第五章图形与变换第26节 尺规作图
■考点1.网格作图:利用平移、旋转、轴对称、中心对称、位似在网格中作图称为网格作图
■考点2.尺规作图
(1)尺规作图的定义:
在几何里把限定用没有刻度的直尺和圆规来画图,称为尺规作图,最基本最常用的尺规作图,称为基本作图.
(2)五种基本尺规作图:①作一条线段等于已知线段;②作一个角等于已知角:③作一个角的角平分线:④作线段的垂直平分线:⑤经过一点作已知直线的垂线.
(3)尺规作图的步骤:
①已知:写出已知的线段和角,画出图形;
②求作:求作什么图形,它符合什么条件,一一具体化;
③作法:应用五种基本作图,叙述时不需要重述基本作图的过程,但图中必须保留基本作图的痕迹;
④证明:为了验证所作图形的正确性,把图作出后,根据有关的定义、定理等并结合作法证明所作图形完全符合题设条件;
⑤对所作图形下结论.
(4)作三角形:①已知三边作三角形;②已知两边及其夹角作三角形:③已知两角及其夹边作三角形:④已知底边及底边上的高作等腰三角形.21*cnjy*com
(5)探究如何过一点、两点和不在同一直线上的三点作圆.
■考点1.网格作图
◇典例:
(2018年河南省)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.
(1)求反比例函数的解析式;
(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:
①四个顶点均在格点上,且其中两个顶点分别是点O,点P;
②矩形的面积等于k的值.
【考点】作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质
【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;
(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.
解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),
∴k=2×2=4,
∴反比例函数的解析式为y=;
(2)如图所示:
矩形OAPB、矩形OCDP即为所求作的图形.
【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.
◆变式训练
(2018年吉林省)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:
第一步:点D绕点A顺时针旋转180°得到点D1;
第二步:点D1绕点B顺时针旋转90°得到点D2;
第三步:点D2绕点C顺时针旋转90°回到点D.
(1)请用圆规画出点D→D1→D2→D经过的路径;
(2)所画图形是 对称图形;
(3)求所画图形的周长(结果保留π).
■考点2.尺规作图
◇典例
(2018年四川省自贡)如图,在△ABC中,∠ACB=90°.
(1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明)
(2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)
【考点】作图﹣复杂作图,切线的判定和性质,相似三角形的判定和性质、勾股定理、角平分线的定义,等腰三角形的判定和性质
【分析】(1)作∠ABC的角平分线交AC于E,作EO⊥AC交AB于点O,以O为圆心,OB为半径画圆即可解决问题;
(2)作OH⊥BC于H.首先求出OH、EC、BE,利用△BCE∽△BED,可得=,解决问题;
解:(1)⊙O如图所示;
(2)作OH⊥BC于H.
∵AC是⊙O的切线,
∴OE⊥AC,
∴∠C=∠CEO=∠OHC=90°,
∴四边形ECHO是矩形,
∴OE=CH=,BH=BC﹣CH=,
在Rt△OBH中,OH==2,
∴EC=OH=2,BE==2,
∵∠EBC=∠EBD,∠BED=∠C=90°,
∴△BCE∽△BED,
∴=,
∴=,
∴DE=.
【点评】本题考查作图﹣复杂作图,切线的判定和性质,相似三角形的判定和性质、勾股定理、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
◆变式训练
(2018年安徽省)如图,⊙O为锐角△ABC的外接圆,半径为5.
(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);
(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.
一、 选择题
(2018年湖北省宜昌市)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是( )
A. B. C. D.
(2018年河北省)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;
Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.
如图是按上述要求排乱顺序的尺规作图:
则正确的配对是( )
A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
C.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
(2018年贵州省安顺市)已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是
( )
A. B.
C. D.
二、 填空题
(2018年内蒙古通辽市)如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD的面积为 .
(2018年天津市)如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.
(1)的大小为__________(度);
(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.
三、 解答题
(2018年广西贵港市)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.
(2018年北京市)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.
已知:直线l及直线l外一点P.
求作:直线PQ,使得PQ∥l.
作法:如图,
①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;
②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;
③作直线PQ.所以直线PQ就是所求作的直线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵AB= ,CB= ,
∴PQ∥l( )(填推理的依据).
(2018年宁夏)已知:△ABC三个顶点的坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).
