第三章函数 第14节 二次函数图像与性质(二)
■知识点一:二次函数图像上的点的坐标特征
二次函数y=ax2+bx+c(a≠0)的图象是抛物线,顶点坐标是
①抛物线是关于对称轴x=- 成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点.
②抛物线与y轴交点的纵坐标是函数解析中的c值.
③抛物线与x轴的两个交点关于对称轴对称,设两个交点分别是(x1,0),(x2,0),则其对称轴为x=
■知识点二:二次函数的最值
(1)当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=-时,y=
(2)当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=-时,y= ,
(3)确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.
■知识点三:二次函数图象与几何变换
抛物线y=ax2与y=a(x-h)2,y=ax2+k,y=a(x-h)2+k中|a|相同,则图象的开口方向和大小都相同,只是位置不同.它们之间的平移关系如下:
注意:二次函数的平移实质是顶点坐标的平移,因此只要找出原函数顶点的平移方式即可确定平移后的函数解析式
失分点警示:
抛物线平移规律是“上加下减,左加右减”,左右平移易弄反.
例:将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是y=(x-2)2.
■知识点四:二次函数与一元二次方程以及不等式
二次函数与一元二次方程
二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0的根.
当Δ=b2-4ac>0,两个不相等的实数根;
当Δ=b2-4ac=0,两个相等的实数根;
当Δ=b2-4ac<0,无实根
二次函数与不等式
抛物线y= ax2+bx+c=0在x轴上方的部分点的纵坐标都为正,所对应的x的所有值就是不等式ax2+bx+c>0的解集;在x轴下方的部分点的纵坐标均为负,所对应的x的值就是不等式ax2+bx+c<0的解集.
■考点1.二次函数图像上的点的坐标特征
◇典例:
(2018年广西玉林) 如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c与直线y=c分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M是点C,F间抛物线上的一点(包括端点),其横坐标为m.
(1)直接写出点P的坐标和抛物线的解析式;
(2)当m为何值时,△MAB面积S取得最小值和最大值?请说明理由;
(3)求满足∠MPO=∠POA的点M的坐标.
【考点】二次函数综合题。一次函数图象上点的坐标特征,待定系数法求二次函数的解析式,二次函数图象上点的坐标特征
【分析】(1)代入y=c可求出点C、P的坐标,利用一次函数图象上点的坐标特征可求出点A、B的坐标,再由△PCB≌△BOA即可得出b、c的值,进而可得出点P的坐标及抛物线的解析式;
(2)利用二次函数图象上点的坐标特征求出点F的坐标,过点M作ME∥y轴,交直线AB于点E,由点M的横坐标可得出点M、E的坐标,进而可得出ME的长度,再利用三角形的面积公式可找出S=﹣(m﹣3)2+5,由m的取值范围结合二次函数的性质即可求出S的最大值及最小值;
(3)分两种情况考虑:①当点M在线段OP上方时,由CP∥x轴利用平行线的性质可得出:当点C、M重合时,∠MPO=∠POA,由此可找出点M的坐标;②当点M在线段OP下方时,在x正半轴取点D,连接DP,使得DO=DP,此时∠DPO=∠POA,设点D的坐标为(n,0),则DO=n,DP=,由DO=DP可求出n的值,进而可得出点D的坐标,由点P、D的坐标利用待定系数法即可求出直线PD的解析式,再联立直线PD及抛物线的解析式成方程组,通过解方程组求出点M的坐标.综上此题得解.
解:(1)当y=c时,有c=﹣x2+bx+c,
解得:x1=0,x2=b,
∴点C的坐标为(0,c),点P的坐标为(b,c).
∵直线y=﹣3x+3与x轴、y轴分别交于A、B两点,
∴点A的坐标为(1,0),点B的坐标为(0,3),
∴OB=3,OA=1,BC=c﹣3,CP=b.
∵△PCB≌△BOA,
∴BC=OA,CP=OB,
∴b=3,c=4,
∴点P的坐标为(3,4),抛物线的解析式为y=﹣x2+3x+4.
(2)当y=0时,有﹣x2+3x+4=0,
解得:x1=﹣1,x2=4,
∴点F的坐标为(4,0).
过点M作ME∥y轴,交直线AB于点E,如图1所示.
∵点M的横坐标为m(0≤m≤4),
∴点M的坐标为(m,﹣m2+3m+4),点E的坐标为(m,﹣3m+3),
∴ME=﹣m2+3m+4﹣(﹣3m+3)=﹣m2+6m+1,
∴S=OA?ME=﹣m2+3m+=﹣(m﹣3)2+5.
∵﹣<0,0≤m≤4,
∴当m=0时,S取最小值,最小值为;当m=3时,S取最大值,最大值为5.
(3)①当点M在线段OP上方时,∵CP∥x轴,
∴当点C、M重合时,∠MPO=∠POA,
∴点M的坐标为(0,4);
②当点M在线段OP下方时,在x正半轴取点D,连接DP,使得DO=DP,此时∠DPO=∠POA.
设点D的坐标为(n,0),则DO=n,DP=,
∴n2=(n﹣3)2+16,
解得:n=,
∴点D的坐标为(,0).
设直线PD的解析式为y=kx+a(k≠0),
将P(3,4)、D(,0)代入y=kx+a,
,解得:,
∴直线PD的解析式为y=﹣x+.
联立直线PD及抛物线的解析式成方程组,得:,
解得:,.
∴点M的坐标为(,).
综上所述:满足∠MPO=∠POA的点M的坐标为(0,4)或(,).
【点评】本题考查了待定系数法求一次函数解析式,一次(二次)函数图象上点的坐标特征,全等三角形的性质,函数的性质,三角形的面积以及等腰三角形性质,解题的关键是:(1)利用全等三角形的性质求出b、c的值:(2)利用三角形的面积公式找出S=(m-3)2+5;(3)分点M在线段OP上方和点M在线段OP下方两种情况求出点M的坐标。
◆变式训练
(2018年江苏省常州市) 如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).
(1)b= ,点B的坐标是 ;
(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在求出点P的横坐标;若不存在,请说明理由;
(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.
■考点2.二次函数的最值
◇典例
(2017?广州)当x=________时,二次函数y=x2-2x+6有最小值 _____
【考点】二次函数的最值.
【分析】把x2-2x+6化成(x-1)2+5,即可求出二次函数y=x2-2x+6的最小值是多少.
解:∵y=x2-2x+6=(x-1)2+5,∴当x=1时,二次函数y=x2-2x+6有最小值5.故答案为:1、5.
【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法;本题利用的是配方法.
◆变式训练
(2018年黑龙江省绥化)已知直线y=x+2分别交x轴、y轴于A、B两点,抛物线y=x2+mx﹣2经过点A,和x轴的另一个交点为C.
