【备考2019】数学中考一轮复习学案 第25节 直线与圆的位置关系和有关计算

文档属性

名称 【备考2019】数学中考一轮复习学案 第25节 直线与圆的位置关系和有关计算
格式 zip
文件大小 1.7MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2019-01-21 11:32:13

文档简介


第四章 图形的性质 第25节与圆的位置关系和有关计算■知识点一:与圆有关的位置关系
(1)点与圆的位置关系
设圆的半径为r,点到圆心的距离为d,则:
①点在圆外 d r;
②点在圆上 d r;
③点在圆内 d r.
(2)直线与圆的位置关系
设圆的半径为r,圆心到直线的距离为d,则:
直线与圆相交 d r:
直线与圆相切 d r;
③直线与圆相离 d r.
■知识点二:切线的性质与判定
(1)切线的定义:直线和圆只有一个公共点时,这条直线叫做圆的切线,唯一的公共点叫做切点.
(2)切线的性质:圆的切线垂直于经过切点的半径;
过圆心且垂直于切线的直线必经过切点;
经过切点且垂直于切线的直线必过该圆的圆心.
(3)切线判定方法:
①定义法:
②设d表示圆心到直线的距离,r表示圆的半径,若d=r ,则直线与圆相切:
③经过半径的外端且 垂直于 这条半径的直线是圆的切线.
(4)切线长定理:从圆外一点向圆引的两条切线长相等,这一点和圆心的连线平分两条切线的夹角 .
■知识点三:三角形与圆
(1)三角形的内切圆:三角形内切圆的圆心是三角形三个角平分线的交点,叫做三角形的 内心,它到三角形的三边的距离相等.
(2)三角形的外接圆:三角形外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心.
锐角三角形外心在三角形的内部,直角三角形外心在三角形的斜边中点处,钝角三角形外心在三角形的外部.
■知识点四:正多边形与圆
(1)正多边形:各边 相等 ,各角 相等 的多边形叫做正多边形.
(2)圆与正多边形的有关概念:一个正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距.
(3)正n边形酌内角和=180°(n-2) ;正n边形的每个内角度数= ;正n边形外角和=360°;正n边形的每个外角度数= .
边长(a)、中心(O)、中心角(∠AOB)、半径(R))、边心距(r),如图所示①.

特殊正多边形中各中心角、长度比:

中心角=120° 中心角=90° 中心角=60°,△BOC为等边△
a:r:R=2:1:2 a:r:R=2:1:2 a:r:R=2: :2
■知识点五:与圆有关的计算
1.弧长公式:(n为圆心角的度数,r为圆的半径,该公式涉及f,n,r三个量,已知其中任意两个量,都可求第三个量.)
2.有关阴影部分面积的求法
(1)扇形的面积公式:S=(n为圆心角的度数.r为圆的半径.l表示弧长).
(2)求与圆有关的不规则图形的面积时,最基本的思想就是转化思想,即把所求的不规则图形的面积转化为规则图形的面积,常用方法有:①割补法:②拼凑法:③等积变形法.
3.圆柱的侧面展开图是矩形,圆柱侧面积=底面周长×高,圆柱全面积=侧面积+2×底面积.
■考点1与圆有关的位置关系
◇典例:
1.(2017?枣庄)如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为(  )
A.2<r< B.<r≤3 C.<r<5 D.5<r<
【考点】 点与圆的位置关系; 勾股定理.
【分析】利用勾股定理求出各格点到点A的距离,结合点与圆的位置关系,即可得出结论.
解:给各点标上字母,如图所示.
AB==2,AC=AD==,AE==3,AF==,AG=AM=AN==5,
∴<r≤3时,以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内.
故选B.
【点评】本题考查了点与圆的位置关系以及勾股定理,利用勾股定理求出各格点到点A的距离是解题的关键.
2.(2018年湖南省湘西)已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为(  )
A.相交 B.相切 C.相离 D.无法确定
【考点】直线与圆的位置关系
【分析】根据圆心到直线的距离5等于圆的半径5,则直线和圆相切.
解:∵圆心到直线的距离5cm=5cm,
∴直线和圆相切.
故选:B.
【点评】此题考查直线与圆的关系,能够熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.
◆变式训练
1.(2018年浙江省舟山)用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是(  )
A.点在圆内 B.点在圆上 C.点在圆心上 D.点在圆上或圆内
2.(2018年甘肃省定西)如图,在△ABC中,∠ABC=90°.
(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)
(2)判断(1)中AC与⊙O的位置关系,直接写出结果.
■考点2.切线的性质与判定
◇典例
(2018年湖南省常德市)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.
(1)求证:EA是⊙O的切线;
(2)求证:BD=CF.
【考点】等边三角形的性质;切线的判定与性质
【分析】(1)根据等边三角形的性质可得:∠OAC=30°,∠BCA=60°,证明∠OAE=90°,可得:AE是⊙O的切线;
(2)先根据等边三角形性质得:AB=AC,∠BAC=∠ABC=60°,由四点共圆的性质得:∠ADF=∠ABC=60°,
得△ADF是等边三角形,证明△BAD≌△CAF,可得结论.
证明:(1)连接OD,
∵⊙O是等边三角形ABC的外接圆,
∴∠OAC=30°,∠BCA=60°,
∵AE∥BC,
∴∠EAC=∠BCA=60°,
∴∠OAE=∠OAC+∠EAC=30°+60°=90°,
∴AE是⊙O的切线;
(2)∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠ABC=60°,
∵A、B、C、D四点共圆,
∴∠ADF=∠ABC=60°,
∵AD=DF,
∴△ADF是等边三角形,
∴AD=AF,∠DAF=60°,
∴∠BAC+∠CAD=∠DAF+∠CAD,
即∠BAF=∠CAF,
在△BAD和△CAF中,
∵,
∴△BAD≌△CAF,
∴BD=CF.
【点评】本题考查了全等三角形的性质和判定,等边三角形及外接圆,四点共圆等知识点的综合运用,属于基础题,熟练掌握等边三角形的性质是关键.
◆变式训练
(2018年山东省临沂市)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.
(1)求证:AC是⊙O的切线;
(2)若BD=,BE=1.求阴影部分的面积.
■考点3.三角形与圆
◇典例:
(2017?攀枝花)在Rt△ABC中,∠C=90°,CA=8,CB=6,则△ABC内切圆的周长为   
【考点】勾股定理;三角形的内切圆与内心
【分析】先利用勾股定理计算出AB的长,再利用直角三角形内切圆的半径的计算方法求出△ABC的内切圆的半径,然后利用圆的面积公式求解.
解:∵∠C=90°,CA=8,CB=6,
∴AB==10,
∴△ABC的内切圆的半径==2,
∴△ABC内切圆的周长=π?22=4π.
故答案为4π.
【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.记住直角三角形内切圆半径的计算方法.
◆变式训练
(2018年湖南省益阳)如图,在△ABC中,AB=5,AC=4,BC=3.按以下步骤作图:
①以A为圆心,任意长为半径作弧,分别交AB,AC于点M,N;
②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点E;
③作射线AE;
④以同样的方法作射线BF.
AE交BF于点O,连接OC,则OC=   .
■考点4.正多边形与圆
◇典例:
(2018年四川省宜宾)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积S来近似估计圆O的面积,则S=   .(结果保留根号)
【考点】数学常识;正多边形和圆
【分析】根据正多边形的定义可得出△ABO为等边三角形,根据等边三角形的性质结合OM的长度可求出AB的长度,再利用三角形的面积公式即可求出S的值.
解:依照题意画出图象,如图所示.
∵六边形ABCDEF为正六边形,
∴△ABO为等边三角形,
∵⊙O的半径为1,
∴OM=1,
∴BM=AM=,
∴AB=,
∴S=6S△ABO=6×××1=2.
故答案为:2.
【点评】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.
◆变式训练
(2018年广西玉林市)如图,正六边形ABCDEF的边长是6+4,点O1,O2分别是△ABF,△CDE的内心,则O1O2=   .
■考点5.与圆有关的计算
◇典例
1. (2018年甘肃省兰州)如图,△ABC的外接圆O的半径为3,∠C=55°,则劣弧的长是   .(结果保留π)
【考点】三角形的外接圆与外心;弧长的计算
【分析】根据同弧所对的圆心角是圆周角的2倍,可求∠AOB=110°,根据弧长公式可求劣弧的长.
解:∵∠AOB=2∠C且∠C=55°
∴∠AOB=110°
根据弧长公式的长==
故答案为
【点评】本题考查了三角形的外接圆与外心,同弧所对的圆心角是圆周角的2倍,弧长公式,关键是熟练运用弧长公式解决问题.
2.(2018年新疆维吾尔自治区、新疆生产建设兵团)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是   .
【考点】扇形面积的计算,圆周角定理,等边三角形性质
【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算即可.
解:∵△ABC是等边三角形,
∴∠C=60°,
根据圆周角定理可得∠AOB=2∠C=120°,
∴阴影部分的面积是=π,
故答案为:
【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.
3.( 2018年青海省) 如图,用一个半径为20cm,面积为的扇形铁皮,制作一个无底的圆锥不计接头损耗,则圆锥的底面半径r为______cm.
【考点】圆锥的计算
【分析】由圆锥的几何特征,我们可得用半径为20cm,面积为的扇形铁皮制作一个无盖的圆锥形容器,则圆锥的底面周长等于扇形的弧长,据此求得圆锥的底面圆的半径.
解:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器底面半径为r,
则由题意得,由得;
由得.
故答案是:.
【点评】本题考查的知识点是圆锥的表面积,其中根据已知制作一个无盖的圆锥形容器的扇形铁皮的相关几何量,计算出圆锥的底面半径和高,是解答本题的关键.
◆变式训练
1. (2018年浙江省宁波)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为(  )
A.π B.π C.π D.π
2.(2018年广西贵港市)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为   (结果保留π).
3.( 2018年湖北省荆州市) 如图,将钢球放置到一个倒立的空心透明圆锥中,测得相关数据如图所示(图中数据单位:cm),则钢球的半径为   cm(圆锥的壁厚忽略不计).

选择题
(2018年浙江省嘉兴市)用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是(  )
A.点在圆内 B.点在圆上 C.点在圆心上 D.点在圆上或圆内
(2018年四川省内江市)已知⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2=4cm,则⊙O1与⊙O2的位置关系是(  )
A.外离 B.外切 C.相交 D.内切
(2018年四川省遂宁市)已知圆锥的母线长为6,将其侧面沿着一条母线展开后所得扇形的圆心角为120°,则该扇形的面积是(  )
A.4π B.8π C.12π D.16π
(2018年湖北省黄石市)如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为(  )
A. B. C.2π D.
(2018年江苏省常州市)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为(  )
A.76° B.56° C.54° D.52°
(2018年辽宁省盘锦市)如图,一段公路的转弯处是一段圆弧(),则的展直长度为(  )
A.3π B.6π C.9π D.12π
、填空题
(2018年黑龙江省大庆市)已知圆柱的底面积为60cm2,高为4cm,则这个圆柱体积
为   cm3.
(2018 年广西梧州市)如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是___________.
三、解答题
(2018年江苏省淮安)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.
(1)试判断直线DE与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.
(2018年湖南省怀化)已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.
(1)求扇形OBC的面积(结果保留π);
(2)求证:CD是⊙O的切线.