(1)画出△ABC关于x轴对称的△A1B1C1;
(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2,并写出点B2的坐标.
(2018年湖北省天门、仙桃、潜江、江汉油田市)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.
(1)在图①中,画出∠MON的平分线OP;
(2)在图②中,画一个Rt△ABC,使点C在格点上.
(2018年黑龙江省龙东、七台河、佳木斯、鸡西、伊春、鹤岗、双鸭山)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).
(1)画出△ABC关于x轴对称的△A1B1C1;
(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;
(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).
一、 选择题
(2018年四川省巴中市)如图,在Rt△ABC中,∠C=90°,按下列步骤作图:①以点B为圆心,适当长为半径画弧,与AB,BC分别交于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧交于点P;③作射线BP交AC于点F;④过点F作FG⊥AB于点G.下列结论正确的是( )
A.CF=FG B.AF=AG C.AF=CF D.AG=FG
(2018年河南省)如图,已知?AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为( )
A.(﹣1,2) B.(,2) C.(3﹣,2) D.(﹣2,2)
二、 填空题
(2018年江苏省南通市)下面是“作一个30°角”的尺规作图过程.
已知:平面内一点A.
求作:∠A,使得∠A=30°.
作图:如图,
(1)作射线AB;
(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;
(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.
请回答:该尺规作图的依据是 .
(2018年天津市)如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.
(1)的大小为__________(度);
(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.
(2018年湖北省荆州市)已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC即为所求.上述作图用到了全等三角形的判定方法,这个方法是 .
(2018年浙江省衢州市 )定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.
如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.
若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……
△An﹣1Bn﹣1Cn﹣1经γ(n,180°)变换后得△AnBnCn,则点A1的坐标是 ,点A2018的坐标是 .
三、 解答题
(2018年湖北省江汉油田)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.
(1)在图①中,画出∠MON的平分线OP;
(2)在图②中,画一个Rt△ABC,使点C在格点上.
(2018年广东省)如图,BD是菱形ABCD的对角线,∠CBD=75°,
(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)
(2)在(1)条件下,连接BF,求∠DBF的度数.
(2018年甘肃省兰州市(a卷))如图,在Rt△ABC中.
(1)利用尺规作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;
(2)利用尺规作图,作出(1)中的线段PD.
(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)
(2018年甘肃省定西市)如图,在△ABC中,∠ABC=90°.
(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)
(2)判断(1)中AC与⊙O的位置关系,直接写出结果.
(2018年安徽省)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.
(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;
(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;
(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是 个平方单位.
(2018年浙江省丽水义乌金华市)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.
(2018年四川省眉山市)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:
(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;
(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;
(3)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(﹣4,﹣2),请直接写出直线l的函数解析式.
(2018年福建省(A卷))求证:相似三角形对应边上的中线之比等于相似比.
要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;
②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.
(2018年广东省广州市)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.
(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法)
(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.
第五章图形与变换第26节 尺规作图
■考点1.网格作图:利用平移、旋转、轴对称、中心对称、位似在网格中作图称为网格作图
■考点2.尺规作图
(1)尺规作图的定义:
在几何里把限定用没有刻度的直尺和圆规来画图,称为尺规作图,最基本最常用的尺规作图,称为基本作图.
(2)五种基本尺规作图:①作一条线段等于已知线段;②作一个角等于已知角:③作一个角的角平分线:④作线段的垂直平分线:⑤经过一点作已知直线的垂线.
(3)尺规作图的步骤:
①已知:写出已知的线段和角,画出图形;
②求作:求作什么图形,它符合什么条件,一一具体化;
③作法:应用五种基本作图,叙述时不需要重述基本作图的过程,但图中必须保留基本作图的痕迹;
④证明:为了验证所作图形的正确性,把图作出后,根据有关的定义、定理等并结合作法证明所作图形完全符合题设条件;
⑤对所作图形下结论.
(4)作三角形:①已知三边作三角形;②已知两边及其夹角作三角形:③已知两角及其夹边作三角形:④已知底边及底边上的高作等腰三角形.21*cnjy*com
(5)探究如何过一点、两点和不在同一直线上的三点作圆.
■考点1.网格作图
◇典例:
(2018年河南省)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.
(1)求反比例函数的解析式;
(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:
①四个顶点均在格点上,且其中两个顶点分别是点O,点P;
②矩形的面积等于k的值.