(1)求抛物线的解析式;
(2)如图1,点D是抛物线上的动点,且在第三象限,求△ABD面积的最大值;
(3)如图2,经过点M(﹣4,1)的直线交抛物线于点P、Q,连接CP、CQ分别交y轴于点E、F,求OE?OF的值.
备注:抛物线顶点坐标公式(﹣,)
■考点3. 二次函数图象与几何变换
◇典例:
(2018年浙江省宁波)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).
(1)求该抛物线的函数表达式;
(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.
【考点】二次函数的性质;二次函数图象上点的坐标特征;二次函数图象与几何变换;待定系数法求二次函数解析式
【分析】(1)把已知点的坐标代入抛物线解析式求出b与c的值即可;
(2)指出满足题意的平移方法,并写出平移后的解析式即可.
解:(1)把(1,0),(0,)代入抛物线解析式得:,
解得:,
则抛物线解析式为y=﹣x2﹣x+;
(2)抛物线解析式为y=﹣x2﹣x+=﹣(x+1)2+2,
将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=﹣x2.
【点评】此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.
◆变式训练
(2018年内蒙古赤峰)已知抛物线y=﹣x2﹣x的图象如图所示:
(1)将该抛物线向上平移2个单位,分别交x轴于A、B两点,交y轴于点C,则平移后的解析式为 .
(2)判断△ABC的形状,并说明理由.
(3)在抛物线对称轴上是否存在一点P,使得以A、C、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.
■考点4.二次函数与一元二次方程以及不等式
◇典例:
(2018年四川省南充)如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:
①2a+c<0;
②若(﹣,y1),(﹣,y2),(,y3)在抛物线上,则y1>y2>y3;
③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;
④当n=﹣时,△ABP为等腰直角三角形.
其中正确结论是 (填写序号).
【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点
【分析】利用二次函数的性质一一判断即可;
解:∵﹣<,a>0,
∴a>﹣b,
∵x=﹣1时,y>0,
∴a﹣b+c>0,
∴2a+c>a﹣b+c>0,故①错误,
若(﹣,y1),(﹣,y2),(,y3)在抛物线上,
由图象法可知,y1>y2>y3;故②正确,
∵抛物线与直线y=t有交点时,方程ax2+bx+c=t有解,t≥n,
∴ax2+bx+c﹣t=0有实数解
要使得ax2+bx+k=0有实数解,则k=c﹣t≤c﹣n;故③错误,
设抛物线的对称轴交x轴于H.
∵=﹣,
∴b2﹣4ac=4,
∴x==,
∴|x1﹣x2|=,
∴AB=2PH,
∵BH=AH,
∴PH=BH=AH,
∴△PAB是直角三角形,∵PA=PB,
∴△PAB是等腰直角三角形.
故答案为②④.
【点评】本题考查二次函数的应用、二次函数与坐标轴的交点等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.
◆变式训练
(2018年云南省)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.
(1)求b,c的值.
(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.
一、 选择题
(2018年黑龙江省牡丹江)将抛物线y=x2+2x+3向下平移3个单位长度后,所得到的抛物线与直线y=3的交点坐标是( )
A.(0,3)或(﹣2,3) B.(﹣3,0)或(1,0)
C.(3,3)或(﹣1,3) D.(﹣3,3)或(1,3)
(2018年黑龙江省哈尔滨)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )
A.y=﹣5(x+1)2﹣1
B.y=﹣5(x﹣1)2﹣1
C.y=﹣5(x+1)2+3
D.y=﹣5(x﹣1)2+3
(2018年湖北省黄冈)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为( )
A.﹣1 B.2 C.0或2 D.﹣1或2
(2018年湖北省襄阳)已知二次函数y=x2﹣x+m﹣1的图象与x轴有交点,则m的取值范围是( )
A.m≤5 B.m≥2 C.m<5 D.m>2
二、 填空题
(2018年新疆乌鲁木齐)把拋物线y=2x2﹣4x+3向左平移1个单位长度,得到的抛物线的解析式为 .
(2018年四川省自贡)若函数y=x2+2x﹣m的图象与x轴有且只有一个交点,则m的值为 .
(2018年贵州省黔南州、黔东南州、黔西南州)已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是 .
x
…
﹣1
0
1
2
…
y
…
0
3
4
3
…
(2018年湖北省孝感)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则方程ax2=bx+c的解是 .
三、 解答题
(2018年浙江省湖州)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.
(2018年宁夏)抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.
(1)求抛物线的解析式;
(2)连接AB、AC、BC,求△ABC的面积.
一、选择题
(2018年广西南宁、北海、钦州、防城港、北部经济湾区)将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为( )
A.y=(x﹣8)2+5 B.y=(x﹣4)2+5
C.y=(x﹣8)2+3 D.y=(x﹣4)2+3
(2018年浙江省杭州市)四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是( )
A.甲 B.乙 C.丙 D.丁
(2018年四川省泸州市)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为( )
A.1或﹣2 B.或 C. D.1
(2018年湖北省恩施州)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:
①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有( )
A.2 B.3 C.4 D.5
(2018年天津市)已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:
①抛物线经过点;
②方程有两个不相等的实数根;
③.
其中,正确结论的个数为( )
A. 0 B. 1 C. 2 D. 3
(2018年湖南省长沙市)若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P( )
A.有且只有1个 B.有且只有2个 C.至少有3个 D.有无穷多个
(2018年山东省莱芜市)函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是( )
A.x<﹣4或x>2 B.﹣4<x<2 C.x<0或x>2 D.0<x<2
填空题
(2018年江苏省淮安市)将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是 .
(2018年山东省淄博市)已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线于x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为 .
(2018年新疆维吾尔自治区、新疆生产建设兵团)如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x的增大而增大;③使得M大于
4的x的值不存在;④若M=2,则x=1.上述结论正确的是 (填写所有正确结论的序号).
(2018年江苏省苏州市)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为 (结果留根号).
解答题
(2018年湖北省黄冈市)已知直线l:y=kx+1与抛物线y=x2﹣4x.
(1)求证:直线l与该抛物线总有两个交点;
(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.
(2018年北京市)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.
(1)求点C的坐标;
(2)求抛物线的对称轴;
(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.
(2018年江苏省徐州市)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.
(1)求证:FH=ED;
(2)当AE为何值时,△AEF的面积最大?
(2018年江苏省盐城市)如图①,在平面直角坐标系 中,抛物线 经过点 、 两点,且与 轴交于点 .
第三章函数 第14节 二次函数图像与性质(二)
■知识点一:二次函数图像上的点的坐标特征
二次函数y=ax2+bx+c(a≠0)的图象是抛物线,顶点坐标是
①抛物线是关于对称轴x=- 成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点.