选择题
(2018年广东省深圳市)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是(  )
A.3 B. C.6 D.
(2018年内蒙古包头市)如图,在△ABC中,AB=2,BC=4,∠ABC=30°,以点B为圆心,AB长为半径画弧,交BC于点D,则图中阴影部分的面积是(  )
A.2﹣ B.2﹣ C.4﹣ D.4﹣
(2018年四川省自贡市)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为(  )
A. B. C. D.
(2018年贵州省遵义市)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为(  )
A.60π B.65π C.78π D.120π
(2018年浙江省湖州市)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:
①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;
②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;
③连结OG.
问:OG的长是多少?
大臣给出的正确答案应是(  )
A.r B.(1+)r C.(1+)r D.r
(2018年湖南省湘西州)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为(  )
A.10 B.8 C.4 D.4
、填空题
(2018年浙江省台州市)如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D=   度.
(2018年浙江省舟山市)如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为   cm.
(2018年浙江省宁波市)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为   .
(2018年浙江省湖州市)如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是   .
(2018年浙江省温州市)小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为   cm.
解答题
(2018年湖南省邵阳市)如图所示,AB是⊙O的直径,点C为⊙O上一点,过点B作BD⊥CD,垂足为点D,连结BC.BC平分∠ABD.
求证:CD为⊙O的切线.
(2018年天津市)已知是的直径,弦与相交,.
(Ⅰ)如图①,若为的中点,求和的大小;
(Ⅱ)如图②,过点作的切线,与的延长线交于点,若,求的大小.
(2018年浙江省湖州市)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.
(1)求证:AE=ED;
(2)若AB=10,∠CBD=36°,求的长.
(2018年湖南省长沙市)如图,在△ABC中,AD是边BC上的中线,∠BAD=∠CAD,CE∥AD,CE交BA的延长线于点E,BC=8,AD=3.
(1)求CE的长;
(2)求证:△ABC为等腰三角形.
(3)求△ABC的外接圆圆心P与内切圆圆心Q之间的距离.

第四章 图形的性质 第25节与圆的位置关系和有关计算■知识点一:与圆有关的位置关系
(1)点与圆的位置关系
设圆的半径为r,点到圆心的距离为d,则:
①点在圆外 d > r;
②点在圆上 d = r;
③点在圆内 d < r.
(2)直线与圆的位置关系
设圆的半径为r,圆心到直线的距离为d,则:
①直线与圆相交 d<r:
②直线与圆相切 d = r;
③直线与圆相离 d>r.
■知识点二:切线的性质与判定
(1)切线的定义:直线和圆只有一个公共点时,这条直线叫做圆的切线,唯一的公共点叫做切点.
(2)切线的性质:圆的切线垂直于经过切点的半径;
过圆心且垂直于切线的直线必经过切点;
经过切点且垂直于切线的直线必过该圆的圆心.
(3)切线判定方法:
①定义法:
②设d表示圆心到直线的距离,r表示圆的半径,若d=r ,则直线与圆相切:
③经过半径的外端且 垂直于 这条半径的直线是圆的切线.
(4)切线长定理:从圆外一点向圆引的两条切线长相等,这一点和圆心的连线平分两条切线的夹角 .
■知识点三:三角形与圆
(1)三角形的内切圆:三角形内切圆的圆心是三角形三个角平分线的交点,叫做三角形的 内心,它到三角形的三边的距离相等. 21教育名师原创作品
(2)三角形的外接圆:三角形外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心.
锐角三角形外心在三角形的内部,直角三角形外心在三角形的斜边中点处,钝角三角形外心在三角形的外部.
■知识点四:正多边形与圆
(1)正多边形:各边 相等 ,各角 相等 的多边形叫做正多边形.
(2)圆与正多边形的有关概念:一个正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距.
(3)正n边形酌内角和=180°(n-2) ;正n边形的每个内角度数= ;正n边形外角和=360°;正n边形的每个外角度数= .
边长(a)、中心(O)、中心角(∠AOB)、半径(R))、边心距(r),如图所示①.

特殊正多边形中各中心角、长度比:

中心角=120° 中心角=90° 中心角=60°,△BOC为等边△
a:r:R=2:1:2 a:r:R=2:1:2 a:r:R=2: :2
■知识点五:与圆有关的计算
1.弧长公式:(n为圆心角的度数,r为圆的半径,该公式涉及f,n,r三个量,已知其中任意两个量,都可求第三个量.)
2.有关阴影部分面积的求法
(1)扇形的面积公式:S=(n为圆心角的度数.r为圆的半径.l表示弧长).
(2)求与圆有关的不规则图形的面积时,最基本的思想就是转化思想,即把所求的不规则图形的面积转化为规则图形的面积,常用方法有:①割补法:②拼凑法:③等积变形法.
3.圆柱的侧面展开图是矩形,圆柱侧面积=底面周长×高,圆柱全面积=侧面积+2×底面积.
■考点1与圆有关的位置关系
◇典例:
1.(2017?枣庄)如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为(  )
A.2<r< B.<r≤3 C.<r<5 D.5<r<
【考点】 点与圆的位置关系; 勾股定理.
【分析】利用勾股定理求出各格点到点A的距离,结合点与圆的位置关系,即可得出结论.
解:给各点标上字母,如图所示.
AB==2,AC=AD==,AE==3,AF==,AG=AM=AN==5,
∴<r≤3时,以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内.
故选B.
【点评】本题考查了点与圆的位置关系以及勾股定理,利用勾股定理求出各格点到点A的距离是解题的关键.
2.(2018年湖南省湘西)已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为(  )
A.相交 B.相切 C.相离 D.无法确定
【考点】直线与圆的位置关系
【分析】根据圆心到直线的距离5等于圆的半径5,则直线和圆相切.
解:∵圆心到直线的距离5cm=5cm,
∴直线和圆相切.
故选:B.
【点评】此题考查直线与圆的关系,能够熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.
◆变式训练
1.(2018年浙江省舟山)用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是(  )
A.点在圆内 B.点在圆上 C.点在圆心上 D.点在圆上或圆内
【考点】点与圆的位置关系;反证法
【分析】由于反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.
在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.由此即可解决问题.
解:反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是:点在圆上或圆内.
故选:D.
【点评】本题主要考查了反证法的步骤,其中在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
2.(2018年甘肃省定西)如图,在△ABC中,∠ABC=90°.
(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)
(2)判断(1)中AC与⊙O的位置关系,直接写出结果.
【考点】复杂作图,角平分线的性质与作法,直线与圆的位置关系
【分析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即可;
(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.
解:(1)如图所示:

