【备考2019】数学中考一轮复习学案 第13节二次函数图像与性质(一)(含解析)

文档属性

名称 【备考2019】数学中考一轮复习学案 第13节二次函数图像与性质(一)(含解析)
格式 zip
文件大小 3.2MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2019-01-17 11:11:25

文档简介


第三章函数 第13节 二次函数图像与性质(一)
■知识点一: 二次次函数的定义
1.二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y═ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.
判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0,自变量x的最高次数是2这个关键条件.
2.二次函数的取值范围:一般情况下,二次函数中自变量的取值范围是全体实数,对实际问题,自变量的取值范围还需使实际问题有意义.
■知识点二: 用待定系数法求二次函数的解析式
(1)二次函数的解析式有三种常见形式
一般式:y=ax2+bx+c(a≠0).
若已知条件是图象上三个点的坐标,则设一般式y=ax2+bx+c(a≠0),将已知条件代入,求出a,b,c的值.
交点式:y=a(x-x1)(x-x2)(a≠0).
若已知二次函数图象与x轴的两个交点的坐标,则设交点式:y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a,最后将关系式化为一般式.
顶点式:y=a(x-h)2+k(a≠0).
若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y=a(x-h)2+k(a≠0),将已知条件代入,求出待定系数化为一般式.
(2)用待定系数法求二次函数的解析式.
在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
■知识点三:二次函数的图象及性质
(1)二次函数y=ax2(a≠0)的图象的画法:
①列表:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表.
②描点:在平面直角坐标系中描出表中的各点.
③连线:用平滑的曲线按顺序连接各点.
④在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可.连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来.画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
(2)二次函数的图象及性质
二次函数y=ax2+bx+c(a,b,c为常数,a≠0)
图象
(a>0)
(a<0)
开口方向
开口向上
开口向下
对称轴
直线x=-
直线x=-
顶点坐标


增减性
当x<-时,y随x的增大而减小;当x>-时,y随x的增大而增大
当x<-时,y随x的增大而增大;当x>-时,y随x的增大而减小
最值
当x=-时,y有最小值
当x=-时,y有最大值
■知识点四: 二次函数图像与系数的关系
a
决定抛物线的开口方向及开口大小
当a>0时,抛物线开口向上;
当a<0时,抛物线开口向下.
某些特殊形式代数式的符号:
a±b+c即为x=±1时,y
的值;②4a±2b+c即为x=±2时,y的值.
2a+b的符号,需判
对称
轴-与1的大小.若对称轴在直线x=1的左边,则->1,再根据a的符号即可得出结果.④2a-b的符号,需判断对称轴与-1的大小.
b
决定对称轴(x=-)的位置
当a,b同号,-<0,对称轴在y轴左边;
当b=0时, -=0,对称轴为y轴;
当a,b异号,->0,对称轴在y轴右边.
c
决定抛物线与y轴的交点的位置
当c>0时,抛物线与y轴的交点在正半轴上;
当c=0时,抛物线经过原点;
当c<0时,抛物线与y轴的交点在负半轴上.
b2-4ac
决定抛物线与x轴的交点个数
b2-4ac>0时,抛物线与x轴有2个交点;
b2-4ac=0时,抛物线与x轴有1个交点;
b2-4ac<0时,抛物线与x轴没有交点
■考点1. 二次函数的定义
◇典例:
当k为何值时,函数y=(k-1)xk2+k+1为二次函数?
【考点】二次函数的定义.
【分析】根据二次函数的定义,令k2+k=2且同时满足k-1≠0即可解答.
解:∵函数y=(k-1)xk2+k+1为二次函数, ∴k2+k=2,k-1≠0, ∴k1=1,k2=-2,k≠1, ∴k=-2.2·
【点评】本题主要考查二次函数的定义,熟练掌握形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数是解题的关键.此类题不常考。1·c·n·j·y
◆变式训练
(2015?兰州)下列函数解析式中,一定为二次函数的是(  )
A.?y=3x﹣1???????? B.?y=ax2+bx+c?????????
C.?s=2t2﹣2t+1?????????D.?y=x2+
j*y.co*m】
■考点2:用待定系数法求二次函数的解析式
◇典例
1.(2018年天津)在平面直角坐标系中,点,点.已知抛物线(是常数),定点为.
(Ⅰ)当抛物线经过点时,求定点的坐标;
(Ⅱ)若点在轴下方,当时,求抛物线的解析式;
(Ⅲ) 无论取何值,该抛物线都经过定点.当时,求抛物线的解析式.
【考点】二次函数综合题
【分析】(Ⅰ)把点A(1,0)代入求出m的值,从而确定二次函数解析式,进而求出顶点P的坐标;
(Ⅱ)先由函数解析式得出顶点坐标为.再结合已知条件可知,从而求出,.再进行分类讨论得到抛物线解析式为;
(Ⅲ)由 可知,定点H的坐标为,过点作,交射线于点,分别过点,作轴的垂线,垂足分别为,,则可证.得点的坐标为或.然后进行分类讨论即可求解.
解: (Ⅰ)∵抛物线经过点,
∴,解得.
∴抛物线的解析式为.
∵ ,
∴顶点的坐标为.
(Ⅱ)抛物线的顶点的坐标为.
由点在轴正半轴上,点在轴下方,,知点在第四象限.
过点作轴于点,则.
可知,即,解得,.
当时,点不在第四象限,舍去.
∴.
∴抛物线解析式为.
(Ⅲ)由 可知,
当时,无论取何值,都等于4.
得点的坐标为.
过点作,交射线于点,分别过点,作轴的垂线,垂足分别为,,则.
∵,,
∴.∴.
∵ ,
∴.
∴.
∴,.
可得点的坐标为或.
当点的坐标为时,可得直线的解析式为.
∵点在直线上,
∴.解得,.
当时,点与点重合,不符合题意,∴.
当点的坐标为时,
可得直线的解析式为.
∵点在直线上,
∴ .解得(舍),.
∴.
综上,或.
故抛物线解析式为或.