②抛物线与y轴交点的纵坐标是函数解析中的c值.
③抛物线与x轴的两个交点关于对称轴对称,设两个交点分别是(x1,0),(x2,0),则其对称轴为x=
■知识点二:二次函数的最值
(1)当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=-时,y=
(2)当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=-时,y= ,
(3)确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.
■知识点三:二次函数图象与几何变换
抛物线y=ax2与y=a(x-h)2,y=ax2+k,y=a(x-h)2+k中|a|相同,则图象的开口方向和大小都相同,只是位置不同.它们之间的平移关系如下:
注意:二次函数的平移实质是顶点坐标的平移,因此只要找出原函数顶点的平移方式即可确定平移后的函数解析式
失分点警示:
抛物线平移规律是“上加下减,左加右减”,左右平移易弄反.
例:将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是y=(x-2)2.
■知识点四:二次函数与一元二次方程以及不等式
二次函数与一元二次方程
二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0的根.
当Δ=b2-4ac>0,两个不相等的实数根;
当Δ=b2-4ac=0,两个相等的实数根;
当Δ=b2-4ac<0,无实根
二次函数与不等式
抛物线y= ax2+bx+c=0在x轴上方的部分点的纵坐标都为正,所对应的x的所有值就是不等式ax2+bx+c>0的解集;在x轴下方的部分点的纵坐标均为负,所对应的x的值就是不等式ax2+bx+c<0的解集.
■考点1.二次函数图像上的点的坐标特征
◇典例:
(2018年广西玉林) 如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c与直线y=c分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M是点C,F间抛物线上的一点(包括端点),其横坐标为m.
(1)直接写出点P的坐标和抛物线的解析式;
(2)当m为何值时,△MAB面积S取得最小值和最大值?请说明理由;
(3)求满足∠MPO=∠POA的点M的坐标.
【考点】二次函数综合题。一次函数图象上点的坐标特征,待定系数法求二次函数的解析式,二次函数图象上点的坐标特征
【分析】(1)代入y=c可求出点C、P的坐标,利用一次函数图象上点的坐标特征可求出点A、B的坐标,再由△PCB≌△BOA即可得出b、c的值,进而可得出点P的坐标及抛物线的解析式;
(2)利用二次函数图象上点的坐标特征求出点F的坐标,过点M作ME∥y轴,交直线AB于点E,由点M的横坐标可得出点M、E的坐标,进而可得出ME的长度,再利用三角形的面积公式可找出S=﹣(m﹣3)2+5,由m的取值范围结合二次函数的性质即可求出S的最大值及最小值;
(3)分两种情况考虑:①当点M在线段OP上方时,由CP∥x轴利用平行线的性质可得出:当点C、M重合时,∠MPO=∠POA,由此可找出点M的坐标;②当点M在线段OP下方时,在x正半轴取点D,连接DP,使得DO=DP,此时∠DPO=∠POA,设点D的坐标为(n,0),则DO=n,DP=,由DO=DP可求出n的值,进而可得出点D的坐标,由点P、D的坐标利用待定系数法即可求出直线PD的解析式,再联立直线PD及抛物线的解析式成方程组,通过解方程组求出点M的坐标.综上此题得解.
解:(1)当y=c时,有c=﹣x2+bx+c,
解得:x1=0,x2=b,
∴点C的坐标为(0,c),点P的坐标为(b,c).
∵直线y=﹣3x+3与x轴、y轴分别交于A、B两点,
∴点A的坐标为(1,0),点B的坐标为(0,3),
∴OB=3,OA=1,BC=c﹣3,CP=b.
∵△PCB≌△BOA,
∴BC=OA,CP=OB,
∴b=3,c=4,
∴点P的坐标为(3,4),抛物线的解析式为y=﹣x2+3x+4.
(2)当y=0时,有﹣x2+3x+4=0,
解得:x1=﹣1,x2=4,
∴点F的坐标为(4,0).
过点M作ME∥y轴,交直线AB于点E,如图1所示.
∵点M的横坐标为m(0≤m≤4),
∴点M的坐标为(m,﹣m2+3m+4),点E的坐标为(m,﹣3m+3),
∴ME=﹣m2+3m+4﹣(﹣3m+3)=﹣m2+6m+1,
∴S=OA?ME=﹣m2+3m+=﹣(m﹣3)2+5.
∵﹣<0,0≤m≤4,
∴当m=0时,S取最小值,最小值为;当m=3时,S取最大值,最大值为5.
(3)①当点M在线段OP上方时,∵CP∥x轴,
∴当点C、M重合时,∠MPO=∠POA,
∴点M的坐标为(0,4);
②当点M在线段OP下方时,在x正半轴取点D,连接DP,使得DO=DP,此时∠DPO=∠POA.
设点D的坐标为(n,0),则DO=n,DP=,
∴n2=(n﹣3)2+16,
解得:n=,
∴点D的坐标为(,0).
设直线PD的解析式为y=kx+a(k≠0),
将P(3,4)、D(,0)代入y=kx+a,
,解得:,
∴直线PD的解析式为y=﹣x+.
联立直线PD及抛物线的解析式成方程组,得:,
解得:,.
∴点M的坐标为(,).
综上所述:满足∠MPO=∠POA的点M的坐标为(0,4)或(,).
【点评】本题考查了待定系数法求一次函数解析式,一次(二次)函数图象上点的坐标特征,全等三角形的性质,函数的性质,三角形的面积以及等腰三角形性质,解题的关键是:(1)利用全等三角形的性质求出b、c的值:(2)利用三角形的面积公式找出S=(m-3)2+5;(3)分点M在线段OP上方和点M在线段OP下方两种情况求出点M的坐标。
◆变式训练
(2018年江苏省常州市) 如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).
(1)b= ,点B的坐标是 ;
(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在求出点P的横坐标;若不存在,请说明理由;
(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.
【考点】二次函数图象上点的坐标特征,待定系数法求一次函数解析式,三角形的面积,勾股定理,一次函数图象上点的坐标特征,相似三角形的判定与性质
【分析】(1)由点A的坐标,利用二次函数图象上点的坐标特征可求出b的值,代入y=0求出x值,进而可得出点B的坐标;
(2)代入x=0求出y值,进而可得出点C的坐标,由点A、C的坐标利用待定系数法可求出直线AC的解析式,假设存在,设点M的坐标为(m,m+2),分B、P在直线AC的同侧和异侧两种情况考虑,由点B、M的坐标结合PM:MB=1:2即可得出点P的坐标,再利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之即可得出结论;
(3)作∠CBA的角平分线,交y轴于点E,过点E作EF⊥BC于点F,设OE=n,则CE=2﹣n,EF=n,利用面积法可求出n值,进而可得出==,结合∠AOC=90°=∠BOE可证出△AOC∽△BOE,根据相似三角形的性质可得出∠CAO=∠EBO,再根据角平分线的性质可得出∠CBA=2∠EBO=2∠CAB,此题得解.