【考点】作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质
【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;
(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.
解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),
∴k=2×2=4,
∴反比例函数的解析式为y=;
(2)如图所示:
矩形OAPB、矩形OCDP即为所求作的图形.
【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.
◆变式训练
(2018年吉林省)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:
第一步:点D绕点A顺时针旋转180°得到点D1;
第二步:点D1绕点B顺时针旋转90°得到点D2;
第三步:点D2绕点C顺时针旋转90°回到点D.
(1)请用圆规画出点D→D1→D2→D经过的路径;
(2)所画图形是 对称图形;
(3)求所画图形的周长(结果保留π).
【考点】作图﹣旋转变换,弧长公式,轴对称图形
【分析】(1)利用旋转变换的性质画出图象即可;
(2)根据轴对称图形的定义即可判断;
(3)利用弧长公式计算即可;
解:(1)点D→D1→D2→D经过的路径如图所示:
(2)观察图象可知图象是轴对称图形,
故答案为轴对称.
(3)周长=4×=8π.
【点评】本题考查作图﹣旋转变换,弧长公式、轴对称图形等知识,解题的关键是理解题意,正确画出图形,属于中考常考题型.
■考点2.尺规作图
◇典例
(2018年四川省自贡)如图,在△ABC中,∠ACB=90°.
(1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明)
(2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)
【考点】作图﹣复杂作图,切线的判定和性质,相似三角形的判定和性质、勾股定理、角平分线的定义,等腰三角形的判定和性质
【分析】(1)作∠ABC的角平分线交AC于E,作EO⊥AC交AB于点O,以O为圆心,OB为半径画圆即可解决问题;
(2)作OH⊥BC于H.首先求出OH、EC、BE,利用△BCE∽△BED,可得=,解决问题;
解:(1)⊙O如图所示;
(2)作OH⊥BC于H.
∵AC是⊙O的切线,
∴OE⊥AC,
∴∠C=∠CEO=∠OHC=90°,
∴四边形ECHO是矩形,
∴OE=CH=,BH=BC﹣CH=,
在Rt△OBH中,OH==2,
∴EC=OH=2,BE==2,
∵∠EBC=∠EBD,∠BED=∠C=90°,
∴△BCE∽△BED,
∴=,
∴=,
∴DE=.
【点评】本题考查作图﹣复杂作图,切线的判定和性质,相似三角形的判定和性质、勾股定理、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
◆变式训练
(2018年安徽省)如图,⊙O为锐角△ABC的外接圆,半径为5.
(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);
(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.
【考点】三角形的外接圆与外心;作图—复杂作图
【分析】(1)利用基本作图作AE平分∠BAC;
(2)连接OE交BC于F,连接OC,如图,根据圆周角定理得到=,再根据垂径定理得到OE⊥BC,则EF=3,OF=2,然后在Rt△OCF中利用勾股定理计算出CF=,在Rt△CEF中利用勾股定理可计算出CE.
解:(1)如图,AE为所作;
(2)连接OE交BC于F,连接OC,如图,
∵AE平分∠BAC,
∴∠BAE=∠CAE,
∴=,
∴OE⊥BC,
∴EF=3,
∴OF=5﹣3=2,
在Rt△OCF中,CF==,
在Rt△CEF中,CE==.
【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了三角形的外心.
一、 选择题
(2018年湖北省宜昌市)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是( )
A. B. C. D.
【考点】垂线;作图—基本作图
【分析】根据过直线外一点向直线作垂线即可.
已知:直线AB和AB外一点C.
求作:AB的垂线,使它经过点C.
作法:(1)任意取一点K,使K和C在AB的两旁.
(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.
(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,
(4)作直线CF.
直线CF就是所求的垂线.
故选:B.
【点评】此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.
(2018年河北省)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;
Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.
如图是按上述要求排乱顺序的尺规作图:
则正确的配对是( )
A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
C.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
【考点】基本作图-直线的垂线作法
【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.
解:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;
Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.
如图是按上述要求排乱顺序的尺规作图:
则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.
故选:D.
【点评】此题主要考查了基本作图,正确掌握基本作图方法是解题关键.
(2018年贵州省安顺市)已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是
( )
A. B.
C. D.
【考点】作图—复杂作图,线段垂直平分线
【分析】利用线段垂直平分线的性质以及圆的性质分别分得出即可.
