第四章 图形的性质 第22节 多边形与平行四边形■知识点一:多边形的有关知识
1.多边形的相关概念
(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.
(2)对角线:从n边形的一个顶点可以引(n-3)条对角线,并且这些对角线把多边形分成了(n-2)个三角形;n边形对角线条数为.
2.多边形的内角和、外角和
(1) 内角和:n边形内角和公式为(n-2)·180°
(2)外角和:任意多边形的外角和为360°.
3.正多边形
(1)定义:各边相等,各角也相等的多边形.
(2)正n边形的每个内角为,每一个外角为
(3) 正n边形有n条对称轴.
(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.
■知识点二:平行四边形的性质
1.平行四边形的定义 两组对边分别平行的四边形叫做平行四边形,平行四边形用“ ”表示.
2.平行四边形的性质
(1)边:两组对边分别平行且相等.
即AB∥CD 且AB=CD,BC∥AD且AD=BC.
(2)角:对角相等,邻角互补.
即∠BAD=∠BCD,∠ABC=∠ADC,∠ABC+∠BCD=180°,∠BAD+∠ADC=180°.
(3)对角线:互相平分.即OA=OC,OB=OD
(4)对称性:是中心对称但不是轴对称.
3.平行四边形中的几个解题模型
(1)如图①,AF平分∠BAD,则可利用平行线的性质结合等角对等边得到△ABF为等腰三
形,即AB=BF.
(2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD≌△CDB;
两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD≌△COB,△AOB≌△COD;
根据平行四边形的中心对称性,可得经过对称中心O的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE≌△COF.图②中阴影部分的面积为平行四边形面积的一半.
(3) 如图③,已知点E为AD上一点,根据平行线间的距离处处相等,
可得S△BEC=S△ABE+S△CDE.
(4) 根据平行四边形的面积的求法,可得AE·BC=AF·CD.
注意:利用平行四边形的性质解题时的一些常用到的结论和方法:
(1)平行四边形相邻两边之和等于周长的一半.
(2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.
(3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长.
■知识点三:平行四边形的判定
(1)方法一(定义法):两组对边分别平行的四边形是平行四边形.
即若AB∥CD,AD∥BC,则四边形ABCD是?.
(2)方法二:两组对边分别相等的四边形是平行四边形.
即若AB=CD,AD=BC,则四边形ABCD是?.
(3)方法三:有一组对边平行且相等的四边形是平行四边形.
即若AB=CD,AB∥CD,或AD=BC,AD∥BC,则四边形ABCD是?.
(4)方法四:对角线互相平分的四边形是平行四边形.
即若OA=OC,OB=OD,则四边形ABCD是?.
(5)方法五:两组对角分别相等的四边形是平行四边形
若∠ABC=∠ADC,∠BAD=∠BCD,则四边形ABCD是?.
■考点1.多边形的有关知识
◇典例:
1. (2008?杭州)在凸多边形中,四边形有2条对角线,五边形有5条对角线,经过观察、探索、归纳,你认为凸八边形的对角线条数应该是多少条?简单扼要地写出你的思考过程.
【考点】多边形的对角线.
【分析】首先从特殊四边形的对角线观察起,则四边形是2条对角线,五边形有5=2+3条对角线,六边形有9=2+3+4条对角线,则七边形有9+5=14条对角线,则八边形有14+6=20条对角线.21cnjy.com
解:凸八边形的对角线条数应该是20.理由:∵从一个顶点发出的对角线数目,它不能向本身引对角线,不能向相邻的两个顶点引对角线,∴从一个顶点能引的对角线数为(n-3)条;∵n边形共有n个顶点,∴能引n(n-3)条,但是考虑到这样每一条对角线都重复计算过一次,∴能引条.∴凸八边形的对角线条数应该是:×8×(8-3)=20条2-1-
【点评】:能够从特殊中找到规律进行计算.-n-j-y
2.(2018年新疆乌鲁木齐市)一个多边形的内角和是720°,这个多边形的边数是( )
A.4 B.5 C.6 D.7
【考点】多边形的内角和定理
【分析】根据内角和定理180°?(n﹣2)即可求得.
解:∵多边形的内角和公式为(n﹣2)?180°,
∴(n﹣2)×180°=720°,
解得n=6,
∴这个多边形的边数是6.
故选:C.
【点评】本题主要考查了多边形的内角和定理即180°?(n﹣2),难度适中.
◆变式训练
1.(2018年上海市)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 度.