解:(1)∵点A(﹣4,0)在二次函数y=﹣+bx+2的图象上,
∴﹣﹣4b+2=0,
∴b=﹣.
当y=0时,有﹣x2﹣x+2=0,
解得:x1=﹣4,x2=,
∴点B的坐标为(,0).
故答案为:﹣;(,0).
(2)当x=0时,y=﹣x2﹣x+2=2,
∴点C的坐标为(0,2).
设直线AC的解析式为y=kx+c(k≠0),
将A(﹣4,0)、C(0,2)代入y=kx+c中,
得:,解得:,
∴直线AC的解析式为y=x+2.
假设存在,设点M的坐标为(m,m+2).
①当点P、B在直线AC的异侧时,点P的坐标为(m﹣,m+3),
∵点P在抛物线y=﹣x2﹣x+2上,
∴m+3=﹣×(m﹣)2﹣×(m﹣)+2,
整理,得:12m2+20m+9=0.
∵△=202﹣4×12×9=﹣32<0,
∴方程无解,即不存在符合题意得点P;
②当点P、B在直线AC的同侧时,点P的坐标为(m+,m+1),
∵点P在抛物线y=﹣x2﹣x+2上,
∴m+1=﹣×(m+)2﹣×(m+)+2,
整理,得:4m2+44m﹣9=0,
解得:m1=﹣,m2=,
∴点P的横坐标为﹣2﹣或﹣2+.
综上所述:存在点P,使得PM:MB=1:2,点P的横坐标为﹣2﹣或﹣2+.
(3)∠CBA=2∠CAB,理由如下:
作∠CBA的角平分线,交y轴于点E,过点E作EF⊥BC于点F,如图2所示.
∵点B(,0),点C(0,2),
∴OB=,OC=2,BC=.
设OE=n,则CE=2﹣n,EF=n,
由面积法,可知:OB?CE=BC?EF,即(2﹣n)=n,
解得:n=.
∵==,∠AOC=90°=∠BOE,
∴△AOC∽△BOE,
∴∠CAO=∠EBO,
∴∠CBA=2∠EBO=2∠CAB.
【点评】题考查了二次函数图象上点的坐标特征、待定系数法求一次函数解析式、三角形的面积、勾股定理、一次函数图象上点的坐标特征以及相似三角形的判定与性质,解题的关键是:(1)由点A的坐标,利用二次函数图象上点的坐标特征求出b的值;(2)分B、P在直线AC的同侧和异侧两种情况找出点P的坐标;(3)构造相似三角形找出两角的数量关系.
■考点2.二次函数的最值
◇典例
(2017?广州)当x=________时,二次函数y=x2-2x+6有最小值 _____
【考点】二次函数的最值.
【分析】把x2-2x+6化成(x-1)2+5,即可求出二次函数y=x2-2x+6的最小值是多少.
解:∵y=x2-2x+6=(x-1)2+5,∴当x=1时,二次函数y=x2-2x+6有最小值5.故答案为:1、5.
【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法;本题利用的是配方法.
◆变式训练
(2018年黑龙江省绥化)已知直线y=x+2分别交x轴、y轴于A、B两点,抛物线y=x2+mx﹣2经过点A,和x轴的另一个交点为C.
(1)求抛物线的解析式;
(2)如图1,点D是抛物线上的动点,且在第三象限,求△ABD面积的最大值;
(3)如图2,经过点M(﹣4,1)的直线交抛物线于点P、Q,连接CP、CQ分别交y轴于点E、F,求OE?OF的值.
备注:抛物线顶点坐标公式(﹣,)
【考点】二次函数综合题。待定系数法求二次函数的解析式,一次函数的解析式,一元二次方程根与系数的关系,二次函数的最值
【分析】(1)先求得点A的坐标,然后将点A的坐标代入抛物线的解析式求得m的值即可;
(2)过点D作DH∥y轴,交AB于点H,设D(n,n2+n﹣2),H(n,n+2),然后用含n的式子表示DH的长,接下来,利用配方法求得DH的最大值,从而可求得△ABD面积最大值;
(3)先求得点C的坐标,然后设直线CQ的解析式为y=ax﹣a,CP的解析式为y=bx﹣b,接下来求得点Q和点P的横坐标,然后设直线PQ的解析式为y=x+d,把M(﹣4,1)代入得:y=kx+4k+1,将PQ的解析式为与抛物线解析式联立得到关于x的一元二次方程,然后依据一元二次方程根与系数的关系可求得ab=﹣,最后,由ab的值可得到OE?OF的值.
解:(1)把y=0代入y=x+2得:0=x+2,解得:x=﹣4,
∴A(﹣4,0).
把点A的坐标代入y=x2+mx﹣2得:m=,
∴抛物线的解析式为y=x2+x﹣2.
(2)过点D作DH∥y轴,交AB于点H,
设D(n,n2+n﹣2),H(n,n+2).
∴DH=(n+2)﹣(n2+n﹣2)=﹣(n+1)2+.
∴当n=﹣1时,DH最大,最大值为,
此时△ABD面积最大,最大值为××4=9.
(3)把y=0代入 y=x2+x﹣2,得:x2+3x﹣4=0,解得:x=1或x=﹣4,
∴C(1,0).
设直线CQ的解析式为y=ax﹣a,CP的解析式为y=bx﹣b.
∴,解得:x=1或x=2a﹣4.
∴xQ=2a﹣4.
同理:xP=2b﹣4.
设直线PQ的解析式为y=kx+b,把M(﹣4,1)代入得:y=kx+4k+1.
∴.
∴x2+(3﹣2k)x﹣8k﹣6=0,
∴xQ+xP=2a﹣4+2b﹣4=2k﹣3,xQ?xP=(2a﹣4)(2b﹣4)=﹣8k﹣6,
解得:ab=﹣.
又∵OE=﹣b,OF=a,
∴OE?OF=﹣ab=.
【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、一元二次方程根与系数的关系,建立关于a、b的方程组求得ab的值是解题的关键.
■考点3. 二次函数图象与几何变换
◇典例:
(2018年浙江省宁波)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).
(1)求该抛物线的函数表达式;
(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.
【考点】二次函数的性质;二次函数图象上点的坐标特征;二次函数图象与几何变换;待定系数法求二次函数解析式
【分析】(1)把已知点的坐标代入抛物线解析式求出b与c的值即可;
(2)指出满足题意的平移方法,并写出平移后的解析式即可.