【点睛】这是一道关于二次函数的综合题. 解题的关键是学会用待定系数法求二次函数关系式以及用分类讨论的思想思考问题.
◆变式训练
1.(2018年上海)在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.
(1)求这条抛物线的表达式;
(2)求线段CD的长;
(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.
2.(2017?陕西)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为
M′,若点M′在这条抛物线上,则点M的坐标为(?? )
A.?(1,﹣5)????B.?(3,﹣13)???C.?(2,﹣8)??D.?(4,﹣20)
■考点3:二次函数的图象及性质
◇典例:
(2018年山东省潍坊)已知二次函数 (为常数),当自变量的值满足时,与其对应的函数值的最大值为-1,则的值为( )
A. 3或6 B. 1或6 C. 1或3 D. 4或6
【考点】二次函数的最值,二次函数的性质
【分析】分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.
解:如图,
当h<2时,有-(2-h)2=-1,
解得:h1=1,h2=3(舍去);
当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;
当h>5时,有-(5-h)2=-1,
解得:h3=4(舍去),h4=6.
综上所述:h的值为1或6.
故选B.
【点睛】本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.
◆变式训练
1.(2018年山东省德州)如图,函数和(是常数,且)在同一平面直角坐标系的图象可能是( )
A. B. C. D.
2.(2018年湖南省岳阳)抛物线y=3(x﹣2)2+5的顶点坐标是(  )
A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)
■考点4:二次函数图像与系数的关系
◇典例:
(2018年黑龙江省大庆)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:
①二次函数y=ax2+bx+c的最小值为﹣4a;
②若﹣1≤x2≤4,则0≤y2≤5a;
③若y2>y1,则x2>4;
④一元二次方程cx2+bx+a=0的两个根为﹣1和
其中正确结论的个数是(  )
A.1 B.2 C.3 D.4
【考点】二次函数图象与系数的关系
【分析】利用交点式写出抛物线解析式为y=ax2﹣2ax﹣3a,配成顶点式得y=a(x﹣1)2﹣4a,则可对①进行判断;计算x=4时,y=a?5?1=5a,则根据二次函数的性质可对②进行判断;利用对称性和二次函数的性质可对③进行判断;由于b=﹣2a,c=﹣3a,则方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,然后解方程可对④进行判断.
解:抛物线解析式为y=a(x+1)(x﹣3),
即y=ax2﹣2ax﹣3a,
∵y=a(x﹣1)2﹣4a,
∴当x=1时,二次函数有最小值﹣4a,所以①正确;
当x=4时,y=a?5?1=5a,
∴当﹣1≤x2≤4,则﹣4a≤y2≤5a,所以②错误;
∵点C(1,5a)关于直线x=1的对称点为(﹣2,﹣5a),
∴当y2>y1,则x2>4或x<﹣2,所以③错误;
∵b=﹣2a,c=﹣3a,
∴方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,
整理得3x2+2x﹣1=0,解得x1=﹣1,x2=,所以④正确.
故选:B.
【点评】本题考查了抛物线与轴的交点:把求二次函y=ax2+bx+c(a,b,c是常数,a≠0)与轴的交点坐标问题转化为解关于的一元次方程.也考查了二次函数的性质.
◆变式训练
(2018年甘肃省定西)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是(  )
A.①②④ B.①②⑤ C.②③④ D.③④⑤
21世纪教育网版权所有
选择题
(2018年浙江省杭州市临安)抛物线y=3(x﹣1)2+1的顶点坐标是(  )
A.(1,1) B.(﹣1,1) C.(﹣1,﹣1) D.(1,﹣1)
(2018年湖北省黄冈)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为(  )
A.﹣1 B.2 C.0或2 D.﹣1或2 
(2018年上海)下列对二次函数y=x2﹣x的图象的描述,正确的是(  )
A.开口向下 B.对称轴是y轴 C.经过原点 D.在对称轴右侧部分是下降的
(2018年山东省青岛)已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是(  )
A. B. C. D. 
(2018年内蒙古赤峰)已知抛物线y=a(x﹣1)2﹣3(a≠0),如图所示,下列命题:①a>0;②对称轴为直线x=1;③抛物线经过(2,y1),(4,y2)两点,则y1>y2;④顶点坐标是(1,﹣3),其中真命题的概率是(  )
A. B. C. D.1
(2018年广东省深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是(  )
A.abc>0 B.2a+b<0 C.3a+c<0 D.ax2+bx+c﹣3=0有两个不相等的实数根
填空题
(2018年广东省广州)已知二次函数 ,当x>0时,y随x的增大而______(填“增大”或“减小”).
(2018年黑龙江省哈尔滨)抛物线y=2(x+2)2+4的顶点坐标为   .
解答题
(2018年浙江省湖州)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.
(2018年宁夏中考数学试卷)抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.
(1)求抛物线的解析式;
(2)连接AB、AC、BC,求△ABC的面积.
选择题
(2018年山东省威海)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是(  )
A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m
B.小球距O点水平距离超过4米呈下降趋势
C.小球落地点距O点水平距离为7米
D.斜坡的坡度为1:2
(2018年甘肃省兰州(a卷))如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b﹣a>c;③4a+2b+c>0;④3a>﹣c;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有(  )
A.①②③ B.②③⑤ C.②③④③④⑤
(2018年内蒙古包头)已知下列命题:
①若a3>b3,则a2>b2;
②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2;
③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;
④周长相等的所有等腰直角三角形全等.
其中真命题的个数是(  )
A.4个 B.3个 C.2个1个
(2018年浙江省杭州)四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是(  )
A.甲 B.乙 C.丙丁
(2018年浙江省宁波)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是(  )
A. B.C.D.
(2018年浙江省湖州)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是(  )
A.a≤﹣1或≤a< B.≤a<
C.a≤或a>a≤﹣1或a≥ D.a≤﹣1或a≥
(2018年四川省成都)关于二次函数y=2x2+4x﹣1,下列说法正确的是(  )
A.图象与y轴的交点坐标为(0,1)
B.图象的对称轴在y轴的右侧
C.当x<0时,y的值随x值的增大而减小
D.y的最小值为﹣3
填空题
(2018年广东省广州)已知二次函数 ,当x>0时,y随x的增大而______(填“增大”或“减小”).