2.(2018年内蒙古呼和浩特市)已知一个多边形的内角和为1080°,则这个多边形是( )
A.九边形 B.八边形 C.七边形 D.六边形
■考点2.平行四边形的性质
◇典例
(2018年四川省宜宾)在?ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定
【考点】平行四边形的性质,角平分线的定义
【分析】想办法证明∠E=90°即可判断.
解:如图,∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BAD+∠ADC=180°,
∵∠EAD=∠BAD,∠ADE=∠ADC,
∴∠EAD+∠ADE=(∠BAD+∠ADC)=90°,
∴∠E=90°,
∴△ADE是直角三角形,
故选:B.
【点评】本题考查平行四边形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
◆变式训练
(2018年江苏省泰州市)如图,?ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为 .
■考点3.平行四边形的判定
◇典例:
(2018年四川省巴中市)如图,在?ABCD中,过B点作BM⊥AC于点E,交CD于点M,过D点作DN⊥AC于点F,交AB于点N.
(1)求证:四边形BMDN是平行四边形;
(2)已知AF=12,EM=5,求AN的长.
【考点】平行四边形的判定与性质
【分析】(1)只要证明DN∥BM,DM∥BN即可;
(2)只要证明△CEM≌△AFN,可得FN=EM=5,在Rt△AFN中,根据勾股定理AN=即可解决问题;
(1)证明:∵四边形ABCD是平行四边形,
∴CD∥AB,
∵BM⊥AC,DN⊥AC,
∴DN∥BM,
∴四边形BMDN是平行四边形;
(2)解:∵四边形BMDN是平行四边形,
∴DM=BN,
∵CD=AB,CD∥AB,
∴CM=AN,∠MCE=∠NAF,
∵∠CEM=∠AFN=90°,
∴△CEM≌△AFN,
∴FN=EM=5,
在Rt△AFN中,AN===13.
【点评】本题考查平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
◆变式训练
(2018年湖南省永州市)如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.
(1)求证:四边形BCFD为平行四边形;
(2)若AB=6,求平行四边形BCFD的面积.
选择题
1.(2018年福建省(A卷))一个n边形的内角和为360°,则n等于( )
A.3 B.4 C.5 D.6
2.(2018年浙江省宁波市)已知正多边形的一个外角等于40°,那么这个正多边形的边数为( )
A.6 B.7 C.8 D.9
3.(2018年贵州省黔南州、黔东南州、黔西南州)如图,在?ABCD中,已知AC=4cm,若△ACD的周长为13cm,则?ABCD的周长为( )
A.26cm B.24cm C.20cm D.18cm
4.(2018年海南省)如图,?ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为( )
A.15 B.18 C.21 D.24
填空题
5.(2018年甘肃省定西市)若正多边形的内角和是1080°,则该正多边形的边数是 .
6.(2018年黑龙江省绥化市)下列选项中,不能判定四边形ABCD是平行四边形的是( )
A.AD∥BC,AB∥CD
B.AB∥CD,AB=CD
C.AD∥BC,AB=DC
D.AB=DC,AD=BC
7.(2018年湖北省十堰市)如图,已知?ABCD的对角线AC,BD交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为 .
解答题
8.(2018年湖南省岳阳市)如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形.
9.(2018年福建省(A卷))如图,?ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.
10.(2018 年广西梧州市).如图,在?ABCD 中,对角线 AC,BD 相交于点 O,过点 O 的一条直线分别交 AD,BC 于点 E,F.求证:AE=CF.
一、 选择题
1.(2018年浙江省台州市)正十边形的每一个内角的度数为( )
A.120° B.135° C.140° D.144°
2.(2018年广西玉林市)在四边形ABCD中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有( )
A.3种 B.4种 C.5种 D.6种
3.(2018年山东省济宁市)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是( )
A.50° B.55° C.60° D.65°
4.(2018年浙江省台州市)如图,在?ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是( )
A. B.1 C. D.
5.(2018年江苏省苏州市)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为( )
A.3 B.4 C.2 D.3
二、 、填空题
6.(2018年湖南省衡阳市)如图,?ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M.如果△CDM的周长为8,那么?ABCD的周长是 .
7.(2018年山东省临沂市)如图,在?ABCD中,AB=10,AD=6,AC⊥BC.则BD= .
8.(2018年江苏省南京市)如图,五边形ABCDE是正五边形.若l1∥l2,则∠1﹣∠2= °.