解:(1)把(1,0),(0,)代入抛物线解析式得:,
解得:,
则抛物线解析式为y=﹣x2﹣x+;
(2)抛物线解析式为y=﹣x2﹣x+=﹣(x+1)2+2,
将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=﹣x2.
【点评】此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.
◆变式训练
(2018年内蒙古赤峰)已知抛物线y=﹣x2﹣x的图象如图所示:
(1)将该抛物线向上平移2个单位,分别交x轴于A、B两点,交y轴于点C,则平移后的解析式为 .
(2)判断△ABC的形状,并说明理由.
(3)在抛物线对称轴上是否存在一点P,使得以A、C、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.
【考点】二次函数综合题。二次函数图象与几何变换,勾股定理及逆定理,等腰三角形的定义
【分析】(1)根据函数图象的平移规律,可得新的函数解析式;
(2)根据自变量与函数值的对应关系,可得A,B,C的坐标,根据勾股定理及逆定理,可得答案;
(3)根据等腰三角形的定义,可得关于n的方程,根据解方程,可得答案.
解:(1)将该抛物线向上平移2个单位,得y=﹣x2﹣x+2,
故答案为:y=﹣x2﹣x+2;
(2)当y=0时,﹣x2﹣x+2=0,解得x1=﹣4,x2=1,即B(﹣4,0),A(1,0).
当x=0时,y=2,即C(0,2).
AB=1﹣(﹣4)=5,AB2=25,
AC2=(1﹣0)2+(0﹣2)2=5,BC2=(﹣4﹣0)2+(0﹣2)2=20,
∵AC2+BC2=AB2,
∴△ABC是直角三角形;
(3)y=﹣x2﹣x+2的对称轴是x=﹣,设P(﹣,n),
AP2=(1+)2+n2=+n2,CP2=+(2﹣n)2,AC2=12+22=5
当AP=AC时,AP2=AC2,+n2=5,方程无解;
当AP=CP时,AP2=CP2,+n2=+(2﹣n)2,解得n=0,即P1(﹣,0),
当AC=CP时AC2=CP2,+(2﹣n)2=5,解得n1=2+,n2=2﹣,P2(﹣,2+),P3(﹣,2﹣).
综上所述:使得以A、C、P为顶点的三角形是等腰三角形,点P的坐标(﹣,0),(﹣,2+),(﹣,2﹣).
【点评】本题考查了二次函数综合题,解(1)的关键是二次函数图象的平移,解(2)的关键是利用勾股定理及逆定理;解(3)的关键是利用等腰三角形的定义得出关于n的方程,要分类讨论,以防遗漏.
■考点4.二次函数与一元二次方程以及不等式
◇典例:
(2018年四川省南充)如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:
①2a+c<0;
②若(﹣,y1),(﹣,y2),(,y3)在抛物线上,则y1>y2>y3;
③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;
④当n=﹣时,△ABP为等腰直角三角形.
其中正确结论是 (填写序号).
【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点
【分析】利用二次函数的性质一一判断即可;
解:∵﹣<,a>0,
∴a>﹣b,
∵x=﹣1时,y>0,
∴a﹣b+c>0,
∴2a+c>a﹣b+c>0,故①错误,
若(﹣,y1),(﹣,y2),(,y3)在抛物线上,
由图象法可知,y1>y2>y3;故②正确,
∵抛物线与直线y=t有交点时,方程ax2+bx+c=t有解,t≥n,
∴ax2+bx+c﹣t=0有实数解
要使得ax2+bx+k=0有实数解,则k=c﹣t≤c﹣n;故③错误,
设抛物线的对称轴交x轴于H.
∵=﹣,
∴b2﹣4ac=4,
∴x==,
∴|x1﹣x2|=,
∴AB=2PH,
∵BH=AH,
∴PH=BH=AH,
∴△PAB是直角三角形,∵PA=PB,
∴△PAB是等腰直角三角形.
故答案为②④.
【点评】本题考查二次函数的应用、二次函数与坐标轴的交点等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.
◆变式训练
(2018年云南省)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.
(1)求b,c的值.
(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.
【考点】二次函数图象上点的坐标特征;抛物线与x轴的交点
【分析】(1)把点A、B的坐标分别代入函数解析式求得b、c的值;
(2)利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程﹣x2+x+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.
解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得
,
解得;
(2)由(1)可得,该抛物线解析式为:y=﹣x2+x+3.
△=()2﹣4×(﹣)×3=>0,
所以二次函数y=﹣x2+bx+c的图象与x轴有公共点.
∵﹣x2+x+3=0的解为:x1=﹣2,x2=8
∴公共点的坐标是(﹣2,0)或(8,0).
【点评】考查了抛物线与x轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.
一、 选择题
(2018年黑龙江省牡丹江)将抛物线y=x2+2x+3向下平移3个单位长度后,所得到的抛物线与直线y=3的交点坐标是( )
A.(0,3)或(﹣2,3) B.(﹣3,0)或(1,0)
C.(3,3)或(﹣1,3) D.(﹣3,3)或(1,3)
【考点】二次函数图象上点的坐标特征;二次函数图象与几何变换
【分析】先把y=x2+2x+3向下平移得到y=x2+2x,再求其与y=3的交点即可.
解:将抛物线y=x2+2x+3向下平移3个单位长度后,所得到的抛物线为y=x2+2x
当该抛物线与直线y=3相交时,
x2+2x=3
解得:x1=﹣3,x2=1
则交点坐标为:(﹣3,3)(1,3)
故选:D.
【点评】本题为二次函数图象问题,考查了二次函数图象平移以及函数图象求交点问题,解答时需要注意求函数图象平移后解析式的解题技巧.
(2018年黑龙江省哈尔滨)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )
A.y=﹣5(x+1)2﹣1
B.y=﹣5(x﹣1)2﹣1
C.y=﹣5(x+1)2+3
D.y=﹣5(x﹣1)2+3
【考点】二次函数图象与几何变换
【分析】直接利用二次函数图象与几何变换的性质分别平移得出答案.
解:将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5(x+1)2+1,再向下平移2个单位长度,
所得到的抛物线为:y=﹣5(x+1)2﹣1.
故选:A.
【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.
(2018年湖北省黄冈)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为( )
A.﹣1 B.2 C.0或2 D.﹣1或2
【考点】二次函数的最值,二次函数图象上点的坐标特征
【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.
解:当y=1时,有x2﹣2x+1=1,
解得:x1=0,x2=2.
∵当a≤x≤a+1时,函数有最小值1,
∴a=2或a+1=0,
∴a=2或a=﹣1,
故选:D.