(2018年黑龙江省牡丹江)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,下列结论中:
①abc<0;②9a﹣3b+c<0;③b2﹣4ac>0;④a>b,
正确的结论是   (只填序号)
(2018年四川省德阳)已知函数y=使y=a成立的x的值恰好只有3个时,a的值为   .
(2018年新疆维吾尔自治区、新疆生产建设兵团中考数学试卷)如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x的增大而增大;③使得M大于
4的x的值不存在;④若M=2,则x=1.上述结论正确的是   (填写所有正确结论的序号).
(2018年四川省遂宁)如图,已知抛物线y=ax2﹣4x+c(a≠0)与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线y=ax2﹣4x+c的顶点,P点是x轴上一动点,当PA+PB最小时,P点的坐标为   .
解答题
(2018年黑龙江省牡丹江)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,交y轴于点C,点D为抛物线的顶点,连接BD,点H为BD的中点.请解答下列问题:
(1)求抛物线的解析式及顶点D的坐标;
(2)在y轴上找一点P,使PD+PH的值最小,则PD+PH的最小值为   .
(注:抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣,顶点坐标为(﹣,)
(2018年湖北省黄冈)已知直线l:y=kx+1与抛物线y=x2﹣4x.
(1)求证:直线l与该抛物线总有两个交点;
(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.
(2018年江苏省徐州)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.
(1)求证:FH=ED;
(2)当AE为何值时,△AEF的面积最大?

第三章函数 第13节 二次函数图像与性质(一)
■知识点一: 二次次函数的定义
1.二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y═ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.
判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0,自变量x的最高次数是2这个关键条件.
2.二次函数的取值范围:一般情况下,二次函数中自变量的取值范围是全体实数,对实际问题,自变量的取值范围还需使实际问题有意义.
■知识点二: 用待定系数法求二次函数的解析式
(1)二次函数的解析式有三种常见形式
一般式:y=ax2+bx+c(a≠0).
若已知条件是图象上三个点的坐标,则设一般式y=ax2+bx+c(a≠0),将已知条件代入,求出a,b,c的值.
交点式:y=a(x-x1)(x-x2)(a≠0).
若已知二次函数图象与x轴的两个交点的坐标,则设交点式:y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a,最后将关系式化为一般式.
顶点式:y=a(x-h)2+k(a≠0).
若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y=a(x-h)2+k(a≠0),将已知条件代入,求出待定系数化为一般式.
(2)用待定系数法求二次函数的解析式.
在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
■知识点三:二次函数的图象及性质
(1)二次函数y=ax2(a≠0)的图象的画法:
①列表:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表.
②描点:在平面直角坐标系中描出表中的各点.
③连线:用平滑的曲线按顺序连接各点.
④在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可.连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来.画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
(2)二次函数的图象及性质
二次函数y=ax2+bx+c(a,b,c为常数,a≠0)
图象
(a>0)
(a<0)
开口方向
开口向上
开口向下
对称轴
直线x=-
直线x=-
顶点坐标


增减性
当x<-时,y随x的增大而减小;当x>-时,y随x的增大而增大
当x<-时,y随x的增大而增大;当x>-时,y随x的增大而减小
最值
当x=-时,y有最小值
当x=-时,y有最大值
■知识点四: 二次函数图像与系数的关系
a
决定抛物线的开口方向及开口大小
当a>0时,抛物线开口向上;
当a<0时,抛物线开口向下.
某些特殊形式代数式的符号:
a±b+c即为x=±1时,y
的值;②4a±2b+c即为x=±2时,y的值.
2a+b的符号,需判
对称
轴-与1的大小.若对称轴在直线x=1的左边,则->1,再根据a的符号即可得出结果.④2a-b的符号,需判断对称轴与-1的大小.
b
决定对称轴(x=-)的位置
当a,b同号,-<0,对称轴在y轴左边;
当b=0时, -=0,对称轴为y轴;
当a,b异号,->0,对称轴在y轴右边.
c
决定抛物线与y轴的交点的位置
当c>0时,抛物线与y轴的交点在正半轴上;
当c=0时,抛物线经过原点;
当c<0时,抛物线与y轴的交点在负半轴上.
b2-4ac
决定抛物线与x轴的交点个数
b2-4ac>0时,抛物线与x轴有2个交点;
b2-4ac=0时,抛物线与x轴有1个交点;
b2-4ac<0时,抛物线与x轴没有交点
■考点1. 二次函数的定义
◇典例:
当k为何值时,函数y=(k-1)xk2+k+1为二次函数?
【考点】二次函数的定义.
【分析】根据二次函数的定义,令k2+k=2且同时满足k-1≠0即可解答.
解:∵函数y=(k-1)xk2+k+1为二次函数, ∴k2+k=2,k-1≠0, ∴k1=1,k2=-2,k≠1, ∴k=-2.2·
【点评】本题主要考查二次函数的定义,熟练掌握形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数是解题的关键.此类题不常考。1·c·n·j·y
◆变式训练
(2015?兰州)下列函数解析式中,一定为二次函数的是(  )
A.?y=3x﹣1???????? B.?y=ax2+bx+c?????????
C.?s=2t2﹣2t+1?????????D.?y=x2+ 【考点】二次函数的定义 21·世纪*教育网
【分析】根据二次函数的定义,可得答案. A、y=3x﹣1是一次函数,故A错误; B、y=ax2+bx+c? (a≠0)是二次函数,故B错误; C、s=2t2﹣2t+1是二次函数,故C正确; D、y=x2+不是二次函数,故D错误; 故选:C.【来源
【点评】本题考查了二次函数的定义,牢记二次函数的定义是解题的关键.21cnj*y.co*m】
■考点2:用待定系数法求二次函数的解析式
◇典例
1.(2018年天津)在平面直角坐标系中,点,点.已知抛物线(是常数),定点为.