9.(2018年辽宁省抚顺市)如图,?ABCD中,AB=7,BC=3,连接AC,分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于点M,N,作直线MN,交CD于点E,连接AE,则△AED的周长是 .
10.(2018年江苏省无锡市)如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是 .
三、 、解答题
11.(2018年浙江省衢州市 )如图,在?ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.
12.(2018年湖北省恩施州)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.
13.(2018年江苏省宿迁市)如图,在□ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H,求证:AG=CH.
14.(2018年浙江省温州市)如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.
(1)求证:△AED≌△EBC.
(2)当AB=6时,求CD的长.
15.(2018年浙江省杭州市临安市)已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.
求证:(1)△ADF≌△CBE;
(2)EB∥DF.
第四章 图形的性质 第22节 多边形与平行四边形■知识点一:多边形的有关知识
1.多边形的相关概念
(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.
(2)对角线:从n边形的一个顶点可以引(n-3)条对角线,并且这些对角线把多边形分成了(n-2)个三角形;n边形对角线条数为.21*cnjy*com
2.多边形的内角和、外角和
(1) 内角和:n边形内角和公式为(n-2)·180°
(2)外角和:任意多边形的外角和为360°.
3.正多边形
(1)定义:各边相等,各角也相等的多边形.
(2)正n边形的每个内角为,每一个外角为
(3) 正n边形有n条对称轴.
(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.
■知识点二:平行四边形的性质
1.平行四边形的定义 两组对边分别平行的四边形叫做平行四边形,平行四边形用“ ”表示.
2.平行四边形的性质
(1)边:两组对边分别平行且相等.
即AB∥CD 且AB=CD,BC∥AD且AD=BC.
(2)角:对角相等,邻角互补.
即∠BAD=∠BCD,∠ABC=∠ADC,∠ABC+∠BCD=180°,∠BAD+∠ADC=180°.
(3)对角线:互相平分.即OA=OC,OB=OD
(4)对称性:是中心对称但不是轴对称.
3.平行四边形中的几个解题模型
(1)如图①,AF平分∠BAD,则可利用平行线的性质结合等角对等边得到△ABF为等腰三
形,即AB=BF.
(2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD≌△CDB;
两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD≌△COB,△AOB≌△COD;
根据平行四边形的中心对称性,可得经过对称中心O的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE≌△COF.图②中阴影部分的面积为平行四边形面积的一半.
(3) 如图③,已知点E为AD上一点,根据平行线间的距离处处相等,
可得S△BEC=S△ABE+S△CDE.
(4) 根据平行四边形的面积的求法,可得AE·BC=AF·CD.
注意:利用平行四边形的性质解题时的一些常用到的结论和方法:
(1)平行四边形相邻两边之和等于周长的一半.
(2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.
(3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长.
■知识点三:平行四边形的判定
(1)方法一(定义法):两组对边分别平行的四边形是平行四边形.
即若AB∥CD,AD∥BC,则四边形ABCD是?.
(2)方法二:两组对边分别相等的四边形是平行四边形.
即若AB=CD,AD=BC,则四边形ABCD是?.
(3)方法三:有一组对边平行且相等的四边形是平行四边形.
即若AB=CD,AB∥CD,或AD=BC,AD∥BC,则四边形ABCD是?.
(4)方法四:对角线互相平分的四边形是平行四边形.
即若OA=OC,OB=OD,则四边形ABCD是?.
(5)方法五:两组对角分别相等的四边形是平行四边形
若∠ABC=∠ADC,∠BAD=∠BCD,则四边形ABCD是?.
■考点1.多边形的有关知识
◇典例:
1. (2008?杭州)在凸多边形中,四边形有2条对角线,五边形有5条对角线,经过观察、探索、归纳,你认为凸八边形的对角线条数应该是多少条?简单扼要地写出你的思考过程.
【考点】多边形的对角线.
【分析】首先从特殊四边形的对角线观察起,则四边形是2条对角线,五边形有5=2+3条对角线,六边形有9=2+3+4条对角线,则七边形有9+5=14条对角线,则八边形有14+6=20条对角线.21cnjy.com
解:凸八边形的对角线条数应该是20.理由:∵从一个顶点发出的对角线数目,它不能向本身引对角线,不能向相邻的两个顶点引对角线,∴从一个顶点能引的对角线数为(n-3)条;∵n边形共有n个顶点,∴能引n(n-3)条,但是考虑到这样每一条对角线都重复计算过一次,∴能引条.∴凸八边形的对角线条数应该是:×8×(8-3)=20条2-1-
【点评】:能够从特殊中找到规律进行计算.-n-j-y
2.(2018年新疆乌鲁木齐市)一个多边形的内角和是720°,这个多边形的边数是( )
A.4 B.5 C.6 D.7
【考点】多边形的内角和定理
【分析】根据内角和定理180°?(n﹣2)即可求得.