【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.
(2018年湖北省襄阳)已知二次函数y=x2﹣x+m﹣1的图象与x轴有交点,则m的取值范围是( )
A.m≤5 B.m≥2 C.m<5 D.m>2
【考点】二次函数图象与系数的关系;抛物线与x轴的交点
【分析】根据已知抛物线与x轴有交点得出不等式,求出不等式的解集即可.
解:∵二次函数y=x2﹣x+m﹣1的图象与x轴有交点,
∴△=(﹣1)2﹣4×1×(m﹣1)≥0,
解得:m≤5,
故选:A.
【点评】本题考查了抛物线与x轴的交点,能根据题意得出关于m的不等式是解此题的关键.
二、 填空题
(2018年新疆乌鲁木齐)把拋物线y=2x2﹣4x+3向左平移1个单位长度,得到的抛物线的解析式为 .
【考点】二次函数图象与几何变换
【分析】将原抛物线配方成顶点式,再根据“左加右减、上加下减”的规律求解可得.
解:∵y=2x2﹣4x+3=2(x﹣1)2+1,
∴向左平移1个单位长度得到的抛物线的解析式为y=2(x+1﹣1)2+1=2x2+1,
故答案为:y=2x2+1.
【点评】本题主要考查二次函数图象与几何变换,解题的关键是掌握函数图象的平移规律“左加右减、上加下减”.
(2018年四川省自贡)若函数y=x2+2x﹣m的图象与x轴有且只有一个交点,则m的值为 .
【考点】抛物线与x轴的交点
【分析】由抛物线与x轴只有一个交点,即可得出关于m的一元一次方程,解之即可得出m的值.
解:∵函数y=x2+2x﹣m的图象与x轴有且只有一个交点,
∴△=22﹣4×1×(﹣m)=0,
解得:m=﹣1.
故答案为:﹣1.
【点评】本题考查了抛物线与x轴的交点,牢记“当△=b2﹣4ac=0时,抛物线与x轴有1个交点”是解题的关键.
(2018年贵州省黔南州、黔东南州、黔西南州)已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是 .
x
…
﹣1
0
1
2
…
y
…
0
3
4
3
…
【考点】二次函数图象上点的坐标特征;抛物线与x轴的交点
【分析】根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.
解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,
∴对称轴x==1;
点(﹣1,0)关于对称轴对称点为(3,0),
因此它的图象与x轴的另一个交点坐标是(3,0).
故答案为:(3,0).
【点评】本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.
(2018年湖北省孝感)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则方程ax2=bx+c的解是 .
【考点】一次函数图象上点的坐标特征;二次函数图象上点的坐标特征;抛物线与x轴的交点
【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.
解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),
∴方程组的解为,,
即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.
所以方程ax2=bx+c的解是x1=﹣2,x2=1
故答案为x1=﹣2,x2=1.
【点评】本题考查抛物线与x轴交点、一次函数的应用、一元二次方程等知识,解题的关键是灵活运用所学知识,学会利用图象法解决实际问题,属于中考常考题型.
三、 解答题
(2018年浙江省湖州)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.
【考点】二次函数图象上点的坐标特征
【分析】根据抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),可以求得a、b的值,本题得以解决.
解:∵抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),
∴,
解得,
,
即a的值是1,b的值是﹣2.
【点评】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.
(2018年宁夏)抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.
(1)求抛物线的解析式;
(2)连接AB、AC、BC,求△ABC的面积.
【考点】二次函数的性质;二次函数图象上点的坐标特征;待定系数法求二次函数解析式
【分析】(1)利用待定系数法求抛物线解析式;
(2)利用割补法求ABC的面积.
解:(1)∵抛物线经过A、B(0,3)
∴由上两式解得
∴抛物线的解析式为:;
(2)由(1)抛物线对称轴为直线x=
把x=代入,得y=4
则点C坐标为(,4)
设线段AB所在直线为:y=kx+b
解得AB解析式为:
∵线段AB所在直线经过点A、B(0,3)
抛物线的对称轴l于直线AB交于点D
∴设点D的坐标为D
将点D代入,解得m=2
∴点D坐标为,
∴CD=CE﹣DE=2
过点B作BF⊥l于点F∴BF=OE=
∵BF+AE=OE+AE=OA=
∴S△ABC=S△BCD+S△ACD=CD?BF+CD?AE
∴S△ABC=CD(BF+AE)=×2×=
【点评】本题为二次函数纯数学问题,考查二次函数待定系数法、用割补法求三角形面积.解答时注意数形结合.
一、选择题
(2018年广西南宁、北海、钦州、防城港、北部经济湾区)将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为( )
A.y=(x﹣8)2+5 B.y=(x﹣4)2+5
C.y=(x﹣8)2+3 D.y=(x﹣4)2+3
【考点】二次函数图象与几何变换
【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.
解:y=x2﹣6x+21
=(x2﹣12x)+21
=[(x﹣6)2﹣36]+21
=(x﹣6)2+3,
故y=(x﹣6)2+3,向左平移2个单位后,
得到新抛物线的解析式为:y=(x﹣4)2+3.
故选:D.
【点评】此题主要考查了二次函数图象与几何变换,正确配方将原式变形是解题关键.
(2018年浙江省杭州市)四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是( )
A.甲 B.乙 C.丙 D.丁
【考点】二次函数的最值;抛物线与x轴的交点,二次函数图象上点的坐标特征
【分析】假设两位同学的结论正确,用其去验证另外两个同学的结论,只要找出一个正确一个错误,即可得出结论(本题选择的甲和丙,利用顶点坐标求出b、c的值,然后利用二次函数图象上点的坐标特征验证乙和丁的结论).
解:假设甲和丙的结论正确,则,
解得:,
∴抛物线的解析式为y=x2﹣2x+4.
当x=﹣1时,y=x2﹣2x+4=7,
∴乙的结论不正确;
当x=2时,y=x2﹣2x+4=4,
∴丁的结论正确.
∵四位同学中只有一位发现的结论是错误的,
∴假设成立.
故选:B.
【点评】本题考查了抛物线与x轴的交点、二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质求出b、c值是解题的关键.
(2018年四川省泸州市)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为( )
A.1或﹣2 B.或 C. D.1
【考点】二次函数的性质;二次函数的最值
【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.
解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),
∴对称轴是直线x=﹣=﹣1,
∵当x≥2时,y随x的增大而增大,
∴a>0,
∵﹣2≤x≤1时,y的最大值为9,
∴x=1时,y=a+2a+3a2+3=9,
∴3a2+3a﹣6=0,
∴a=1,或a=﹣2(不合题意舍去).
故选:D.
