【备考2019】数学中考一轮复习学案 第30节 统计与分析(含解析)

文档属性

名称 【备考2019】数学中考一轮复习学案 第30节 统计与分析(含解析)
格式 zip
文件大小 1.3MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2019-01-23 13:12:05

文档简介


第六章概率与统计第30节统计与分析 ■知识点一:数据收集、整理
数据收集
数据收集常用方法
(1)普查;(2) 抽样调查.
收集数据时常见的统计量
(1)总体:要考察的全体对象;
(2)个体:组成总体的每一个考察对象;
(3)样本:被抽查的那些个体组成一个样本;
(4)样本容量:样本中个体的数目.
■知识点二:反映数据集中程度的量
1.平均数
x1,x2,…,xn的平均数=(x1+x2+…+xn).
2.加权平均数
(1)一般地,若n个数x1,x2,…,xn的权分别是ω1,ω2,…,ωn,则叫做这n个数的加权平均数.
(2)若x1出现f1次,x2出现f2次,…,xk出现fk次,且f1+f2+…+fk=n,则这k个数的加权平均数=(x1f1+x2f2+…+xkfk).
计算平均数时注意分辨是算术平均数还是加权平均数,两者计算方法有差异,不能混淆.
3.中位数
一组数据按从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.
4.众数
一组数据中出现次数最多的数据.一组数据的众数可能有多个,也可能没有.
■知识点三:反映数据离散程度的量
1.方差
方差公式
公式:设x1,x2,…,xn的平均数为,则这n个数据的方差为s2=[(x1-)2+(x2- )2+…+(xn- )2].
方差反映一组数据的波动程度,若该组每个数据变化相同,则方差不变.若数据a1,a2,……an的方差是s,则数据a1+b,a2+b,……an+b的方差仍然是s,数据ka1+b,ka2+b,……kan+b的方差是k2s.
2.方差意义
方差越大,数据的波动越大;方差越小,数据的波动越小,越稳定.
■知识点四:数据的整理和描述
1.频数、频率
(1)频数:每个对象出现的次数.
(2)频率:频数与数据总数的比.
2.统计图
(1)条形统计图能够显示每组中的具体数据.
(2)扇形统计图能够显示部分在总体中的百分比.
(3)折线统计图能够显示数据的变化趋势.
(4)频数分布直方图能够显示数据的分布情况.
3.画频数分布直方图的步骤
(1)计算最大值与最小值的差;
(2)决定组距与组数;
(3)决定分点;
(3)列频数分布表;
(4)画频数分布直方图.
■考点1.数据收集、整理
◇典例:
1.(2018年贵州省贵阳)在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是(  )
A.抽取乙校初二年级学生进行调查
B.在丙校随机抽取600名学生进行调查
C.随机抽取150名老师进行调查
D.在四个学校各随机抽取150名学生进行调査
【考点】全面调查与抽样调查
【分析】根据抽样调查的具体性和代表性解答即可.
解:为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,在四个学校各随机抽取150名学生进行调査最具有具体性和代表性,
故选:D.
【点评】此题考查抽样调查,关键是理解抽样调查的具体性和代表性.
2.(2018年山东省莱芜市)我市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A非常了解、B了解、C了解较少、D不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:
(1)此次共调查了   名学生;
(2)扇形统计图中D所在扇形的圆心角为   ;
(3)将上面的条形统计图补充完整;
(4)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数.
【考点】条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体
【分析】(1)根据B的人数除以占的百分比即可得到总人数;
(2)先根据题意列出算式,再求出即可;
(3)先求出对应的人数,再画出即可;
(4)先列出算式,再求出即可.
解:(1)(25+23)÷40%=120(名),
即此次共调查了120名学生,
故答案为:120;
(2)360°×=54°,
即扇形统计图中D所在扇形的圆心角为54°,
故答案为:54°;
(3)如图所示:;
(4)800×=200(人),
答:估计对食品安全知识“非常了解”的学生的人数是200人.
【点评】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键.
◆变式训练
1.(2018年贵州省安顺市)要调查安顺市中学生了解禁毒知识的情况,下列抽样调查最适合的是(  )
A.在某中学抽取200名女生
B.在安顺市中学生中抽取200名学生
C.在某中学抽取200名学生
D.在安顺市中学生中抽取200名男生
2.(2018年江苏省常州市)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.
根据统计图提供的信息,解答下列问题:
(1)本次抽样调查的样本容量是   ;
(2)补全条形统计图;
(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.
■考点2.反映数据集中程度的量
◇典例
1.(2018年湖南省株洲市)睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一,小强同学通过问卷调查的方式了解到本班三位同学某天的睡眠时间分别为7.8小时,8.6小时,8.8小时,则这三位同学该天的平均睡眠时间是   .
【考点】算术平均数
【分析】求出已知三个数据的平均数即可.
解:根据题意得:(7.8+8.6+8.8)÷3=8.4小时,
则这三位同学该天的平均睡眠时间是8.4小时,
故答案为:8.4小时
【点评】此题考查了算术平均数,熟练掌握算术平均数的定义是解本题的关键.
2.(2018年广西玉林市)五名工人每天生产零件数分别是:5,7,8,5,10,则这组数据的中位数是   .
【考点】中位数
【分析】根据将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案.
解:把数据从小到大排列:5,5,7,8,10,
中位数为7,
故答案为:7.
【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 
3.(2018年湖南省衡阳)某公司有10名工作人员,他们的月工资情况如表,根据表中信息,该公司工作人员的月工资的众数是   .
职务
经理
副经理
A类职员
B类职员
C类职员
人数
1
2
2
4
1
月工资(万元/人)
2
1.2
0.8
0.6
0.4
【考点】众数
【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.
解:由表可知0.6万元出现次数最多,有4次,
所以该公司工作人员的月工资的众数是0.6万元,
故答案为:0.6万元.
【点评】本题主要考查众数,解题的关键是掌握众数的定义:众数是指一组数据中出现次数最多的数据.
◆变式训练
1.(2018年四川省宜宾市)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师笔试、面试成绩如下表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为   .
教师
成绩