解:A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;
B、如图所示:此时PA=PC,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;
C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;
D、如图所示:此时BP=AP,故能得出PA+PC=BC,故此选项正确;
故选:D.
【点评】此题主要考查了复杂作图,根据线段垂直平分线的性质得出是解题关键.
二、 填空题
(2018年内蒙古通辽市)如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD的面积为 .
【考点】作图—基本作图,等边三角形的判定和性质
【分析】只要证明△ABD是等边三角形,推出BD=AD=DC,可得S△ADC=S△ABD即可解决问题;
解:由作图可知,MN垂直平分线段AC,
∴DA=DC,
∴∠C=∠DAC=30°,
∴∠ADB=∠C+∠DAC=60°,
∵AB=AD,
∴△ABD是等边三角形,
∴BD=AD=DC,
∴S△ADC=S△ABD=×62=9,
故答案为9.
【点评】本题考查作图基本作图,三角形的面积,等边三角形的判定和性质,等高模型等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型。
(2018年天津市)如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.
(1)的大小为__________(度);
(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.
【考点】作图-应用与设计,勾股定理
【分析】(1)利用勾股定理即可解决问题;
(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.
解:(1)∵每个小正方形的边长为1,
∴AC=,BC=,AB=,
∵
∴
∴ΔABC是直角三角形,且∠C=90°
故答案为90;
(2)如图,即为所求.
【点睛】本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.
三、 解答题
(2018年广西贵港市)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.
【考点】尺规作图
【分析】根据作一个角等于已知角,线段截取以及垂线的尺规作法即可求出答案.
解:如图所示,
△ABC为所求作
(2018年北京市)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.
已知:直线l及直线l外一点P.
求作:直线PQ,使得PQ∥l.
作法:如图,
①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;
②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;
③作直线PQ.所以直线PQ就是所求作的直线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵AB= ,CB= ,
∴PQ∥l( )(填推理的依据).
【考点】作图﹣复杂作图,平行线的判定和性质,三角形中位线定理
【分析】(1)根据题目要求作出图形即可;
(2)利用三角形中位线定理证明即可;
(1)解:直线PQ如图所示;
(2)证明:∵AB=AP,CB=CQ,
∴PQ∥l(三角形中位线定理).
故答案为:AP,CQ,三角形中位线定理;
【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
(2018年宁夏)已知:△ABC三个顶点的坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).
(1)画出△ABC关于x轴对称的△A1B1C1;
(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2,并写出点B2的坐标.
【考点】作图﹣轴对称变换;作图﹣位似变换
【分析】(1)利用关于y轴对称点的性质得出对应点得出即可;
(2)利用位似图形的性质得出对应点坐标进而得出答案.
解:(1)如图所示:△A1B1C1即为所求:
(2)如图所示:△A2B2C2即为所求; B2(10,8)
【点评】此题主要考查了位似变换与轴对称变换,得出对应点位置是解题关键.
(2018年湖北省天门、仙桃、潜江、江汉油田市)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.
(1)在图①中,画出∠MON的平分线OP;
(2)在图②中,画一个Rt△ABC,使点C在格点上.
【考点】菱形的性质;作图—应用与设计作图
【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;
(2)利用菱形以及平行线的性质即可解决问题;
解:(1)如图所示,射线OP即为所求.
(2)如图所示,点C即为所求;
【点评】本题考查作图﹣应用与设计、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
(2018年黑龙江省龙东、七台河、佳木斯、鸡西、伊春、鹤岗、双鸭山)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).
(1)画出△ABC关于x轴对称的△A1B1C1;
(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;
(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).
【考点】旋转变换作图,轴对称,扇形面积公式
【分析】(1)利用轴对称的性质画出图形即可;
(2)利用旋转变换的性质画出图形即可;
(3)BC扫过的面积=﹣,由此计算即可;
解:(1)△ABC关于x轴对称的△A1B1C1如图所示;
(2)△ABC绕点O逆时针旋转90°后的△A2B2C2如图所示;
(3)BC扫过的面积=﹣=﹣=2π.
【点评】本题考查了利用旋转变换作图,轴对称和扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.