(Ⅰ)当抛物线经过点时,求定点的坐标;
(Ⅱ)若点在轴下方,当时,求抛物线的解析式;
(Ⅲ) 无论取何值,该抛物线都经过定点.当时,求抛物线的解析式.
【考点】二次函数综合题
【分析】(Ⅰ)把点A(1,0)代入求出m的值,从而确定二次函数解析式,进而求出顶点P的坐标;
(Ⅱ)先由函数解析式得出顶点坐标为.再结合已知条件可知,从而求出,.再进行分类讨论得到抛物线解析式为;
(Ⅲ)由 可知,定点H的坐标为,过点作,交射线于点,分别过点,作轴的垂线,垂足分别为,,则可证.得点的坐标为或.然后进行分类讨论即可求解.
解: (Ⅰ)∵抛物线经过点,
∴,解得.
∴抛物线的解析式为.
∵ ,
∴顶点的坐标为.
(Ⅱ)抛物线的顶点的坐标为.
由点在轴正半轴上,点在轴下方,,知点在第四象限.
过点作轴于点,则.
可知,即,解得,.
当时,点不在第四象限,舍去.
∴.
∴抛物线解析式为.
(Ⅲ)由 可知,
当时,无论取何值,都等于4.
得点的坐标为.
过点作,交射线于点,分别过点,作轴的垂线,垂足分别为,,则.
∵,,
∴.∴.
∵ ,
∴.
∴.
∴,.
可得点的坐标为或.
当点的坐标为时,可得直线的解析式为.
∵点在直线上,
∴.解得,.
当时,点与点重合,不符合题意,∴.
当点的坐标为时,
可得直线的解析式为.
∵点在直线上,
∴ .解得(舍),.
∴.
综上,或.
故抛物线解析式为或.
【点睛】这是一道关于二次函数的综合题. 解题的关键是学会用待定系数法求二次函数关系式以及用分类讨论的思想思考问题.
◆变式训练
1.(2018年上海)在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.
(1)求这条抛物线的表达式;
(2)求线段CD的长;
(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.
【考点】二次函数综合题
【分析】(1)利用待定系数法求抛物线解析式;
(2)利用配方法得到y=﹣(x﹣2)2+,则根据二次函数的性质得到C点坐标和抛物线的对称轴为直线x=2,如图,设CD=t,则D(2,﹣t),根据旋转性质得∠PDC=90°,DP=DC=t,则P(2+t,﹣t),然后把P(2+t,﹣t)代入y=﹣x2+2x+得到关于t的方程,从而解方程可得到CD的长;
(3)P点坐标为(4,),D点坐标为(2,),利用抛物线的平移规律确定E点坐标为(2,﹣2),设M(0,m),当m>0时,利用梯形面积公式得到?(m++2)?2=8当m<0时,利用梯形面积公式得到?(﹣m++2)?2=8,然后分别解方程求出m即可得到对应的M点坐标.
解:(1)把A(﹣1,0)和点B(0,)代入y=﹣x2+bx+c得,解得,
∴抛物线解析式为y=﹣x2+2x+;
(2)∵y=﹣(x﹣2)2+,
∴C(2,),抛物线的对称轴为直线x=2,
如图,设CD=t,则D(2,﹣t),
∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处,
∴∠PDC=90°,DP=DC=t,
∴P(2+t,﹣t),
把P(2+t,﹣t)代入y=﹣x2+2x+得﹣(2+t)2+2(2+t)+=﹣t,
整理得t2﹣2t=0,解得t1=0(舍去),t2=2,
∴线段CD的长为2;
(3)P点坐标为(4,),D点坐标为(2,),
∵抛物线平移,使其顶点C(2,)移到原点O的位置,[来源:Z_xx_k.Com]
∴抛物线向左平移2个单位,向下平移个单位,
而P点(4,)向左平移2个单位,向下平移个单位得到点E,
∴E点坐标为(2,﹣2),
设M(0,m),
当m>0时,?(m++2)?2=8,解得m=,此时M点坐标为(0,);
当m<0时,?(﹣m++2)?2=8,解得m=﹣,此时M点坐标为(0,﹣);
综上所述,M点的坐标为(0,)或(0,﹣).
【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和旋转的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题。
2.(2017?陕西)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为
M′,若点M′在这条抛物线上,则点M的坐标为(?? )
A.?(1,﹣5)????B.?(3,﹣13)???C.?(2,﹣8)??D.?(4,﹣20) 【考点】二次函数的性质,二次函数的三种形式
【分析】将二次函数的解析式化成顶点式:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4从而得出点M(m,﹣m2﹣4).由已知条件得出点M′(﹣m,m2+4);代入解析式求出m=±2;由m>0,得出M坐标. y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4. ∴点M(m,﹣m2﹣4). ∴点M′(﹣m,m2+4). ∴m2+2m2﹣4=m2+4. 解得m=±2. ∵m>0, ∴m=2. ∴M(2,﹣8). 故答案为:C.
【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.
■考点3:二次函数的图象及性质
◇典例:
(2018年山东省潍坊)已知二次函数 (为常数),当自变量的值满足时,与其对应的函数值的最大值为-1,则的值为( )
A. 3或6 B. 1或6 C. 1或3 D. 4或6
【考点】二次函数的最值,二次函数的性质
【分析】分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.
解:如图,
当h<2时,有-(2-h)2=-1,
解得:h1=1,h2=3(舍去);
当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;
当h>5时,有-(5-h)2=-1,
解得:h3=4(舍去),h4=6.
综上所述:h的值为1或6.
故选B.
【点睛】本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.
◆变式训练
1.(2018年山东省德州)如图,函数和(是常数,且)在同一平面直角坐标系的图象可能是( )
A. B. C. D.
【考点】二次函数的图像,一次函数的图象
【分析】可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.
解:A.由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;
B.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0.故选项正确;
C.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x轴的正半轴相交.故选项错误;
D.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上.故选项错误.
故选B.
【点睛】本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y=ax﹣a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.
2.(2018年湖南省岳阳)抛物线y=3(x﹣2)2+5的顶点坐标是(  )
A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)
【考点】二次函数的性质
【分析】根据二次函数的性质y=a(x+h)2+k的顶点坐标是(﹣h,k)即可求解.