(2)相切;过O点作OD⊥AC于D点,
∵CO平分∠ACB,
∴OB=OD,即d=r,
∴⊙O与直线AC相切,
【点评】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出是解题关键. 
■考点2.切线的性质与判定
◇典例
(2018年湖南省常德市)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.
(1)求证:EA是⊙O的切线;
(2)求证:BD=CF.
【考点】等边三角形的性质;切线的判定与性质
【分析】(1)根据等边三角形的性质可得:∠OAC=30°,∠BCA=60°,证明∠OAE=90°,可得:AE是⊙O的切线;
(2)先根据等边三角形性质得:AB=AC,∠BAC=∠ABC=60°,由四点共圆的性质得:∠ADF=∠ABC=60°,
得△ADF是等边三角形,证明△BAD≌△CAF,可得结论.
证明:(1)连接OD,
∵⊙O是等边三角形ABC的外接圆,
∴∠OAC=30°,∠BCA=60°,
∵AE∥BC,
∴∠EAC=∠BCA=60°,
∴∠OAE=∠OAC+∠EAC=30°+60°=90°,
∴AE是⊙O的切线;
(2)∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠ABC=60°,
∵A、B、C、D四点共圆,
∴∠ADF=∠ABC=60°,
∵AD=DF,
∴△ADF是等边三角形,
∴AD=AF,∠DAF=60°,
∴∠BAC+∠CAD=∠DAF+∠CAD,
即∠BAF=∠CAF,
在△BAD和△CAF中,
∵,
∴△BAD≌△CAF,
∴BD=CF.
【点评】本题考查了全等三角形的性质和判定,等边三角形及外接圆,四点共圆等知识点的综合运用,属于基础题,熟练掌握等边三角形的性质是关键.
◆变式训练
(2018年山东省临沂市)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.
(1)求证:AC是⊙O的切线;
(2)若BD=,BE=1.求阴影部分的面积.
【考点】切线的判定与性质,等腰三角形的性质,角平分线的性质,勾股定理,扇形的面积公式
【分析】(1)连接OD,作OF⊥AC于F,如图,利用等腰三角形的性质得AO⊥BC,AO平分∠BAC,再根据切线的性质得OD⊥AB,然后利用角平分线的性质得到OF=OD,从而根据切线的判定定理得到结论;
(2)设⊙O的半径为r,则OD=OE=r,利用勾股定理得到r2+()2=(r+1)2,解得r=1,则OD=1,OB=2,利用含30度的直角三角三边的关系得到∠B=30°,∠BOD=60°,则∠AOD=30°,于是可计算出AD=OD=,然后根据扇形的面积公式,利用阴影部分的面积=2S△AOD﹣S扇形DOF进行计算.
(1)证明:连接OD,作OF⊥AC于F,如图,
∵△ABC为等腰三角形,O是底边BC的中点,
∴AO⊥BC,AO平分∠BAC,
∵AB与⊙O相切于点D,
∴OD⊥AB,
而OF⊥AC,
∴OF=OD,
∴AC是⊙O的切线;
(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,
∴r2+()2=(r+1)2,解得r=1,
∴OD=1,OB=2,
∴∠B=30°,∠BOD=60°,
∴∠AOD=30°,
在Rt△AOD中,AD=OD=,
∴阴影部分的面积=2S△AOD﹣S扇形DOF
=2××1×﹣
=﹣.
【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了等腰三角形的性质.
■考点3.三角形与圆
◇典例:
(2017?攀枝花)在Rt△ABC中,∠C=90°,CA=8,CB=6,则△ABC内切圆的周长为   
【考点】勾股定理;三角形的内切圆与内心
【分析】先利用勾股定理计算出AB的长,再利用直角三角形内切圆的半径的计算方法求出△ABC的内切圆的半径,然后利用圆的面积公式求解.
解:∵∠C=90°,CA=8,CB=6,
∴AB==10,
∴△ABC的内切圆的半径==2,
∴△ABC内切圆的周长=π?22=4π.
故答案为4π.
【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.记住直角三角形内切圆半径的计算方法.
◆变式训练
(2018年湖南省益阳)如图,在△ABC中,AB=5,AC=4,BC=3.按以下步骤作图:
①以A为圆心,任意长为半径作弧,分别交AB,AC于点M,N;
②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点E;
③作射线AE;
④以同样的方法作射线BF.
AE交BF于点O,连接OC,则OC=   .
【考点】勾股定理的逆定理;作图—基本作图,三角形的内心
【分析】直接利用勾股定理的逆定理结合三角形内心的性质进而得出答案.
解:过点O作OD⊥BC,OG⊥AC,垂足分别为:D,G,
由题意可得:O是△ACB的内心,
∵AB=5,AC=4,BC=3,
∴BC2+AC2=AB2,
∴△ABC是直角三角形,
∴∠ACB=90°,
∴四边形OGCD是正方形,
∴DO=OG==1,
∴CO=.
故答案为:.
【点评】此题主要考查了基本作图以及三角形的内心,正确得出OD的长是解题关键.
■考点4.正多边形与圆
◇典例:
(2018年四川省宜宾)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积S来近似估计圆O的面积,则S=   .(结果保留根号)
【考点】数学常识;正多边形和圆
【分析】根据正多边形的定义可得出△ABO为等边三角形,根据等边三角形的性质结合OM的长度可求出AB的长度,再利用三角形的面积公式即可求出S的值.
解:依照题意画出图象,如图所示.
∵六边形ABCDEF为正六边形,
∴△ABO为等边三角形,
∵⊙O的半径为1,
∴OM=1,
∴BM=AM=,
∴AB=,
∴S=6S△ABO=6×××1=2.
故答案为:2.
【点评】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.
◆变式训练
(2018年广西玉林市)如图,正六边形ABCDEF的边长是6+4,点O1,O2分别是△ABF,△CDE的内心,则O1O2=   .
【考点】正多边形和圆
【分析】设△AFB的内切圆的半径为r,过A作AM⊥BF于M,连接O1F、O1A、O1B,解直角三角形求出AM、FM、BM,根据三角形的面积求出r,即可求出答案.
解:过A作AM⊥BF于M,连接O1F、O1A、O1B,
∵六边形ABCDEF是正六边形,
∴∠A==120°,AF=AB,
∴∠AFB=∠ABF=(180°﹣120°)=30°,
∴△AFB边BF上的高AM=AF=(6+4)=3+2,FM=BM=AM=3+6,
∴BF=3+6+3+6=12+6,
设△AFB的内切圆的半径为r,
∵S△AFB=S+S+S,
∴×(3+2)×(3+6)=×r+×r+×(12+6)×r,
解得:r=,
即O1M=r=,
∴O1O2=2×+6+4=9+4,
故答案为:9+4.
【点评】本题考查了正多边形和圆,解直角三角形,三角形面积公式,三角形的内接圆和内心等知识点,能求出4ABF的内切圆的半径是解此题的关键.
■考点5.与圆有关的计算
◇典例
1. (2018年甘肃省兰州)如图,△ABC的外接圆O的半径为3,∠C=55°,则劣弧的长是   .(结果保留π)
【考点】三角形的外接圆与外心;弧长的计算
【分析】根据同弧所对的圆心角是圆周角的2倍,可求∠AOB=110°,根据弧长公式可求劣弧的长.
解:∵∠AOB=2∠C且∠C=55°
∴∠AOB=110°
根据弧长公式的长==
故答案为
【点评】本题考查了三角形的外接圆与外心,同弧所对的圆心角是圆周角的2倍,弧长公式,关键是熟练运用弧长公式解决问题.
2.(2018年新疆维吾尔自治区、新疆生产建设兵团)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是   .
【考点】扇形面积的计算,圆周角定理,等边三角形性质
【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算即可.
解:∵△ABC是等边三角形,
∴∠C=60°,
根据圆周角定理可得∠AOB=2∠C=120°,
∴阴影部分的面积是=π,
故答案为:
【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.
3.( 2018年青海省) 如图,用一个半径为20cm,面积为的扇形铁皮,制作一个无底的圆锥不计接头损耗,则圆锥的底面半径r为______cm.
【考点】圆锥的计算
【分析】由圆锥的几何特征,我们可得用半径为20cm,面积为的扇形铁皮制作一个无盖的圆锥形容器,则圆锥的底面周长等于扇形的弧长,据此求得圆锥的底面圆的半径.
解:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器底面半径为r,
则由题意得,由得;
由得.
故答案是:.
【点评】本题考查的知识点是圆锥的表面积,其中根据已知制作一个无盖的圆锥形容器的扇形铁皮的相关几何量,计算出圆锥的底面半径和高,是解答本题的关键.
◆变式训练
1. (2018年浙江省宁波)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为(  )
A.π B.π C.π D.π
【考点】含30度角的直角三角形;弧长的计算
【分析】先根据ACB=90°,AB=4,∠A=30°,得圆心角和半径的长,再根据弧长公式可得到弧CD的长.
解:∵∠ACB=90°,AB=4,∠A=30°,
∴∠B=60°,BC=2
∴的长为=,
故选:C.
【点评】本题主要考查了弧长公式的运用和直角三角形30度角的性质,解题时注意弧长公式为:l=(弧长为l,圆心角度数为n,圆的半径为R).
2.(2018年广西贵港市)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为   (结果保留π).
【考点】旋转的性质,扇形面积的计算
【分析】由将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,可得△ABC≌△A′BC′,由题给图可知:S阴影=S扇形ABA′+S△A′BC﹣S扇形CBC′﹣S△A′BC′可得出阴影部分面积.
解:∵△ABC中,∠ACB=90°,AB=4,BC=2,
∴∠BAC=30°,∠ABC=60°,AC=2.
∵将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,
∴△ABC≌△A′BC′,
∴∠ABA′=120°=∠CBC′,
∴S阴影=S扇形ABA′+S△A′BC﹣S扇形CBC′﹣S△A′BC′
=S扇形ABA′﹣S扇形CBC′
=﹣
=﹣
=4π.
故答案为4π.
【点评】本题主要考查了图形的旋转,不规则图形的面积计算,扇形的面积,发现阴影部分面积的计算方法是解题的关键.  
3.( 2018年湖北省荆州市) 如图,将钢球放置到一个倒立的空心透明圆锥中,测得相关数据如图所示(图中数据单位:cm),则钢球的半径为   cm(圆锥的壁厚忽略不计).
【考点】圆锥的计算,相似三角形的性质
【分析】由勾股定理求得AE,再根据相似三角形的性质求出钢球的半径.
解:AB=12+14=26(cm),
由勾股定理得AE==24(cm),
由△ADO~△AEB得
=,
∴=,
∴OD=5.
答:钢球的半径为5cm.
故答案为:5.
【点评】考查了圆锥的计算,相似三角形的性质,关键是求出钢球的直径.