解:∵多边形的内角和公式为(n﹣2)?180°,
∴(n﹣2)×180°=720°,
解得n=6,
∴这个多边形的边数是6.
故选:C.
【点评】本题主要考查了多边形的内角和定理即180°?(n﹣2),难度适中.
◆变式训练
1.(2018年上海市)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 度.
【考点】三角形内角和定理;多边形的对角线;多边形内角与外
【分析】利根据题意得到2条对角线将多边形分割为3个三角形,然后根据三角形内角和可计算出该多边形的内角和.
解:从某个多边形的一个顶点出发的对角线共有2条,则将多边形分割为3个三角形.
所以该多边形的内角和是3×180°=540°.
故答案为540.
【点评】本题考查了多边形内角与外角:多边的内角和定理:(n-2)·180(n≥3)且n为整数).此公式推导的基本方法是从n边形的一个顶点出发引出(n-3)条对角线,将n边形分制为(n-2)个三角形
2.(2018年内蒙古呼和浩特市)已知一个多边形的内角和为1080°,则这个多边形是( )
A.九边形 B.八边形 C.七边形 D.六边形
【考点】多边形的内角与外角
【分析】n边形的内角和是(n﹣2)?180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
解:根据n边形的内角和公式,得
(n﹣2)?180=1080,
解得n=8.
∴这个多边形的边数是8.
故选:B.
【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.
■考点2.平行四边形的性质
◇典例
(2018年四川省宜宾)在?ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定
【考点】平行四边形的性质,角平分线的定义
【分析】想办法证明∠E=90°即可判断.
解:如图,∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BAD+∠ADC=180°,
∵∠EAD=∠BAD,∠ADE=∠ADC,
∴∠EAD+∠ADE=(∠BAD+∠ADC)=90°,
∴∠E=90°,
∴△ADE是直角三角形,
故选:B.
【点评】本题考查平行四边形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
◆变式训练
(2018年江苏省泰州市)如图,?ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为 .
【考点】平行四边形的性质
【分析】根据平行四边形的性质,三角形周长的定义即可解决问题;
解:∵四边形ABCD是平行四边形,
∴AD=BC=6,OA=OC,OB=OD,
∵AC+BD=16,
∴OB+OC=8,
∴△BOC的周长=BC+OB+OC=6+8=14,
故答案为14.
【点评】本题考查平行四边形的性质.三角形的周长等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
■考点3.平行四边形的判定
◇典例:
(2018年四川省巴中市)如图,在?ABCD中,过B点作BM⊥AC于点E,交CD于点M,过D点作DN⊥AC于点F,交AB于点N.
(1)求证:四边形BMDN是平行四边形;
(2)已知AF=12,EM=5,求AN的长.
【考点】平行四边形的判定与性质
【分析】(1)只要证明DN∥BM,DM∥BN即可;
(2)只要证明△CEM≌△AFN,可得FN=EM=5,在Rt△AFN中,根据勾股定理AN=即可解决问题;
(1)证明:∵四边形ABCD是平行四边形,
∴CD∥AB,
∵BM⊥AC,DN⊥AC,
∴DN∥BM,
∴四边形BMDN是平行四边形;
(2)解:∵四边形BMDN是平行四边形,
∴DM=BN,
∵CD=AB,CD∥AB,
∴CM=AN,∠MCE=∠NAF,
∵∠CEM=∠AFN=90°,
∴△CEM≌△AFN,
∴FN=EM=5,
在Rt△AFN中,AN===13.
【点评】本题考查平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
◆变式训练
(2018年湖南省永州市)如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.
(1)求证:四边形BCFD为平行四边形;
(2)若AB=6,求平行四边形BCFD的面积.
【考点】含30度角的直角三角形;直角三角形斜边上的中线;勾股定理;平行四边形的判定与性质
【分析】(1)在Rt△ABC中,E为AB的中点,则CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD是平行四边形.
(2)在Rt△ABC中,求出BC,AC即可解决问题;
(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,
∴∠ABC=60°.
在等边△ABD中,∠BAD=60°,
∴∠BAD=∠ABC=60°.