解:抛物线y=3(x﹣2)2+5的顶点坐标为(2,5),
故选:C.
【点评】本题考查了二次函数的性质,正确记忆y=a(x+h)2+k的顶点坐标是(﹣h,k)(a≠0)是关键.
■考点4:二次函数图像与系数的关系
◇典例:
(2018年黑龙江省大庆)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:
①二次函数y=ax2+bx+c的最小值为﹣4a;
②若﹣1≤x2≤4,则0≤y2≤5a;
③若y2>y1,则x2>4;
④一元二次方程cx2+bx+a=0的两个根为﹣1和
其中正确结论的个数是(  )
A.1 B.2 C.3 D.4
【考点】二次函数图象与系数的关系
【分析】利用交点式写出抛物线解析式为y=ax2﹣2ax﹣3a,配成顶点式得y=a(x﹣1)2﹣4a,则可对①进行判断;计算x=4时,y=a?5?1=5a,则根据二次函数的性质可对②进行判断;利用对称性和二次函数的性质可对③进行判断;由于b=﹣2a,c=﹣3a,则方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,然后解方程可对④进行判断.
解:抛物线解析式为y=a(x+1)(x﹣3),
即y=ax2﹣2ax﹣3a,
∵y=a(x﹣1)2﹣4a,
∴当x=1时,二次函数有最小值﹣4a,所以①正确;
当x=4时,y=a?5?1=5a,
∴当﹣1≤x2≤4,则﹣4a≤y2≤5a,所以②错误;
∵点C(1,5a)关于直线x=1的对称点为(﹣2,﹣5a),
∴当y2>y1,则x2>4或x<﹣2,所以③错误;
∵b=﹣2a,c=﹣3a,
∴方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,
整理得3x2+2x﹣1=0,解得x1=﹣1,x2=,所以④正确.
故选:B.
【点评】本题考查了抛物线与轴的交点:把求二次函y=ax2+bx+c(a,b,c是常数,a≠0)与轴的交点坐标问题转化为解关于的一元次方程.也考查了二次函数的性质.
◆变式训练
(2018年甘肃省定西)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是(  )
A.①②④ B.①②⑤ C.②③④ D.③④⑤
【考点】二次函数图象与系数的关系
【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>0.
解:①∵对称轴在y轴右侧,
∴a、b异号,
∴ab<0,故正确;
②∵对称轴x=﹣=1,
∴2a+b=0;故正确;
③∵2a+b=0,
∴b=﹣2a,
∵当x=﹣1时,y=a﹣b+c<0,
∴a﹣(﹣2a)+c=3a+c<0,故错误;
④根据图示知,当m=1时,有最大值;
当m≠1时,有am2+bm+c≤a+b+c,
所以a+b≥m(am+b)(m为实数).
故正确.
⑤如图,当﹣1<x<3时,y不只是大于0.
故错误.
故选:A.
【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异).抛物线与y轴交于(0,c).抛物线与x轴交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
21世纪教育网版权所有
选择题
(2018年浙江省杭州市临安)抛物线y=3(x﹣1)2+1的顶点坐标是(  )
A.(1,1) B.(﹣1,1) C.(﹣1,﹣1) D.(1,﹣1)
【考点】二次函数的性质
【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).
解:∵抛物线y=3(x﹣1)2+1是顶点式,
∴顶点坐标是(1,1).故选A.
【点评】本题考查由抛物线的顶点坐标式写出抛物线顶点的坐标,比较容易.
(2018年湖北省黄冈)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为(  )
A.﹣1 B.2 C.0或2 D.﹣1或2 
【考点】二次函数的最值,二次函数图象上点的坐标特征
【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.
解:当y=1时,有x2﹣2x+1=1,
解得:x1=0,x2=2.
∵当a≤x≤a+1时,函数有最小值1,
∴a=2或a+1=0,
∴a=2或a=﹣1,
故选:D.
【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.
(2018年上海)下列对二次函数y=x2﹣x的图象的描述,正确的是(  )
A.开口向下 B.对称轴是y轴 C.经过原点 D.在对称轴右侧部分是下降的
【考点】二次函数的性质
【分析】A、由a=1>0,可得出抛物线开口向上,选项A不正确;
B、根据二次函数的性质可得出抛物线的对称轴为直线x=,选项B不正确;
C、代入x=0求出y值,由此可得出抛物线经过原点,选项C正确;
D、由a=1>0及抛物线对称轴为直线x=,利用二次函数的性质,可得出当x>时,y随x值的增大而增大,选项D不正确.
综上即可得出结论.
解:A、∵a=1>0,
∴抛物线开口向上,选项A不正确;
B、∵﹣=,
∴抛物线的对称轴为直线x=,选项B不正确;
C、当x=0时,y=x2﹣x=0,
∴抛物线经过原点,选项C正确;
D、∵a>0,抛物线的对称轴为直线x=,
∴当x>时,y随x值的增大而增大,选项D不正确.
故选:C. 
(2018年山东省青岛)已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是(  )
A. B. C. D. 
【考点】一次函数的图象,二次函数的图象
【分析】根据反比例函数图象一次函数图象经过的象限,即可得出<0、c>0,由此即可得出:二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴,再对照四个选项中的图象即可得出结论.
解:观察函数图象可知:<0、c>0,
∴二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴.
故选:A.
【点评】本题考查了一次函数的图象以及二次函数的图象,根据一次函数图象经过的象限,找出<0、c>0是解题的关键.
(2018年内蒙古赤峰)已知抛物线y=a(x﹣1)2﹣3(a≠0),如图所示,下列命题:①a>0;②对称轴为直线x=1;③抛物线经过(2,y1),(4,y2)两点,则y1>y2;④顶点坐标是(1,﹣3),其中真命题的概率是(  )
A. B. C. D.1
【考点】命题与定理
【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性判定命题的真假,根据概率公式计算即可.