选择题
(2018年浙江省嘉兴市)用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是(  )
A.点在圆内 B.点在圆上 C.点在圆心上 D.点在圆上或圆内
【考点】点与圆的位置关系;反证法
【分析】由于反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.
在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.由此即可解决问题.
解:反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是:点在圆上或圆内.
故选:D.
【点评】本题主要考查了反证法的步骤,其中在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
(2018年四川省内江市)已知⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2=4cm,则⊙O1与⊙O2的位置关系是(  )
A.外离 B.外切 C.相交 D.内切
【考点】圆与圆的位置关系
【分析】由⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2为4cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.
解:∵⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2为4cm,
又∵2+3=5,3﹣2=1,1<4<5,
∴⊙O1与⊙O2的位置关系是相交.
故选:C.
【点评】此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.
(2018年四川省遂宁市)已知圆锥的母线长为6,将其侧面沿着一条母线展开后所得扇形的圆心角为120°,则该扇形的面积是(  )
A.4π B.8π C.12π D.16π
【考点】圆锥的计算
【分析】利用圆锥的侧面展开图为一扇形,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
解:该扇形的面积==12π.
故选:C.
【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
(2018年湖北省黄石市)如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为(  )
A. B. C.2π D.
【考点】圆周角定理;弧长的计算
【分析】先计算圆心角为120°,根据弧长公式=,可得结果.
解:连接OD,
∵∠ABD=30°,
∴∠AOD=2∠ABD=60°,
∴∠BOD=120°,
∴的长==,
故选:D.
【点评】本题考查了弧长的计算和圆周角定理,熟练掌握弧长公式是关键,属于基础题.
(2018年江苏省常州市)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为(  )
A.76° B.56° C.54° D.52°
【考点】切线的性质
【分析】先利用切线的性质得∠ONM=90°,则可计算出∠ONB=38°,再利用等腰三角形的性质得到∠B=∠ONB=38°,然后根据圆周角定理得∠NOA的度数.
解:∵MN是⊙O的切线,
∴ON⊥NM,
∴∠ONM=90°,
∴∠ONB=90°﹣∠MNB=90°﹣52°=38°,
∵ON=OB,
∴∠B=∠ONB=38°,
∴∠NOA=2∠B=76°.
故选:A.
【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.
(2018年辽宁省盘锦市)如图,一段公路的转弯处是一段圆弧(),则的展直长度为(  )
A.3π B.6π C.9π D.12π
【考点】弧长的计算
【分析】直接利用弧长公式计算得出答案.
解:的展直长度为:=6π(m).
故选:B.
【点评】此题主要考查了弧长计算,正确掌握弧长公式是解题关键.
、填空题
(2018年黑龙江省大庆市)已知圆柱的底面积为60cm2,高为4cm,则这个圆柱体积为   cm3.
【考点】圆柱体积
【分析】根据圆柱体积=底面积×高,即可求出结论.
解:V=S?h=60×4=240(cm3).
故答案为:240.
(2018 年广西梧州市)如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是___________ .
.【考点】弧长公式,勾股定理
【分析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求 出 OA,最后用勾股定理即可得出结论.
解:设圆锥底面圆的半径为 r,
∵AC=6,∠ACB=120°,
∴=2πr,
∴r=2,即:OA=2,
在 Rt△AOC 中,OA=2,AC=6,根据勾股定理得,OC==4,
故答案为:4.
【点评】此题主要考查了扇形的弧长公式,勾股定理,求出 OA 是解本题的关键.
三、解答题
(2018年江苏省淮安)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.
(1)试判断直线DE与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.
【考点】切线的判定和性质,扇形的面积公式
【分析】(1)连接OE、OD,如图,根据切线的性质得∠OAC=90°,再证明△AOE≌△DOE得到∠ODE=∠OAE=90°,然后根据切线的判定定理得到DE为⊙O的切线;
(2)先计算出∠AOD=2∠B=100°,利用四边形的面积减去扇形的面积计算图中阴影部分的面积.
解:(1)直线DE与⊙O相切.理由如下:
连接OE、OD,如图,
∵AC是⊙O的切线,
∴AB⊥AC,
∴∠OAC=90°,
∵点E是AC的中点,O点为AB的中点,
∴OE∥BC,
∴∠1=∠B,∠2=∠3,
∵OB=OD,
∴∠B=∠3,
∴∠1=∠2,
在△AOE和△DOE中