∵E为AB的中点,
∴AE=BE.
又∵∠AEF=∠BEC,
∴△AEF≌△BEC.
在△ABC中,∠ACB=90°,E为AB的中点,
∴CE=AB,BE=AB.
∴CE=AE,
∴∠EAC=∠ECA=30°,
∴∠BCE=∠EBC=60°.
又∵△AEF≌△BEC,
∴∠AFE=∠BCE=60°.
又∵∠D=60°,
∴∠AFE=∠D=60°.
∴FC∥BD.
又∵∠BAD=∠ABC=60°,
∴AD∥BC,即FD∥BC.
∴四边形BCFD是平行四边形.
(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,
∴BC=AB=3,AC=BC=3,
∴S平行四边形BCFD=3×=9.
【点评】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
选择题
1.(2018年福建省(A卷))一个n边形的内角和为360°,则n等于( )
A.3 B.4 C.5 D.6
【考点】多边形的内角和定理
【分析】n边形的内角和是(n﹣2)?180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n.
解:根据n边形的内角和公式,得:
(n﹣2)?180=360,
解得n=4.
故选:B.
【点评】本题考查了多边形的内角定理及其公式,关键是记住多边形内角和的计算公式.
2.(2018年浙江省宁波市)已知正多边形的一个外角等于40°,那么这个正多边形的边数为( )
A.6 B.7 C.8 D.9
【考点】多边形内角与外角
【分析】根据正多边形的外角和以及一个外角的度数,求得边数.
解:正多边形的一个外角等于40°,且外角和为360°,
则这个正多边形的边数是:360°÷40°=9.
故选:D.
【点评】本题主要考查了多边形的外角和定理,解决问题的关键是掌握多边形的外角和等于360度.
3.(2018年贵州省黔南州、黔东南州、黔西南州)如图,在?ABCD中,已知AC=4cm,若△ACD的周长为13cm,则?ABCD的周长为( )
A.26cm B.24cm C.20cm D.18cm
【考点】平行四边形的性质
【分析】根据三角形周长的定义得到AD+DC=9cm.然后由平行四边形的对边相等的性质来求平行四边形的周长.
解:∵AC=4cm,若△ADC的周长为13cm,
∴AD+DC=13﹣4=9(cm).
又∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
∴平行四边形的周长为2(AB+BC)=18cm.
故选:D.
【点评】本题考查了平行四边形的性质.此题利用了“平行四边形的对边相等”的性质.
4.(2018年海南省)如图,?ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为( )
A.15 B.18 C.21 D.24
【考点】平行四边形的性质,三角形中位线定理
【分析】利用平行四边形的性质,三角形中位线定理即可解决问题;
解:∵平行四边形ABCD的周长为36,
∴BC+CD=18,
∵OD=OB,DE=EC,
∴OE+DE=(BC+CD)=9,
∵BD=12,
∴OD=BD=6,
∴△DOE的周长为9+6=15,
故选:A.
【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.
填空题
5.(2018年甘肃省定西市)若正多边形的内角和是1080°,则该正多边形的边数是 .
【考点】多边形的内角与外角
【分析】n边形的内角和是(n﹣2)?180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
解:根据n边形的内角和公式,得
(n﹣2)?180=1080,
解得n=8.
∴这个多边形的边数是8.
故答案为:8.
【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.
6.(2018年黑龙江省绥化市)下列选项中,不能判定四边形ABCD是平行四边形的是( )
A.AD∥BC,AB∥CD
B.AB∥CD,AB=CD
C.AD∥BC,AB=DC
D.AB=DC,AD=BC
【考点】平行四边形的判定
【分析】根据平行四边形的判定方法一一判断即可;
解:A.由AD∥BC,AB∥CD可以判断四边形ABCD是平行四边形;故本选项不符合题意;
B、由AB∥CD,AB=CD可以判断四边形ABCD是平行四边形;故本选项不符合题意;
C、由AD∥BC,AB=DC不能判断四边形ABCD是平行四边形;故本选项符合题意;
D、由AB=DC,AD=BC可以判断四边形ABCD是平行四边形;故本选项不符合题意;
故选:C.
【点评】本题考查平行四边形的判定方法,解题的关键是熟练掌握基本知识,属于中考基础题.
7.(2018年湖北省十堰市)如图,已知?ABCD的对角线AC,BD交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为 .