解:∵抛物线开口向上,
∴a>0,①是真命题;
对称轴为直线x=1,②是真命题;
当x>1时,y随x的增大而增大,
∴抛物线经过(2,y1),(4,y2)两点,则y1<y2,③是假命题;
顶点坐标是(1,﹣3),④是真命题;
∴真命题的概率=,
故选:C.
【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
(2018年广东省深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是(  )
A.abc>0 B.2a+b<0 C.3a+c<0 D.ax2+bx+c﹣3=0有两个不相等的实数根
【考点】二次函数图象与系数的关系
【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.
解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,
A、abc<0,错误;
B、2a+b>0,错误;
C、3a+c<0,正确;
D、ax2+bx+c﹣3=0无实数根,错误;
故选:C.
【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
填空题
(2018年广东省广州)已知二次函数 ,当x>0时,y随x的增大而______(填“增大”或“减小”).
【考点】二次函数y=ax2的性质
【分析】根据二次函数性质:当a>0时,在对称轴右边,y随x的增大而增大.由此即可得出答案.
解:∵a=1>0,
∴当x>0时,y随x的增大而增大.
故答案为:增大.
【点评】本题考查了二次函数的对称轴,开口方向与函数的增减性的关系,二次函数的增减性以对称轴为分界线,结合开口方向进行判断.
(2018年黑龙江省哈尔滨)抛物线y=2(x+2)2+4的顶点坐标为   .
【考点】二次函数的性质
【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.
解:∵y=2(x+2)2+4,
∴该抛物线的顶点坐标是(﹣2,4),
故答案为:(﹣2,4).
【点评】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.
解答题
(2018年浙江省湖州)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.
【考点】二次函数图象上点的坐标特征
【分析】根据抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),可以求得a、b的值,本题得以解决.
解:∵抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),
∴,
解得,

即a的值是1,b的值是﹣2.
【点评】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答. 
(2018年宁夏中考数学试卷)抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.
(1)求抛物线的解析式;
(2)连接AB、AC、BC,求△ABC的面积.
【考点】二次函数的性质;二次函数图象上点的坐标特征;待定系数法求二次函数解析式
【分析】(1)利用待定系数法求抛物线解析式;
(2)利用割补法求ABC的面积.
解:(1)∵抛物线经过A、B(0,3)
∴由上两式解得
∴抛物线的解析式为:;
(2)由(1)抛物线对称轴为直线x=
把x=代入,得y=4
则点C坐标为(,4)
设线段AB所在直线为:y=kx+b
解得AB解析式为:
∵线段AB所在直线经过点A、B(0,3)
抛物线的对称轴l于直线AB交于点D
∴设点D的坐标为D
将点D代入,解得m=2
∴点D坐标为,
∴CD=CE﹣DE=2
过点B作BF⊥l于点F∴BF=OE=
∵BF+AE=OE+AE=OA=
∴S△ABC=S△BCD+S△ACD=CD?BF+CD?AE
∴S△ABC=CD(BF+AE)=×2×=
【点评】本题为二次函数纯数学问题,考查二次函数待定系数法、用割补法求三角形面积.解答时注意数形结合.
选择题
(2018年山东省威海)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是(  )
A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m
B.小球距O点水平距离超过4米呈下降趋势
C.小球落地点距O点水平距离为7米
D.斜坡的坡度为1:2
【考点】解直角三角形的﹣坡度问题,二次函数的性质
【分析】求出当y=7.5时,x的值,判定A;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出抛物线与直线的交点,判断C,根据直线解析式和坡度的定义判断D.
解:当y=7.5时,7.5=4x﹣x2,
整理得x2﹣8x+15=0,
解得,x1=3,x2=5,
∴当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5侧面cm,A错误,符合题意;
y=4x﹣x2
=﹣(x﹣4)2+8,
则抛物线的对称轴为x=4,
∴当x>4时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确,不符合题意;

解得,,,
则小球落地点距O点水平距离为7米,C正确,不符合题意;
∵斜坡可以用一次函数y=x刻画,
∴斜坡的坡度为1:2,D正确,不符合题意;
故选:A.
【点评】本题考查的是解直角三角形的﹣坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.
(2018年甘肃省兰州(a卷))如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b﹣a>c;③4a+2b+c>0;④3a>﹣c;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有(  )
A.①②③ B.②③⑤ C.②③④③④⑤
【考点】二次函数图象与系数的关系
【分析】由抛物线对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解:①∵对称轴在y轴的右侧,
∴ab<0,
由图象可知:c>0,
∴abc<0,
故①不正确;
②当x=﹣1时,y=a﹣b+c<0,
∴b﹣a>c,
故②正确;
③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,
故③正确;
④∵x=﹣=1,
∴b=﹣2a,
∵a﹣b+c<0,
∴a+2a+c<0,
3a<﹣c,
故④不正确;
⑤当x=1时,y的值最大.此时,y=a+b+c,
而当x=m时,y=am2+bm+c,
所以a+b+c>am2+bm+c(m≠1),
故a+b>am2+bm,即a+b>m(am+b),
故⑤正确.
故②③⑤正确.
故选:B.
【点评】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定,熟练掌握二次函数的性质是关键.
(2018年内蒙古包头)已知下列命题:
①若a3>b3,则a2>b2;
②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2;
③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;
④周长相等的所有等腰直角三角形全等.
其中真命题的个数是(  )
A.4个 B.3个 C.2个1个
【考点】命题与定理
【分析】依据a,b的符号以及绝对值,即可得到a2>b2不一定成立;依据二次函数y=x2﹣2x﹣1图象的顶点坐标以及对称轴的位置,即可得y1>y2>﹣2;依据a∥b,b⊥c,即可得到a∥c;依据周长相等的所有等腰直角三角形的边长对应相等,即可得到它们全等.
解:①若a3>b3,则a2>b2不一定成立,故错误;
②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2,故正确;
③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a⊥c,故错误;
④周长相等的所有等腰直角三角形全等,故正确.
故选:C.