∴△AOE≌△DOE,
∴∠ODE=∠OAE=90°,
∴OA⊥AE,
∴DE为⊙O的切线;
(2)∵点E是AC的中点,
∴AE=AC=2.4,
∵∠AOD=2∠B=2×50°=100°,
∴图中阴影部分的面积=2?×2×2.4﹣=4.8﹣π.
【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和扇形的面积公式.
(2018年湖南省怀化)已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.
(1)求扇形OBC的面积(结果保留π);
(2)求证:CD是⊙O的切线.
【考点】角平分线的性质;圆周角定理;切线的判定;扇形面积的计算
【分析】(1)由扇形的面积公式即可求出答案.
(2)易证∠FAC=∠ACO,从而可知AD∥OC,由于CD⊥AF,所以CD⊥OC,所以CD是⊙O的切线.
解:(1)∵AB=4,
∴OB=2
∵∠COB=60°,
∴S扇形OBC==
(2)∵AC平分∠FAB,
∴∠FAC=∠CAO,
∵AO=CO,
∴∠ACO=∠CAO
∴∠FAC=∠ACO
∴AD∥OC,
∵CD⊥AF,
∴CD⊥OC
∵C在圆上,
∴CD是⊙O的切线
【点评】本题考查圆的综合问题,解题的关键是熟练运用扇形面积公式以及切线的判定方法,本题属于中等题型.