【点评】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.
(2018年湖北省恩施州)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:
①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有( )
A.2 B.3 C.4 D.5
【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征
【分析】根据二次函数的性质一一判断即可.
解:∵抛物线对称轴x=﹣1,经过(1,0),
∴﹣=﹣1,a+b+c=0,
∴b=2a,c=﹣3a,
∵a>0,
∴b>0,c<0,
∴abc<0,故①错误,
∵抛物线与x轴有交点,
∴b2﹣4ac>0,故②正确,
∵抛物线与x轴交于(﹣3,0),
∴9a﹣3b+c=0,故③正确,
∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上,
﹣1.5>﹣2,
则y1<y2;故④错误,
∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故⑤正确,
故选:B.
【点评】本题考查二次函数与系数的关系,二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
(2018年天津市)已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:
①抛物线经过点;
②方程有两个不相等的实数根;
③.
其中,正确结论的个数为( )
A. 0 B. 1 C. 2 D. 3
【考点】二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质
【分析】根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.
解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;
抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;
∵对称轴在轴右侧,
∴>0
∵a<0
∴b>0
∵经过点,
∴a-b+c=0
∵经过点,
∴c=3
∴a-b=-3
∴b=a+3,a=b-3
∴-3
∴-3故选C.
【点睛】本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.
(2018年湖南省长沙市)若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P( )
A.有且只有1个 B.有且只有2个 C.至少有3个 D.有无穷多个
【考点】二次函数图象上点的坐标特征
【分析】根据题意可以得到相应的不等式,然后根据对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),即可求得点P的坐标,从而可以解答本题.
解:∵对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),
∴x02﹣16≠a(x0﹣3)2+a(x0﹣3)﹣2a
∴(x0﹣4)(x0+4)≠a(x0﹣1)(x0﹣4)
∴(x0+4)≠a(x0﹣1)
∴x0=﹣4或x0=1,
∴点P的坐标为(﹣7,0)或(﹣2,﹣15)
故选:B.
【点评】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.
(2018年山东省莱芜市)函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是( )
A.x<﹣4或x>2 B.﹣4<x<2 C.x<0或x>2 D.0<x<2
【考点】抛物线与x轴的交点
【分析】先求出抛物线的对称轴方程,再利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(﹣4,0),然后利用函数图象写出抛物线在x轴下方所对应的自变量的范围即可.
解:抛物线y=ax2+2ax+m得对称轴为直线x=﹣=﹣1,
而抛物线与x轴的一个交点坐标为(2,0),
∴抛物线与x轴的另一个交点坐标为(﹣4,0),
∵a<0,
∴抛物线开口向下,
∴当x<﹣4或x>2时,y<0.
故选:A.
【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.
填空题
(2018年江苏省淮安市)将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是 .
【考点】二次函数图象与几何变换
【分析】先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.
解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.
故答案为:y=x2+2.
【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
(2018年山东省淄博市)已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线于x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为 .
【考点】抛物线与x轴的交点;二次函数图象与几何变换.
【分析】先根据三等分点的定义得:AC=BC=BD,由平移m个单位可知:AC=BD=m,计算点A和B的坐标可得AB的长,从而得结论.
解:如图,∵B,C是线段AD的三等分点,
∴AC=BC=BD,
由题意得:AC=BD=m,
当y=0时,x2+2x﹣3=0,
(x﹣1)(x+3)=0,
x1=1,x2=﹣3,
∴A(﹣3,0),B(1,0),
∴AB=3+1=4,
∴AC=BC=2,
∴m=2,
故答案为:2.
【点评】本题考查了抛物线与x轴的交点问题、抛物线的平移及解一元二次方程的问题,利用数形结合的思想和三等分点的定义解决问题是关键.
(2018年新疆维吾尔自治区、新疆生产建设兵团)如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x的增大而增大;③使得M大于
4的x的值不存在;④若M=2,则x=1.上述结论正确的是 (填写所有正确结论的序号).
【考点】一次函数的性质,二次函数的性质,一次函数图象上点的坐标特征,二次函数图象上点的坐标特征
【分析】①观察函数图象,可知:当x>2时,抛物线y1=﹣x2+4x在直线y2=2x的下方,进而可得出当x>2时,M=y1,结论①错误;
②观察函数图象,可知:当x<0时,抛物线y1=﹣x2+4x在直线y2=2x的下方,进而可得出当x<0时,M=y1,再利用二次函数的性质可得出M随x的增大而增大,结论②正确;
③利用配方法可找出抛物线y1=﹣x2+4x的最大值,由此可得出:使得M大于4的x的值不存在,结论③正确;
④利用一次函数图象上点的坐标特征及二次函数图象上点的坐标特征求出当M=2时的x值,由此可得出:若M=2,则x=1或2+,结论④错误.
此题得解.
解:①当x>2时,抛物线y1=﹣x2+4x在直线y2=2x的下方,
∴当x>2时,M=y1,结论①错误;
②当x<0时,抛物线y1=﹣x2+4x在直线y2=2x的下方,
∴当x<0时,M=y1,
∴M随x的增大而增大,结论②正确;
③∵y1=﹣x2+4x=﹣(x﹣2)2+4,
∴M的最大值为4,
∴使得M大于4的x的值不存在,结论③正确;
④当M=y1=2时,有﹣x2+4x=2,
解得:x1=2﹣(舍去),x2=2+;
当M=y2=2时,有2x=2,
解得:x=1.
∴若M=2,则x=1或2+,结论④错误.
综上所述:正确的结论有②③.
故答案为:②③.
【点评】本题考查了一次函数的性质、二次函数的性质、一次函数图象上点的坐标特征以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.
(2018年江苏省苏州市)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为 (结果留根号).
【考点】菱形的性质、勾股定理,二次函数的性质
【分析】连接PM、PN.首先证明∠MPN=90°设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),构建二次函数,利用二次函数的性质即可解决问题;
解:连接PM、PN.
∵四边形APCD,四边形PBFE是菱形,∠DAP=60°,
∴∠APC=120°,∠EPB=60°,
∵M,N分别是对角线AC,BE的中点,
∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,
∴∠MPN=60°+30°=90°,
设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),
∴MN===,
∴a=3时,MN有最小值,最小值为2,
故答案为2.
【点评】本题考查菱形的性质、勾股定理二次函数的性质等知识,解题的关键是学会添加
解答题
(2018年湖北省黄冈市)已知直线l:y=kx+1与抛物线y=x2﹣4x.
(1)求证:直线l与该抛物线总有两个交点;
(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.
【考点】一次函数图象上点的坐标特征;二次函数图象上点的坐标特征
【分析】(1)联立两解析式,根据判别式即可求证;
(2)画出图象,求出A.B的坐标,再求出直线y=﹣2x+1与x轴的交点C,然后利用三角形的面积公式即可求出答案.