一、 选择题
(2018年四川省巴中市)如图,在Rt△ABC中,∠C=90°,按下列步骤作图:①以点B为圆心,适当长为半径画弧,与AB,BC分别交于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧交于点P;③作射线BP交AC于点F;④过点F作FG⊥AB于点G.下列结论正确的是( )
A.CF=FG B.AF=AG C.AF=CF D.AG=FG
【考点】角平分线的性质;作图—复杂作图
【分析】根据作图的过程知道:EF是∠CBG的角平分线,根据角平分线的性质解答.
解:根据作图的步骤得到:EF是∠CBG的角平分线,
A.因为EF是∠CBG的角平分线,FG⊥AB,CF⊥BC,所以CF=FG,故本选项正确;
B、AF是直角△AFG的斜边,AF>AG,故本选项错误;
C、EF是∠CBG的角平分线,但是点F不一定是AC的中点,即AF与CF不一定相等,故本选项错误;
D、当Rt△ABC是等腰直角三角形时,等式AG=FG才成立,故本选项错误;
故选:A.
【点评】考查了作图﹣﹣复杂作图和角平分线的性质,根据作图的步骤推知EF是∠CBG的角平分线,是解题的关键.
(2018年河南省)如图,已知?AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为( )
A.(﹣1,2) B.(,2) C.(3﹣,2) D.(﹣2,2)
【考点】角平分线的作法,勾股定理,平行四边形的性质
【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).
解:∵?AOBC的顶点O(0,0),A(﹣1,2),
∴AH=1,HO=2,
∴Rt△AOH中,AO=,
由题可得,OF平分∠AOB,
∴∠AOG=∠EOG,
又∵AG∥OE,
∴∠AGO=∠EOG,
∴∠AGO=∠AOG,
∴AG=AO=,
∴HG=﹣1,
∴G(﹣1,2),
故选:A.
【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.
二、 填空题
(2018年江苏省南通市)下面是“作一个30°角”的尺规作图过程.
已知:平面内一点A.
求作:∠A,使得∠A=30°.
作图:如图,
(1)作射线AB;
(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;
(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.
请回答:该尺规作图的依据是 .
【考点】圆周角定理
【分析】连接OD、CD.只要证明△ODC是等边三角形即可解决问题;
解:连接OD、CD.
由作图可知:OD=OC=CD,
∴△ODC是等边三角形,
∴∠DCO=60°,
∵AC是⊙O直径,
∴∠ADC=90°,
∴∠DAB=90°﹣60°=30°.
∴作图的依据是:直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等,
故答案为直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等.
【点评】本题考查作图﹣复杂作图,圆的有关性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
(2018年天津市)如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.
(1)的大小为__________(度);
(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.
【考点】作图-应用与设计,勾股定理
【分析】(1)利用勾股定理即可解决问题;
(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.
解:(1)∵每个小正方形的边长为1,
∴AC=,BC=,AB=,
∵
∴
∴ΔABC是直角三角形,且∠C=90°
故答案为90;
(2)如图,即为所求.
【点睛】本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.
(2018年湖北省荆州市)已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC即为所求.上述作图用到了全等三角形的判定方法,这个方法是 .
【考点】全等三角形的判定;作图—基本作图
【分析】利用基本作图得到OM=ON,CM=CN,加上公共边OC,则可根据SSS证明三角形全等.
解:由作法①知,OM=ON,
由作法②知,CM=CN,
∵OC=OC,
∴△OCM≌△OCN(SSS),
故答案为:SSS.
【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定.
(2018年浙江省衢州市 )定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.
如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.
若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……
△An﹣1Bn﹣1Cn﹣1经γ(n,180°)变换后得△AnBnCn,则点A1的坐标是 ,点A2018的坐标是 .
【考点】规律型:点的坐标;作图﹣平移变换;作图﹣旋转变换.
【分析】分析图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.向右平移n个单位变换就是横坐标加n,纵坐标不变,关于原点作中心对称变换就是横纵坐标都变为相反数.写出几次变换后的坐标可以发现其中规律.
解:根据图形的γ(a,θ)变换的定义可知:
对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.
△ABC经γ(1,180°)变换后得△A1B1C1,A1 坐标(﹣,﹣)
△A1B1C1经γ(2,180°)变换后得△A2B2C2,A2坐标(﹣,)
△A2B2C2经γ(3,180°)变换后得△A3B3C3,A3坐标(﹣,﹣)
△A3B3C3经γ(4,180°)变换后得△A4B4C4,A4坐标(﹣,)
△A4B4C4经γ(5,180°)变换后得△A5B5C5,A5坐标(﹣,﹣)
依此类推……
可以发现规律:An纵坐标为:
当n是奇数,An横坐标为:﹣
当n是偶数,An横横坐标为:﹣
当n=2018时,是偶数,A2018横坐标是﹣,纵坐标为
故答案为:(﹣,﹣),(﹣,).