【点评】本题主要考查了命题与定理,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
(2018年浙江省杭州)四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是(  )
A.甲 B.乙 C.丙 D.丁
【考点】二次函数的最值;抛物线与x轴的交点,二次函数图象上点的坐标特征
【分析】假设两位同学的结论正确,用其去验证另外两个同学的结论,只要找出一个正确一个错误,即可得出结论(本题选择的甲和丙,利用顶点坐标求出b、c的值,然后利用二次函数图象上点的坐标特征验证乙和丁的结论).
解:假设甲和丙的结论正确,则,
解得:,
∴抛物线的解析式为y=x2﹣2x+4.
当x=﹣1时,y=x2﹣2x+4=7,
∴乙的结论不正确;
当x=2时,y=x2﹣2x+4=4,
∴丁的结论正确.
∵四位同学中只有一位发现的结论是错误的,
∴假设成立.
故选:B.
【点评】本题考查了抛物线与x轴的交点、二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质求出b、c值是解题的关键.
(2018年浙江省宁波)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是(  )
A. B.C.D.
【考点】一次函数的图象;二次函数的性质
【分析】根据二次函数的图象可以判断a、b、a﹣b的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.
解:由二次函数的图象可知,
a<0,b<0,
当x=﹣1时,y=a﹣b<0,
∴y=(a﹣b)x+b的图象在第二、三、四象限,
故选:D.
【点评】本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.
(2018年浙江省湖州)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是(  )
A.a≤﹣1或≤a< B.≤a<
C.a≤或a> D.a≤﹣1或a≥
【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征
【分析】根据二次函数的性质分两种情形讨论求解即可;
解:∵抛物线的解析式为y=ax2﹣x+2.
观察图象可知当a<0时,x=﹣1时,y≤2时,且﹣≥﹣1,满足条件,可得a≤﹣1;
当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,且﹣≤2满足条件,
∴a≥,
∵直线MN的解析式为y=﹣x+,
由,消去y得到,3ax2﹣2x+1=0,
∵△>0,
∴a<,
∴≤a<满足条件,
综上所述,满足条件的a的值为a≤﹣1或≤a<,
故选:A.
【点评】本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.
(2018年四川省成都)关于二次函数y=2x2+4x﹣1,下列说法正确的是(  )
A.图象与y轴的交点坐标为(0,1)
B.图象的对称轴在y轴的右侧
C.当x<0时,y的值随x值的增大而减小
D.y的最小值为﹣3
【考点】二次函数的性质;二次函数的最值
【分析】根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.
解:∵y=2x2+4x﹣1=2(x+1)2﹣3,
∴当x=0时,y=﹣1,故选项A错误,
该函数的对称轴是直线x=﹣1,故选项B错误,
当x<﹣1时,y随x的增大而减小,故选项C错误,
当x=﹣1时,y取得最小值,此时y=﹣3,故选项D正确,
故选:D.
【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.
填空题
(2018年广东省广州)已知二次函数 ,当x>0时,y随x的增大而______(填“增大”或“减小”).
【考点】二次函数y=ax2的性质
【分析】根据二次函数性质:当a>0时,在对称轴右边,y随x的增大而增大.由此即可得出答案.
解:∵a=1>0,
∴当x>0时,y随x的增大而增大.
故答案为:增大.
【点评】本题考查了二次函数的对称轴,开口方向与函数的增减性的关系,二次函数的增减性以对称轴为分界线,结合开口方向进行判断.
(2018年黑龙江省牡丹江)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,下列结论中:
①abc<0;②9a﹣3b+c<0;③b2﹣4ac>0;④a>b,
正确的结论是   (只填序号)
【考点】二次函数图象与系数的关系
【分析】根据抛物线开口方向,对称轴为直线x=﹣1,与y轴的交点,可得abc>0,则可判断①,根据图象可得x=﹣3时y<0,代入解析式可判断②,根据抛物线与x轴的交点个数可判断③.根据a﹣b=﹣a>0,可判断④
解:∵抛物线开口向下
∴a<0,
∵对称轴为x=﹣1
∴=﹣1
∴b=2a<0,
∵抛物线与y轴交点在y轴正半轴
∴c>0
∴abc>0故①错误
∵由图象得x=﹣3时y<0
∴9a﹣3b+c<0 故②正确,
∵图象与x轴有两个交点
∴△=b2﹣4ac>0 故③正确
∵a﹣b=a﹣2a=﹣a>0
∴a>b故④正确
故答案为②③④
【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点;同时运用对称性并与图形相结合进行判断
(2018年四川省德阳)已知函数y=使y=a成立的x的值恰好只有3个时,a的值为   .
【考点】二次函数的性质
【分析】首先在坐标系中画出已知函数y=的图象,利用数形结合的方法即可找到使y=a成立的x值恰好有3个的a值.
解:函数y=的图象如图:
根据图象知道当y=2时,对应成立的x值恰好有三个,
∴a=2.
故答案:2.
【点评】此题主要考查了利用二次函数的图象解决交点问题,解题的关键是把解方程的问题转换为根据函数图象找交点的问题.
(2018年新疆维吾尔自治区、新疆生产建设兵团中考数学试卷)如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x的增大而增大;③使得M大于
4的x的值不存在;④若M=2,则x=1.上述结论正确的是   (填写所有正确结论的序号).
【考点】一次函数的性质,二次函数的性质,一次函数图象上点的坐标特征,二次函数图象上点的坐标特征
【分析】①观察函数图象,可知:当x>2时,抛物线y1=﹣x2+4x在直线y2=2x的下方,进而可得出当x>2时,M=y1,结论①错误;
②观察函数图象,可知:当x<0时,抛物线y1=﹣x2+4x在直线y2=2x的下方,进而可得出当x<0时,M=y1,再利用二次函数的性质可得出M随x的增大而增大,结论②正确;
③利用配方法可找出抛物线y1=﹣x2+4x的最大值,由此可得出:使得M大于4的x的值不存在,结论③正确;
④利用一次函数图象上点的坐标特征及二次函数图象上点的坐标特征求出当M=2时的x值,由此可得出:若M=2,则x=1或2+,结论④错误.
此题得解.