选择题
(2018年广东省深圳市)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是(  )
A.3 B. C.6 D.
【考点】切线的性质,切线长定理
【分析】设三角板与圆的切点为C,连接OA.OB,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.
解:设三角板与圆的切点为C,连接OA.OB,
由切线长定理知AB=AC=3,OA平分∠BAC,
∴∠OAB=60°,
在Rt△ABO中,OB=ABtan∠OAB=3,
∴光盘的直径为6,
故选:D.
【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.
(2018年内蒙古包头市)如图,在△ABC中,AB=2,BC=4,∠ABC=30°,以点B为圆心,AB长为半径画弧,交BC于点D,则图中阴影部分的面积是(  )
A.2﹣ B.2﹣ C.4﹣ D.4﹣
【考点】扇形面积的计算
【分析】过A作AE⊥BC于E,依据AB=2,∠ABC=30°,即可得出AE=AB=1,再根据公式即可得到,阴影部分的面积是×4×1﹣=2﹣.
解:如图,过A作AE⊥BC于E,
∵AB=2,∠ABC=30°,
∴AE=AB=1,
又∵BC=4,
∴阴影部分的面积是×4×1﹣=2﹣,
故选:A.
【点评】本题主要考查了扇形面积的计算,求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积,常用的方法:①直接用公式法;②和差法;③割补法.
(2018年四川省自贡市)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为(  )
A. B. C. D.
【考点】三角形的外接圆与外心,圆周角定理、直角三角形30°角的性质,勾股定理
【分析】延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R.
解:延长BO交⊙O于D,连接CD,
则∠BCD=90°,∠D=∠A=60°,
∴∠CBD=30°,
∵BD=2R,
∴DC=R,
∴BC=R,
故选:D.
【点评】此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.
(2018年贵州省遵义市)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为(  )
A.60π B.65π C.78π D.120π
【考点】圆锥的计算;圆柱的计算
【分析】直接得出圆锥的母线长,再利用圆锥侧面积求法得出答案.
解:由题意可得:圆锥的底面半径为5,母线长为:=13,
该圆锥的侧面积为:π×5×13=65π.
故选:B.
【点评】此题主要考查了圆锥的计算,正确记忆圆锥侧面积求法是解题关键.
(2018年浙江省湖州市)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:
①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;
②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;
③连结OG.
问:OG的长是多少?
大臣给出的正确答案应是(  )
A.r B.(1+)r C.(1+)r D.r
【考点】正多边形和圆;作图—复杂作图
【分析】如图连接CD,AC,DG,AG.在直角三角形即可解决问题;
解:如图连接CD,AC,DG,AG.
∵AD是⊙O直径,
∴∠ACD=90°,
在Rt△ACD中,AD=2r,∠DAC=30°,
∴AC=r,
∵DG=AG=CA,OD=OA,
∴OG⊥AD,
∴∠GOA=90°,
∴OG===r,
故选:D.
【点评】本题考查作图﹣复杂作图,正多边形与圆的关系,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
(2018年湖南省湘西州)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为(  )
A.10 B.8 C.4 D.4
【考点】垂径定理;切线的性质
【分析】由AB是圆的切线知AO⊥AB,结合CD∥AB知AO⊥CD,从而得出CE=4,Rt△COE中求得OE=3及AE=8,在Rt△ACE中利用勾股定理可得答案.
解:∵直线AB与⊙O相切于点A,
∴OA⊥AB,
又∵CD∥AB,
∴AO⊥CD,记垂足为E,
∵CD=8,
∴CE=DE=CD=4,
连接OC,则OC=OA=5,
在Rt△OCE中,OE===3,
∴AE=AO+OE=8,
则AC===4,
故选:D.
【点评】本题主要考查切线的性质,解题的关键是掌握切线的性质:圆的切线垂直于经过切点的半径及垂径定理.
、填空题
(2018年浙江省台州市)如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D=   度.
【考点】圆周角定理;切线的性质
【分析】连接OC,根据圆周角定理得到∠COD=2∠A,根据切线的性质计算即可.
解:连接OC,
由圆周角定理得,∠COD=2∠A=64°,
∵CD为⊙O的切线,
∴OC⊥CD,
∴∠D=90°﹣∠COD=26°,
故答案为:26.
【点评】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
(2018年浙江省舟山市)如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为   cm.
【考点】矩形的性质;垂径定理的应用;切线的性质
【分析】连接OC,利用垂径定理解答即可.
解:连接OC,
∵直尺一边与量角器相切于点C,
∴OC⊥AD,
∵AD=10,∠DOB=60°,
∴∠DAO=30°,
∴OE=,OA=,
∴CE=OC﹣OE=OA﹣OE=,
故答案为:
【点评】此题考查垂径定理,关键是利用垂径定理解答.
(2018年浙江省宁波市)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为   .
【考点】正方形的性质;切线的性质
【分析】分两种情形分别求解:如图1中,当⊙P与直线CD相切时;如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形;
解:如图1中,当⊙P与直线CD相切时,设PC=PM=x.
在Rt△PBM中,∵PM2=BM2+PB2,
∴x2=42+(8﹣x)2,