解:(1)联立
化简可得:x2﹣(4+k)x﹣1=0,
∴△=(4+k)2+4>0,
故直线l与该抛物线总有两个交点;
(2)当k=﹣2时,
∴y=﹣2x+1
过点A作AF⊥x轴于F,过点B作BE⊥x轴于E,
∴联立
解得:或
∴A(1﹣,2﹣1),B(1+,﹣1﹣2)
∴AF=2﹣1,BE=1+2
易求得:直线y=﹣2x+1与x轴的交点C为(,0)
∴OC=
∴S△AOB=S△AOC+S△BOC
=OC?AF+OC?BE
=OC(AF+BE)
=××(2﹣1+1+2)
=
【点评】本题考查二次函数的综合问题,涉及解一元二次方程组,根的判别式,三角形的面积公式等知识,综合程度较高.
(2018年北京市)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.
(1)求点C的坐标;
(2)求抛物线的对称轴;
(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.
【考点】待定系数法求函数解析式,二次函数的性质,解一元一次不等式
【分析】(1)根据坐标轴上点的坐标特征可求点B的坐标,根据平移的性质可求点C的坐标;
(2)根据坐标轴上点的坐标特征可求点A的坐标,进一步求得抛物线的对称轴;
(3)结合图形,分三种情况:①a>0;②a<0,③抛物线的顶点在线段BC上;进行讨论即可求解.
解:(1)与y轴交点:令x=0代入直线y=4x+4得y=4,
∴B(0,4),
∵点B向右平移5个单位长度,得到点C,
∴C(5,4);
(2)与x轴交点:令y=0代入直线y=4x+4得x=﹣1,
∴A(﹣1,0),
∵点B向右平移5个单位长度,得到点C,
将点A(﹣1,0)代入抛物线y=ax2+bx﹣3a中得0=a﹣b﹣3a,即b=﹣2a,
∴抛物线的对称轴x=﹣=﹣=1;
(3)∵抛物线y=ax2+bx﹣3a经过点A(﹣1,0)且对称轴x=1,
由抛物线的对称性可知抛物线也一定过A的对称点(3,0),
①a>0时,如图1,
将x=0代入抛物线得y=﹣3a,
∵抛物线与线段BC恰有一个公共点,
∴﹣3a<4,
a>﹣,
将x=5代入抛物线得y=12a,
∴12a≥4,
a≥,
∴a≥;
②a<0时,如图2,
将x=0代入抛物线得y=﹣3a,
∵抛物线与线段BC恰有一个公共点,
∴﹣3a>4,
a<﹣;
③当抛物线的顶点在线段BC上时,则顶点为(1,4),如图3,
将点(1,4)代入抛物线得4=a﹣2a﹣3a,
解得a=﹣1.
综上所述,a≥或a<﹣或a=﹣1.
【点评】本题考查了待定系数法求函数解析式、二次函数的性质以及解一元一次不等式,解题的关键是熟练掌握解一元一次方程,待定系数法求抛物线解析式.本题属于中档题,难度不大,但涉及知识点较多,需要对二次函数足够了解才能快捷的解决问题.
(2018年江苏省徐州市)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.
(1)求证:FH=ED;
(2)当AE为何值时,△AEF的面积最大?
【考点】二次函数的最值;全等三角形的判定与性质;矩形的性质;正方形的性质
【分析】(1)根据正方形的性质,可得EF=CE,再根据∠CEF=∠90°,进而可得∠FEH=∠DCE,结合已知条件∠FHE=∠D=90°,利用“AAS”即可证明△FEH≌△ECD,由全等三角形的性质可得FH=ED;
(2)设AE=a,用含a的函数表示△AEF的面积,再利用函数的最值求面积最大值即可.
解:(1)证明:
∵四边形CEFG是正方形,
∴CE=EF,
∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,
∴∠FEH=∠DCE,
在△FEH和△ECD中
,
∴△FEH≌△ECD,
∴FH=ED;
(2)设AE=a,则ED=FH=4﹣a,
∴S△AEF=AE?FH=a(4﹣a),
=﹣(a﹣2)2+2,
∴当AE=2时,△AEF的面积最大.
【点评】本题考查了正方形性质、矩形性质以及全等三角形的判断和性质和三角形面积有关的知识点,熟记全等三角形的各种判断方法是解题的关键.
(2018年江苏省盐城市)如图①,在平面直角坐标系 中,抛物线 经过点 、 两点,且与 轴交于点 .
(1)求抛物线的表达式;
(2)如图②,用宽为4个单位长度的直尺垂直于 轴,并沿 轴左右平移,直尺的左右两边所在的直线与抛物线相交于 、 两点(点 在点 的左侧),连接 ,在线段 上方抛物线上有一动点 ,连接 、 .(Ⅰ)若点 的横坐标为 ,求 面积的最大值,并求此时点 的坐标;
(Ⅱ)直尺在平移过程中, 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.
【考点】二次函数的最值,待定系数法求二次函数解析式,三角形的面积
【分析】(1)将两点 、 坐标代入 ,可得方程组,解之即可;( 2 )(I)在遇到几何或代数求最大值,可联系到二次函数求最大值的应用,即将△PQD的面积用代数式的形式表示出来,因为它的面积随着点D的位置改变而改变,所以可设点D的坐标为(m, ),过过点D作直线DE垂直于x轴,交PQ于点E,则需要用m表示出点E的坐标,而点E在线段PQ上,求出PQ的坐标及直线PQ的表达式即可解答;
(II)可设P(n, ),则Q(n+4, ),作法与(I)一样,表示出△PQD的面积,运用二次函数求最值。
(1)解:∵抛物线 经过点 、 两点,∴ ?解得 ?
∴抛物线
(2)解:(I)∵点P的横坐标是 ,当x= 时, ,则点P( , ),
∵直尺的宽度为4个单位长度,
∴点Q的横坐标为 +4= ,则当x= 时,y= ,
∴点Q( , ),
设直线PQ的表达式为:y=kx+c,由P( , ),Q( , ),可得
解得 ,则直线PQ的表达式为:y=-x+ ,
如图②,过点D作直线DE垂直于x轴,交PQ于点E,设D(m, ),则E(m,-m+ ),
则S△PQD=S△PDE+S△QDE= = = = ,
∵ (II)设P P(n, ),则Q(n+4, ),即Q(n+4, ),而直线PQ的表达式为:y= ,
设D( ),则E(t, )
∴S△PQD= =2
=2
= ≤8
当t=n+2时,S△PQD=8.
∴△PQD面积的最大值为8