【点评】本题是规律探究题,又是材料阅读理解题,关键是能正确理解图形的γ(a,θ)变换的定义后运用,关键是能发现连续变换后出现的规律,该题难点在于点的横纵坐标各自存在不同的规律,需要分别来研究.
三、 解答题
(2018年湖北省江汉油田)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.
(1)在图①中,画出∠MON的平分线OP;
(2)在图②中,画一个Rt△ABC,使点C在格点上.
【考点】菱形的性质;作图—应用与设计作图
【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;
(2)利用菱形以及平行线的性质即可解决问题;
解:(1)如图所示,射线OP即为所求.
(2)如图所示,点C即为所求;
【点评】本题考查作图﹣应用与设计、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
(2018年广东省)如图,BD是菱形ABCD的对角线,∠CBD=75°,
(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)
(2)在(1)条件下,连接BF,求∠DBF的度数.
【考点】作图﹣基本作图,线段的垂直平分线的性质,菱形的性质
【分析】(1)分别以A.B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;
(2)根据∠DBF=∠ABD﹣∠ABF计算即可;
解:(1)如图所示,直线EF即为所求;
(2)∵四边形ABCD是菱形,
∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.
∴∠ABC=150°,∠ABC+∠C=180°,
∴∠C=∠A=30°,
∵EF垂直平分线线段AB,
∴AF=FB,
∴∠A=∠FBA=30°,
∴∠DBF=∠ABD﹣∠FBE=45°.
【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.
(2018年甘肃省兰州市(a卷))如图,在Rt△ABC中.
(1)利用尺规作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;
(2)利用尺规作图,作出(1)中的线段PD.
(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)
【考点】点到直线的距离;作图—复杂作图
【分析】(1)由点P到AB的距离(PD的长)等于PC的长知点P在∠BAC平分线上,再根据角平分线的尺规作图即可得;
(2)根据过直线外一点作已知直线的垂线的尺规作图即可得.
解:(1)如图,点P即为所求;
(2)如图,线段PD即为所求.
【点评】本题考查作图﹣复杂作图、角平分线的性质定理等知识,解题的关键是熟练掌握基本作图,灵活运用所学知识解决问题,属于中考常考题型.
(2018年甘肃省定西市)如图,在△ABC中,∠ABC=90°.
(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)
(2)判断(1)中AC与⊙O的位置关系,直接写出结果.
【考点】复杂作图,角平分线的性质与作法,直线与圆的位置关系
【分析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即可;
(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.
解:(1)如图所示:
;
(2)相切;过O点作OD⊥AC于D点,
∵CO平分∠ACB,
∴OB=OD,即d=r,
∴⊙O与直线AC相切,
【点评】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出是解题关键.
(2018年安徽省)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.
(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;
(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;
(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是 个平方单位.
【考点】作图﹣旋转变换;作图﹣位似变换
【分析】(1)以点O为位似中心,将线段AB放大为原来的2倍,即可画出线段A1B1;
(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,即可画出线段A2B1;
(3)连接AA2,即可得到四边形AA1B1A2为正方形,进而得出其面积.
解:(1)如图所示,线段A1B1即为所求;
(2)如图所示,线段A2B1即为所求;
(3)由图可得,四边形AA1B1A2为正方形,
∴四边形AA1B1A2的面积是()2=()2=20.
故答案为:20.
【点评】此题主要考查了位似变换以及旋转的性质以及勾股定理等知识的运用,利用相似变换的性质得出对应点的位置是解题关键.
(2018年浙江省丽水义乌金华市)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.
【考点】作图—应用与设计作图
【分析】利用数形结合的思想解决问题即可;
解:符合条件的图形如图所示:
【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
(2018年四川省眉山市)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:
(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;
(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;
(3)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(﹣4,﹣2),请直接写出直线l的函数解析式.
