根据题意画出树状图,再根据概率公式计算即可.
【解答】解:(1)接受调查的总人数是:=300(人),
则步行上学的人数为:300﹣54﹣126﹣12﹣20=88(人).
故答案是:300;
(2)在扇形统计图中,“步行”的人数所占的百分比是:×100%≈29.3%;
“其他方式”所在扇形的圆心角度数是:360°××100%=24°.
故答案是:29.3%;24°;
(3)画树状图:
由图可知,共有20种等可能的结果,其中一男一女有12种结果;
则P(一男一女)==.
【点评】此题考查了条形统计图、扇形统计图和概率公式,解题的关键是仔细观察统计图并从中整理出进一步解题的有关信息,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.概率公式P(m)=.
20.小红、小明、小芳在一起做游戏时,需要确定游戏的先后顺序,他们约定用“剪子、锤子、布”的方式确定,问在一个回合中三个人出手互不相同的情况有哪几种?在一个回合中三个人都出剪子的概率是多少?
【分析】画出树状图,然后根据概率公式列式计算即可得解.
【解答】解:根据题意画出树状图如下:
三人互不相同的有6种,按小红、小明、小芳的顺序是:
剪子、锤子、布;剪子、布、锤子;
锤子、剪子、布;锤子、布、剪子;
布、剪子、锤子;布、锤子、剪子.
一共有27种情况,在一个回合中三个人都出剪子的概率是.
【点评】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
21.一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.
(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;
(2)求摸出的两个小球号码之和等于4的概率.
【分析】(1)画树状图列举出所有情况;
(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.
【解答】解:(1)根据题意,可以画出如下的树形图:
从树形图可以看出,两次摸球出现的所有可能结果共有6种.
(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,
∴摸出的两个小球号码之和等于4的概率为=.
【点评】本题考查借助树状图或列表法求概率.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
22.某教室的开关控制板上有四个外形完全相同的开关,其中两个分别控制A、B两盏电灯,另两个分别控制C、D两个吊扇.已知电灯、吊扇均正常,且处于不工作状态,开关与电灯、电扇的对应关系未知.
(1)若四个开关均正常,则任意按下一个开关,正好一盏灯亮的概率是多少?
(2)若其中一个控制电灯的开关坏了,则任意按下两个开关,正好一盏灯亮和一个扇转的概率是多少?请用树状图法或列表法加以说明.
【分析】(1)根据概率的求法,找准两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率.
(2)用列表法或树状图法列举出所以可能,再利用概率公式解答即可.
【解答】解:(1)P(正好一盏灯亮)=.(2分)
(2)不妨设控制灯A的开关坏了.
画树状图如下:
所有出现的等可能性结果共有12种,其中满足条件的结果有4种.
∴P(正好一盏灯亮和一个扇转)=.(6分)
方法二
列表格如下:
A B C D
A A、B A、C A、D
B B、A B、C B、D
C C、A C、B C、D
D D、A D、B D、C
所有出现的等可能性结果共有12种,其中满足条件的结果有4种.
∴P(正好一盏灯亮和一个扇转)=.(6分)
由此可知P(正好一盏灯亮和一个扇转)=.(8分)
【点评】本题主要考查概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
23.已知一个不透明的袋子中装有7个只有颜色不同的球,其中2个白球,5个红球.
(1)求从袋中随机摸出一个球是红球的概率.
(2)从袋中随机摸出一个球,记录颜色后放回,摇匀,再随机摸出一个球,求两次摸出的球恰好颜色不同的概率.
(3)若从袋中取出若干个红球,换成相同数量的黄球.搅拌均匀后,使得随机从袋中摸出两个球,颜色是一白一黄的概率为,求袋中有几个红球被换成了黄球.
【分析】(1)直接利用概率公式计算可得;
(2)先列表得出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式求解可得;
(3)设有x个红球被换成了黄球,根据颜色是一白一黄的概率为列出关于x的方程,解之可得.