【考点】平行四边形的性质
【分析】根据平行四边形的性质即可解决问题;
解:∵四边形ABCD是平行四边形,
∴AB=CD=5,OA=OC=4,OB=OD=5,
∴△OCD的周长=5+4+5=14,
故答案为14.
【点评】本题考查平行四边形的性质、三角形的周长等知识,解题的关键是熟练掌握平行四边形的性质,属于中考基础题.
解答题
8.(2018年湖南省岳阳市)如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形.
【考点】平行四边形的判定与性质
【分析】首先根据四边形ABCD是平行四边形,判断出AB∥CD,且AB=CD,然后根据AE=CF,判断出BE=DF,即可推得四边形BFDE是平行四边形.
证明:∵四边形ABCD是平行四边形,
∴AB∥CD,且AB=CD,
又∵AE=CF,
∴BE=DF,
∴BE∥DF且BE=DF,
∴四边形BFDE是平行四边形.
【点评】此题主要考查了平行四边形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.②判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.③判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.④判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.⑤判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.
9.(2018年福建省(A卷))如图,?ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.
【考点】平行四边形的性质,全等三角形的判定
【分析】由四边形ABCD是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.
证明:∵四边形ABCD是平行四边形,
∴OA=OC,AD∥BC,
∴∠OAE=∠OCF,
在△OAE和△OCF中,
,
∴△AOE≌△COF(ASA),
∴OE=OF.
【点评】此题把全等三角形放在平行四边形的背景中,利用平行四边形的性质来证明三角形全等,最后利用全等三角形的性质解决问题.
10.(2018 年广西梧州市).如图,在?ABCD 中,对角线 AC,BD 相交于点 O,过点 O 的一条直线分别交 AD,BC 于点 E,F.求证:AE=CF.
【考点】全等三角形的判定与性质,平行四边形的性质
【分析】利用平行四边形的性质得出 AO=CO,AD∥BC,进而得出∠EAC=∠FCO, 再利用 ASA 求出△AOE≌△COF,即可得出答案.
证明:∵?ABCD 的对角线 AC,BD 交于点 O,
∴AO=CO,AD∥BC,
∴∠EAC=∠FCO, 在△AOE 和△COF 中
∴△AOE≌△COF(ASA),
∴AE=CF.
【点评】此题主要考查了全等三角形的判定与性质以及平行四边形的性质,熟练 掌握全等三角形的判定方法是解题关键.
一、 选择题
11.(2018年浙江省台州市)正十边形的每一个内角的度数为( )
A.120° B.135° C.140° D.144°
【考点】多边形内角与外角
【分析】利用正十边形的外角和是360度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数.
解:∵一个十边形的每个外角都相等,
∴十边形的一个外角为360÷10=36°.
∴每个内角的度数为 180°﹣36°=144°;
故选:D.
【点评】本题主要考查了多边形的内角与外角的关系.多边形的外角性质:多边形的外角和是360度.多边形的内角与它的外角互为邻补角.
12.(2018年广西玉林市)在四边形ABCD中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有( )
A.3种 B.4种 C.5种 D.6种
【考点】平行四边形的判定
【分析】根据平行四边形的判定方法中,①②、③④、①③、③④均可判定是平行四边形.
解:根据平行四边形的判定,符合条件的有4种,分别是:①②、③④、①③、③④.
故选:B.
【点评】本题考查了平行四边形的判定,平行四边形的判定方法共有五种,在四边形中如果有:1、四边形的两组对边分别平行;2、一组对边平行且相等;3、两组对边分别相等:4、对角线互相平分:5、两组对角分别相等,则四边形是平行四边形.本题利用了第1,2,3种来判定
13.(2018年山东省济宁市)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是( )
A.50° B.55° C.60° D.65°
【考点】三角形内角和定理;多边形内角与外角
【分析】先根据五边形内角和求得∠ECD+∠BCD,再根据角平分线求得∠PDC+∠PCD,最后根据三角形内角和求得∠P的度数.
解:∵在五边形ABCDE中,∠A+∠B+∠E=300°,
∴∠ECD+∠BCD=240°,
又∵DP、CP分别平分∠EDC、∠BCD,
∴∠PDC+∠PCD=120°,
∴△CDP中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.
故选:C.
【点评】本题主要考查了多边形的内角和以及角平分线的定义,解题时注意:多边形内角和=(n﹣2)?180 (n≥3且n为整数).
14.(2018年浙江省台州市)如图,在?ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是( )
A. B.1 C. D.
【考点】平行四边形的性质;作图—基本作图
【分析】只要证明BE=BC即可解决问题;
解:∵由题意可知CF是∠BCD的平分线,
∴∠BCE=∠DCE.