解:①当x>2时,抛物线y1=﹣x2+4x在直线y2=2x的下方,
∴当x>2时,M=y1,结论①错误;
②当x<0时,抛物线y1=﹣x2+4x在直线y2=2x的下方,
∴当x<0时,M=y1,
∴M随x的增大而增大,结论②正确;
③∵y1=﹣x2+4x=﹣(x﹣2)2+4,
∴M的最大值为4,
∴使得M大于4的x的值不存在,结论③正确;
④当M=y1=2时,有﹣x2+4x=2,
解得:x1=2﹣(舍去),x2=2+;
当M=y2=2时,有2x=2,
解得:x=1.
∴若M=2,则x=1或2+,结论④错误.
综上所述:正确的结论有②③.
故答案为:②③.
【点评】本题考查了一次函数的性质、二次函数的性质、一次函数图象上点的坐标特征以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.
(2018年四川省遂宁)如图,已知抛物线y=ax2﹣4x+c(a≠0)与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线y=ax2﹣4x+c的顶点,P点是x轴上一动点,当PA+PB最小时,P点的坐标为   .
【考点】反比例函数图象上点的坐标特征;二次函数的性质;二次函数图象上点的坐标特征;轴对称﹣最短路线问题
【分析】根据题意作出合适的辅助线,然后求出点B的坐标,从而可以求得二次函数解析式,然后求出点A的坐标,进而求得A′的坐标,从而可以求得直线A′B的函数解析式,进而求得与x轴的交点,从而可以解答本题.
解:作点A关于x轴的对称点A′,连接A′B,则A′B与x轴的交点即为所求,
∵抛物线y=ax2﹣4x+c(a≠0)与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C(0,6),
∴点B(3,3),
∴,
解得,,
∴y=x2﹣4x+6=(x﹣2)2+2,
∴点A的坐标为(2,2),
∴点A′的坐标为(2,﹣2),
设过点A′(2,﹣2)和点B(3,3)的直线解析式为y=mx+n,
,得,
∴直线A′B的函数解析式为y=5x﹣12,
令y=0,则0=5x﹣12得x=,
故答案为:(,0).
【点评】本题考查反比例函数图象上点的坐标特征、二次函数的性质、二次函数图象上点的坐标特征、最短路径问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
解答题
(2018年黑龙江省牡丹江)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,交y轴于点C,点D为抛物线的顶点,连接BD,点H为BD的中点.请解答下列问题:
(1)求抛物线的解析式及顶点D的坐标;
(2)在y轴上找一点P,使PD+PH的值最小,则PD+PH的最小值为   .
(注:抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣,顶点坐标为(﹣,)
【考点】二次函数的性质;二次函数图象上点的坐标特征;待定系数法求二次函数解析式;轴对称﹣最短路线问题
【分析】(1)把已知两点的坐标代入,求出b、c的值,就可以确定抛物线的解析式,配方或用公式求出顶点坐标
(2)根据B、D两点的坐标确定中点H的坐标,作出H点关于y轴的对称点点H′,连接H′D与y轴交点即为P,求出H′D即可
解:(1)∵抛物线y=﹣x2+bx+c过点A(﹣1,0),B(3,0)

解得
∴所求函数的解析式为:y=﹣x2+2x+3
y=﹣x2+2x+3=﹣(x﹣1)2+4
∴顶点D(1,4)
(2)∵B(3,0),D(1,4)
∴中点H的坐标为(2,2)其关于y轴的对称点H′坐标为(﹣2,2)
连接H′D与y轴交于点P,则PD+PH最小
且最小值为:=
∴答案:
【点评】此题考查了用待定系数法确定二次函数的解析式和最短路径的问题,熟练掌握待定系数法是关键.
(2018年湖北省黄冈)已知直线l:y=kx+1与抛物线y=x2﹣4x.
(1)求证:直线l与该抛物线总有两个交点;
(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.
【考点】一次函数图象上点的坐标特征;二次函数图象上点的坐标特征
【分析】(1)联立两解析式,根据判别式即可求证;
(2)画出图象,求出A.B的坐标,再求出直线y=﹣2x+1与x轴的交点C,然后利用三角形的面积公式即可求出答案.
解:(1)联立
化简可得:x2﹣(4+k)x﹣1=0,
∴△=(4+k)2+4>0,
故直线l与该抛物线总有两个交点;
(2)当k=﹣2时,
∴y=﹣2x+1
过点A作AF⊥x轴于F,过点B作BE⊥x轴于E,
∴联立
解得:或
∴A(1﹣,2﹣1),B(1+,﹣1﹣2)
∴AF=2﹣1,BE=1+2
易求得:直线y=﹣2x+1与x轴的交点C为(,0)
∴OC=
∴S△AOB=S△AOC+S△BOC
=OC?AF+OC?BE
=OC(AF+BE)
=××(2﹣1+1+2)
=
【点评】本题考查二次函数的综合问题,涉及解一元二次方程组,根的判别式,三角形的面积公式等知识,综合程度较高.
(2018年江苏省徐州)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.
(1)求证:FH=ED;
(2)当AE为何值时,△AEF的面积最大?
【考点】二次函数的最值;全等三角形的判定与性质;矩形的性质;正方形的性质
【分析】(1)根据正方形的性质,可得EF=CE,再根据∠CEF=∠90°,进而可得∠FEH=∠DCE,结合已知条件∠FHE=∠D=90°,利用“AAS”即可证明△FEH≌△ECD,由全等三角形的性质可得FH=ED;
(2)设AE=a,用含a的函数表示△AEF的面积,再利用函数的最值求面积最大值即可.
解:(1)证明:
∵四边形CEFG是正方形,
∴CE=EF,
∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,
∴∠FEH=∠DCE,
在△FEH和△ECD中

∴△FEH≌△ECD,
∴FH=ED;
(2)设AE=a,则ED=FH=4﹣a,
∴S△AEF=AE?FH=a(4﹣a),
=﹣(a﹣2)2+2,
∴当AE=2时,△AEF的面积最大.
【点评】本题考查了正方形性质、矩形性质以及全等三角形的判断和性质和三角形面积有关的知识点,熟记全等三角形的各种判断方法是解题的关键.

同课章节目录