【考点】待定系数法求一次函数解析式;作图﹣平移变换;作图﹣旋转变换
【分析】(1)利用网格特点和平移的性质写出点A.B、C的对应点A1、B1、C1的坐标,然后描点得到△A1B1C1;
(2)根据关于原点中心对称的点的坐标特征写出点A2、B2、C2的坐标,然后描点即可;
(3)根据对称的特点解答即可.
解:(1)如图,△A1B1C1为所作,C1(﹣1,2);
(2)如图,△A2B2C2为所作,C2(﹣3,﹣2);
(3)因为A的坐标为(2,4),A3的坐标为(﹣4,﹣2),
所以直线l的函数解析式为y=﹣x,
【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换和平移变换.
(2018年福建省(A卷))求证:相似三角形对应边上的中线之比等于相似比.
要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;
②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.
【考点】作图—复杂作图,相似三角形的判定与性质
【分析】(1)作∠A'B'C=∠ABC,即可得到△A'B′C′;
(2)依据D是AB的中点,D'是A'B'的中点,即可得到=,根据△ABC∽△A'B'C',即可得到=,∠A'=∠A,进而得出△A'C'D'∽△ACD,可得==k.
解:(1)如图所示,△A'B′C′即为所求;
(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,
求证:=k.
证明:∵D是AB的中点,D'是A'B'的中点,
∴AD=AB,A'D'=A'B',
∴==,
∵△ABC∽△A'B'C',
∴=,∠A'=∠A,
∵=,∠A'=∠A,
∴△A'C'D'∽△ACD,
∴==k.
【点评】本题考查了作图—复杂作图,相似三角形的判定与性质,主要利用了相似三角形的性质,相似三角形对应边成比例的性质,以及两三角形相似的判定方法,要注意文字叙述性命题的证明格式。
(2018年广东省广州市)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.
(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法)
(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.
【考点】全等三角形的判定与性质,矩形的判定与性质,作图—基本作图,轴对称的应用-最短距离问题,相似三角形的判定与性质
【分析】(1)根据角平分的做法即可画出图.(2)①在AD上取一点F使DF=DC,连接EF;角平分线定义得∠FDE=∠CDE;根据全等三角形判定SAS得△FED≌△CDE,再由全等三角形性质和补角定义得∠DFE=∠DCE=∠AFE=90°,
∠DEF=∠DEC;再由直角三角形全等的判定HL得Rt△AFE≌Rt△ABE,由全等三角形性质得∠AEB=∠AEF,再由补角定义可得AE⊥DE.
②过点D作DP⊥AB于点P;由①可知,B,F关于AE对称,根据对称性质知BM=FM,
当F,M,N三点共线且FN⊥AB时,有最小值,即BM+MN=FM+MN=FN;在Rt△APD中,根据勾股定理得DP= = ;由相似三角形判定得△AFN∽△ADP,再由相似三角形性质得 ,从而求得FN,即BM+MN的最小值.
解:(1)
(2)①证明:在AD上取一点F使DF=DC,连接EF,
∵DE平分∠ADC,
∴∠FDE=∠CDE,
在△FED和△CDE中,
DF=DC,∠FDE=∠CDE,DE=DE
∴△FED≌△CDE(SAS),
∴∠DFE=∠DCE=90°,∠AFE=180°-∠DFE=90°
∴∠DEF=∠DEC,
∵AD=AB+CD,DF=DC,
∴AF=AB,
在Rt△AFE≌Rt△ABE(HL)
∴∠AEB=∠AEF,
∴∠AED=∠AEF+∠DEF= ∠CEF+ ∠BEF= (∠CEF+∠BEF)=90°.
∴AE⊥DE
②解:过点D作DP⊥AB于点P,
∵由①可知,B,F关于AE对称,BM=FM,
∴BM+MN=FM+MN,
当F,M,N三点共线且FN⊥AB时,有最小值,
∵DP⊥AB,AD=AB+CD=6,
∴∠DPB=∠ABC=∠C=90°,
∴四边形DPBC是矩形,
∴BP=DC=2,AP=AB-BP=2,
在Rt△APD中,DP= = ,
∵FN⊥AB,由①可知AF=AB=4,
∴FN∥DP,
∴△AFN∽△ADP
∴ ,
即 ,
解得FN= ,
∴BM+MN的最小值为
【点评】本题考查作图-基本作图,轴对称最短问题,全等三角形的判定和性质,等腰三角
形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等角形解决问题,学
会利用轴对称解决最短问题,属于中考常考题型。