【解答】解:(1)∵袋中共有7个小球,其中红球有5个,
∴从袋中随机摸出一个球是红球的概率为;
(2)列表如下:
白 白 红 红 红 红 红
白 (白,白) (白,白) (白,红) (白,红) (白,红) (白,红) (白,红)
白 (白,白) (白,白) (白,红) (白,红) (白,红) (白,红) (白,红)
红 (白,红) (白,红) (红,红) (红,红) (红,红) (红,红) (红,红)
红 (白,红) (白,红) (红,红) (红,红) (红,红) (红,红) (红,红)
红 (白,红) (白,红) (红,红) (红,红) (红,红) (红,红) (红,红)
红 (白,红) (白,红) (红,红) (红,红) (红,红) (红,红) (红,红)
红 (白,红) (白,红) (红,红) (红,红) (红,红) (红,红) (红,红)
由表知共有49种等可能结果,其中两次摸出的球恰好颜色不同的有20种结果,
∴两次摸出的球恰好颜色不同的概率为;
(3)设有x个红球被换成了黄球.
根据题意,得:,
解得:x=3,
即袋中有3个红球被换成了黄球.
【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.
24.在一个不透明的袋子中,装有除颜色外其余均相同的红、蓝两种球,已知其中红球有3个,且从中任意摸出一个红球的概率为0.75.
(1)根据题意,袋中有 1 个篮球;
(2)若第一次随机摸出一球,不放回,再随机摸出第二个球,请用画树状图或列表法求“摸到两球中至少一个球为篮球(记为事件A)”的概率P(A).
【分析】(1)设袋中有x个篮球,根据概率公式得到=0.75,然后解方程即可
(2)先画树状图展示所有12种等可能的结果数,找出两球中至少一个球为篮球的结果数,然后根据概率公式求解.
【解答】解:(1)设袋中有x个篮球,
根据题意得=0.75,解得x=1,
即袋中有1个篮球.
故答案为1;
(2)画树状图为:
共有12种等可能的结果数,其中两球中至少一个球为篮球的结果数为6种,
所以P(A)==.
【点评】本题考查了列表法或画树状图法:用列表法或画树状图法展示所有等可能的结果数n,再从中选出符合事件A或B的结果数目m,然后根据概率的公式求事件A和B的概率.
25.某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.
(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;
(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.
【分析】(1)直接根据概率公式求解即可;
(2)根据题意先画出树状图,得出所有情况数和甲、乙两位嘉宾能分为同队的结果数,再根据概率公式即可得出答案.
【解答】解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,
∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=;
(2)画树状图:
共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,
则甲、乙两位嘉宾能分为同队的概率是=.
【点评】此题考查了列表法或树状图法求概率.注意首先分别求得左右两端的情况,再画出树状图是关键.用到的知识点为:概率=所求情况数与总情况数之比.
26.为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:
(1)本次调查的学生人数是 40 人;
(2)图2中α是 54 度,并将图1条形统计图补充完整;
(3)请估算该校九年级学生自主学习时间不少于1.5小时有 330 人;
(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.
【分析】(1)由自主学习的时间是1小时的有12人,占30%,即可求得本次调查的学生人数;
(2)由×360°=54°,40×35%=14;即可求得答案;
(3)首先求得这40名学生自主学习时间不少于1.5小时的百分比,然后可求得该校九年级学生自主学习时间不少于1.5小时的人数;
(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小亮A的情况,再利用概率公式求解即可求得答案.
【解答】解:(1)∵自主学习的时间是1小时的有12人,占30%,
∴12÷30%=40,
故答案为:40; …(2分)
(2)×360°=54°,
故答案为:54;
40×35%=14;
补充图形如图:
故答案为:54;
(3)600×=330; …(2分)
故答案为:330;
(4)画树状图得:
∵共有12种等可能的结果,选中小亮A的有6种,
∴P(A)=.…(2分)
【点评】本题考查的是用列表法或画树状图法求概率与扇形统计图、条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.