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠DCE=∠E,∠BCE=∠AEC,
∴BE=BC=3,
∵AB=2,
∴AE=BE﹣AB=1,
故选:B.
【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.
15.(2018年江苏省苏州市)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为( )
A.3 B.4 C.2 D.3
【考点】平行四边形的判定和性质、三角形中位线定理
【分析】取BC的中点G,连接EG,根据三角形的中位线定理得:EG=4,设CD=x,则EF=BC=2x,证明四边形EGDF是平行四边形,可得DF=EG=4.
解:取BC的中点G,连接EG,
∵E是AC的中点,
∴EG是△ABC的中位线,
∴EG=AB==4,
设CD=x,则EF=BC=2x,
∴BG=CG=x,
∴EF=2x=DG,
∵EF∥CD,
∴四边形EGDF是平行四边形,
∴DF=EG=4,
故选:B.
【点评】本题考查了平行四边形的判定和性质、三角形中位线定理,作辅助线构建三角形的中位线是本题的关键.
二、 、填空题
16.(2018年湖南省衡阳市)如图,?ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M.如果△CDM的周长为8,那么?ABCD的周长是 .
【考点】平行四边形的性质
【分析】根据题意,OM垂直平分AC,所以MC=MA,因此△CDM的周长=AD+CD,可得平行四边形ABCD的周长.
解:∵ABCD是平行四边形,
∴OA=OC,
∵OM⊥AC,
∴AM=MC.
∴△CDM的周长=AD+CD=8,
∴平行四边形ABCD的周长是2×8=16.
故答案为16.
【点评】此题考查了平行四边形的性质及周长的计算,根据线段垂直平分线的性质,证得AM=MC是解题的关键.
17.(2018年山东省临沂市)如图,在?ABCD中,AB=10,AD=6,AC⊥BC.则BD= .
【考点】平行四边形的性质,勾股定理
【分析】由BC⊥AC,AB=10,BC=AD=6,由勾股定理求得AC的长,得出OA长,然后由勾股定理求得OB的长即可.
解:∵四边形ABCD是平行四边形,
∴BC=AD=6,OB=D,OA=OC,
∵AC⊥BC,
∴AC==8,
∴OC=4,
∴OB==2,
∴BD=2OB=4
故答案为:4.
【点评】此题考查了平行四边形的性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.
18.(2018年江苏省南京市)如图,五边形ABCDE是正五边形.若l1∥l2,则∠1﹣∠2= °.
【考点】平行线的性质;多边形内角与外角
【分析】过B点作BF∥l1,根据正五边形的性质可得∠ABC的度数,再根据平行线的性质以及等量关系可得∠1﹣∠2的度数.
解:过B点作BF∥l1,
∵五边形ABCDE是正五边形,
∴∠ABC=108°,
∵BF∥l1,l1∥l2,
∴BF∥l2,
∴∠3=180°﹣∠1,∠4=∠2,
∴180°﹣∠1+∠2=∠ABC=108°,
∴∠1﹣∠2=72°.
故答案为:72.
【点评】考查了多边形内角与外角,平行线的性质,关键是熟练掌握正五边形的性质,以及添加辅助线.
19.(2018年辽宁省抚顺市)如图,?ABCD中,AB=7,BC=3,连接AC,分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于点M,N,作直线MN,交CD于点E,连接AE,则△AED的周长是 .
【考点】作图﹣基本作图线段垂直平分线,平行四边形的性质
【分析】根据平行四边形的性质可知AD=BC=3,CD=AB=7,再由垂直平分线的性质得出AE=CE,据此可得出结论
解:∵四边形ABCD是平行四边形,AB=7,BC=3,
∴AD=BC=3,CD=AB=7.
∵由作图可知,MN是线段AC的垂直平分线,
∴AE=CE,
∴△ADE的周长=AD+(DE+AE)=AD+CD=3+7=10.
故答案为:10.
【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.
20.(2018年江苏省无锡市)如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是 .
【考点】等边三角形的性质;含30度角的直角三角形;平行四边形的判定与性质
【分析】作辅助线,构建30度的直角三角形,先证明四边形EODP是平行四边形,得EP=OD=a,在Rt△HEP中,∠EPH=30°,可得EH的长,计算a+2b=2OH,确认OH最大和最小值的位置,可得结论.