∴x=5,
∴PC=5,BP=BC﹣PC=8﹣5=3.
如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.
∴PM=PK=CD=2BM,
∴BM=4,PM=8,
在Rt△PBM中,PB==4.
综上所述,BP的长为3或4.
【点评】本题考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.
(2018年浙江省湖州市)如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是   .
【考点】圆周角定理;三角形的内切圆与内心
【分析】先根据三角形内心的性质和切线的性质得到OB平分∠ABC,OD⊥BC,则∠OBD=∠ABC=20°,然后利用互余计算∠BOD的度数.
解:∵△ABC的内切圆⊙O与BC边相切于点D,
∴OB平分∠ABC,OD⊥BC,
∴∠OBD=∠ABC=×40°=20°,
∴∠BOD=90°﹣∠OBD=70°.
故答案为70°.
【点评】本题考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等腰三角形的判定与性质和三角形的外接圆.
(2018年浙江省温州市)小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为   cm.
【考点】正多边形和圆
【分析】设两个正六边形的中心为O,连接OP,OB,过O作OG⊥PM,OH⊥AB,由正六边形的性质及邻补角性质得到三角形PMN为等边三角形,由小正六边形的面积求出边长,确定出PM的长,进而求出三角形PMN的面积,利用垂径定理求出PG的长,在直角三角形OPG中,利用勾股定理求出OP的长,设OB=xcm,根据勾股定理列出关于x的方程,求出方程的解即可得到结果.
解:设两个正六边形的中心为O,连接OP,OB,过O作OG⊥PM,OH⊥AB,
由题意得:∠MNP=∠NMP=∠MPN=60°,
∵小正六边形的面积为cm2,
∴小正六边形的边长为cm,即PM=7cm,
∴S△MPN=cm2,
∵OG⊥PM,且O为正六边形的中心,
∴PG=PM=cm,OG=PM=,
在Rt△OPG中,根据勾股定理得:OP==7cm,
设OB=xcm,
∵OH⊥AB,且O为正六边形的中心,
∴BH=x,OH=x,
∴PH=(5﹣x)cm,
在Rt△PHO中,根据勾股定理得:OP2=(x)2+(5﹣x)2=49,
解得:x=8(负值舍去),
则该圆的半径为8cm.
故答案为:8
【点评】此题考查了正多边形与圆,熟练掌握正多边形的性质是解本题的关键.
、解答题
(2018年湖南省邵阳市)如图所示,AB是⊙O的直径,点C为⊙O上一点,过点B作BD⊥CD,垂足为点D,连结BC.BC平分∠ABD.
求证:CD为⊙O的切线.
【考点】圆周角定理;切线的判定
【分析】先利用BC平分∠ABD得到∠OBC=∠DBC,再证明OC∥BD,从而得到OC⊥CD,然后根据切线的判定定理得到结论.
证明:∵BC平分∠ABD,
∴∠OBC=∠DBC,
∵OB=OC,
∴∠OBC=∠OCB,
∴∠OCB=∠DBC,
∴OC∥BD,
∵BD⊥CD,
∴OC⊥CD,
∴CD为⊙O的切线.
【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.
(2018年天津市)已知是的直径,弦与相交,.
(Ⅰ)如图①,若为的中点,求和的大小;
(Ⅱ)如图②,过点作的切线,与的延长线交于点,若,求的大小.
【考点】圆周角定理,切线的性质,等腰三角形的性质
【分析】(Ⅰ)运用直径所对的圆周角是直角以及圆周角的度数等于它所对弧的度数求解即可;
(Ⅱ)运用圆周角定理求解即可.
解:(Ⅰ)∵是的直径,∴.
∴.
又∴,∴.
由为的中点,得.
∴.
∴.
(Ⅱ)如图,连接.
∵切于点,
∴,即.
由,又,
∴是的外角,
∴.
∴.
又,得.
∴.
【点睛】本题考查了圆周角定理,切线的性质以及等腰三角形的性质,正确的作出辅助线是解题的关键.
(2018年浙江省湖州市)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.
(1)求证:AE=ED;
(2)若AB=10,∠CBD=36°,求的长.
【考点】勾股定理;垂径定理;圆周角定理;弧长的计算
【分析】(1)根据平行线的性质得出∠AEO=90°,再利用垂径定理证明即可;
(2)根据弧长公式解答即可.
证明:(1)∵AB是⊙O的直径,
∴∠ADB=90°,
∵OC∥BD,
∴∠AEO=∠ADB=90°,
即OC⊥AD,
∴AE=ED;
(2)∵OC⊥AD,
∴,
∴∠ABC=∠CBD=36°,
∴∠AOC=2∠ABC=2×36°=72°,
∴.
【点评】此题考查弧长公式,关键是根据弧长公式和垂径定理解答.
(2018年湖南省长沙市)如图,在△ABC中,AD是边BC上的中线,∠BAD=∠CAD,CE∥AD,CE交BA的延长线于点E,BC=8,AD=3.
(1)求CE的长;
(2)求证:△ABC为等腰三角形.
(3)求△ABC的外接圆圆心P与内切圆圆心Q之间的距离.
【考点】平行线的性质;等腰三角形的判定与性质;三角形的外接圆与外心;三角形的内切圆与内心
【分析】(1)证明AD为△BCE的中位线得到CE=2AD=6;
(2)通过证明AC=AE得到AB=AC;
(3)如图,连接BP、BQ、CQ,先利用勾股定理计算出AB=5,设⊙P的半径为R,⊙Q的半径为r,在Rt△PBD中利用勾股定理得到(R﹣3)2+42=R2,解得R=,则PD=,再利用面积法求出r=,即QD=,然后计算PD+QD即可.
(1)解:∵AD是边BC上的中线,
∴BD=CD,
∵CE∥AD,
∴AD为△BCE的中位线,
∴CE=2AD=6;
(2)证明:∵CE∥AD,
∴∠BAD=∠E,∠CAD=∠ACE,
而∠BAD=∠CAD,
∴∠ACE=∠E,
∴AE=AC,
而AB=AE,
∴AB=AC,
∴△ABC为等腰三角形.
(3)如图,连接BP、BQ、CQ,
在Rt△ABD中,AB==5,
设⊙P的半径为R,⊙Q的半径为r,
在Rt△PBD中,(R﹣3)2+42=R2,解得R=,
∴PD=PA﹣AD=﹣3=,
∵S△ABQ+S△BCQ+S△ACQ=S△ABC,
∴?r?5+?r?8+?r?5=?3?8,解得r=,
即QD=,
∴PQ=PD+QD=+=.
答:△ABC的外接圆圆心P与内切圆圆心Q之间的距离为.
【点评】本题考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等腰三角形的判定与性质和三角形的外接圆.
同课章节目录