解:过P作PH⊥OY交于点H,
∵PD∥OY,PE∥OX,
∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,
∴EP=OD=a,
Rt△HEP中,∠EPH=30°,
∴EH=EP=a,
∴a+2b=2(a+b)=2(EH+EO)=2OH,
当P在AC边上时,H与C重合,此时OH的最小值=OC=OA=1,即a+2b的最小值是2;
当P在点B时,OH的最大值是:1+=,即(a+2b)的最大值是5,
∴2≤a+2b≤5.
【点评】本题考查了等边三角形的性质、直角三角形30度角的性质、平行四边形的判定和性质,有难度,掌握确认a+2b的最值就是确认OH最值的范围.
三、 、解答题
21.(2018年浙江省衢州市 )如图,在?ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.
【考点】全等三角形的判定与性质;平行四边形的性质.
【分析】由全等三角形的判定定理AAS证得△ABE≌△CDF,则对应边相等:AE=CF.
证明:如图,
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠BAE=∠DCF.
又BE⊥AC,DF⊥AC,
∴∠AEB=∠CFD=90°.
在△ABE与△CDF中,
,
∴得△ABE≌△CDF(AAS),
∴AE=CF.
【点评】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.
22.(2018年湖北省恩施州)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.
【考点】全等三角形的判定与性质,平行四边形的判定与性质
【分析】连接BD,AE,判定△ABC≌△DEF(ASA),可得AB=DE,依据AB∥DE,即可得出四边形ABDE是平行四边形,进而得到AD与BE互相平分.
证明:如图,连接BD,AE,
∵FB=CE,
∴BC=EF,
又∵AB∥ED,AC∥FD,
∴∠ABC=∠DEF,∠ACB=∠DFE,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(ASA),
∴AB=DE,
又∵AB∥DE,
∴四边形ABDE是平行四边形,
∴AD与BE互相平分.
【点评】本题主要考查了平行四边形的判定与性质,解决问题的关键是依据全等三角形的对应边相等得出结论.
23.(2018年江苏省宿迁市)如图,在□ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H,求证:AG=CH.
【考点】平行线的性质,全等三角形的判定与性质,平行四边形的性质
【分析】根据平行四边形的性质得AD∥BC,AD=BC,∠A=∠C,根据平行线的性质得∠E=∠F,再结合已知条件可得AF=CE,根据ASA得△CEH≌△AFG,根据全等三角形对应边相等得证.
证明:∵在□ABCD中,∴AD∥BC,AD=BC,∠A=∠C,
∴∠E=∠F,
又∵BE=DF,
∴AD+DF=CB+BE,
即AF=CE,
在△CEH和△AFG中,
,
∴△CEH≌△AFG,
∴CH=AG.
【点评】此题主要考查了平行线的性质以及全等三角形的判定与性质,正确拿握平行线的性质是解题关键。
24.(2018年浙江省温州市)如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.
(1)求证:△AED≌△EBC.
(2)当AB=6时,求CD的长.
【考点】全等三角形的判定与性质,平行四边形的判定和性质
【分析】(1)利用ASA即可证明;
(2)首先证明四边形AECD是平行四边形,推出CD=AE=AB即可解决问题;
(1)证明:∵AD∥EC,
∴∠A=∠BEC,
∵E是AB中点,
∴AE=EB,
∵∠AED=∠B,
∴△AED≌△EBC.
(2)解:∵△AED≌△EBC,
∴AD=EC,
∵AD∥EC,
∴四边形AECD是平行四边形,
∴CD=AE,
∵AB=6,
∴CD=AB=3.
【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
25.(2018年浙江省杭州市临安市)已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.
求证:(1)△ADF≌△CBE;
(2)EB∥DF.
【考点】全等三角形的判定与性质;平行四边形的性质
【分析】(1)要证△ADF≌△CBE,因为AE=CF,则两边同时加上EF,得到AF=CE,又因为ABCD是平行四边形,得出AD=CB,∠DAF=∠BCE,从而根据SAS推出两三角形全等;
(2)由全等可得到∠DFA=∠BEC,所以得到DF∥EB.
证明:(1)∵AE=CF,
∴AE+EF=CF+FE,即AF=CE.
又ABCD是平行四边形,
∴AD=CB,AD∥BC.
∴∠DAF=∠BCE.
在△ADF与△CBE中
,
∴△ADF≌△CBE(SAS).
(2)∵△ADF≌△CBE,
∴∠DFA=∠BEC.
∴DF∥EB.
【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.