笔试
80分
82分
78分
面试
76分
74分
78分
2. (2018年四川省甘孜州)某校篮球队五名主力队员的身高分别是173,180,181,176,178(单位:cm),则这五名运动员身高的中位数是(  )
A.181cm B.180cm C.178cm D.176cm
3. (2018年福建省)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为   .
■考点3.反映数据离散程度的量
◇典例:
1.(018年内蒙古包头)一组数据1,3,4,4,4,5,5,6的众数和方差分别是(  )
A.4,1 B.4,2 C.5,1 D.5,2
【考点】方差,众数
【分析】根据题目中的数据可以直接写出众数,求出相应的平均数和方差,从而可以解答本题.
解:数据1,3,4,4,4,5,5,6的众数是4,

则=2,
故选:B.
【点评】本题考查方差和众数,解答本题的关键是明确众数的定义,会求一组数据的方差.
◆变式训练
(2018年河北省)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:==13,==15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是(  )
A.甲 B.乙 C.丙 D.丁
■考点4.数据的整理和描述
◇典例:
(2018年四川省成都市)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如图不完整的统计图表.
满意度
人数
所占百分比
非常满意
12
10%
满意
54
m
比较满意
n
40%
不满意
6
5%
根据图表信息,解答下列问题:
(1)本次调查的总人数为   ,表中m的值   ;
(2)请补全条形统计图;
(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.
【考点】用样本估计总体;条形统计图;加权平均数
【分析】(1)利用12÷10%=120,即可得到m的值;用120×40%即可得到n的值.
(2)根据n的值即可补全条形统计图;
(3)根据用样本估计总体,3600××100%,即可答.
解:(1)12÷10%=120,故m=120,
n=120×40%=48,m==45%.
故答案为120,45%.
(2)根据n=48,画出条形图:
(3)3600××100%=1980(人),
答:估计该景区服务工作平均每天得到1980名游客的肯定.
【点评】本题考查了条形统计图、扇形统计图等知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
◆变式训练
(2018年湖南省长沙市)为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图(得分为整数,满分为10分,最低分为6分)
请根据图中信息,解答下列问题:
(1)本次调查一共抽取了   名居民;
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品?
选择题
(2018年重庆市(B卷))下列调查中,最适合采用全面调查(普查)的是(  )
A.对我市中学生每周课外阅读时间情况的调查
B.对我市市民知晓“礼让行人”交通新规情况的调查
C.对我市中学生观看电影《厉害了,我的国》情况的调查
D.对我国首艘国产航母002型各零部件质量情况的调查
(2018年四川省内江市)为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指(  )
A.400
B.被抽取的400名考生
C.被抽取的400名考生的中考数学成绩
D.内江市2018年中考数学成绩
(2018年浙江省嘉兴市)2018年1~4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是(  )
A.1月份销量为2.2万辆
B.从2月到3月的月销量增长最快
C.4月份销量比3月份增加了1万辆
D.1~4月新能源乘用车销量逐月增加
(2018年广西南宁、北海、钦州、防城港市北部经济湾区)某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为(  )
A.7分 B.8分 C.9分 D.10分
填空题
(2018年浙江省杭州市临安市)为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼   条.
(2018年贵州省贵阳市)某班50名学生在2018年适应性考试中,数学成绩在100?110分这个分数段的频率为0.2,则该班在这个分数段的学生为   人.
(2018年湖南省长沙市)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如图扇形统计图,则“世界之窗”对应扇形的圆心角为   度.
解答题
(2018年浙江省嘉兴市)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格),随机各抽取了20个样品进行检测,过程如下:
收集数据(单位:mm)
甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.
乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.
整理数据:
组别
频率
165.5~170.5
170.5~175.5
175.5~180.5
180.5~185.5
185.5~190.5
190.5~195.5
甲车间
2
4
5
6
2
1
乙车间
1
2
a
b
2
0
分析数据:
车间
平均数
众数
中位数
方差
甲车间
180
185
180
43.1
乙车间
180
180
180
22.6
应用数据:
(1)计算甲车间样品的合格率.
(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?
(3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.
(2018年浙江省杭州市)某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾,下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).
某校七年级各班一周收集的可回收垃圾的质量的频数表
组别(kg)
频数
4.0~4.5
2
4.5~5.0
a
5.0~5.5
3
5.5~6.0
1
(1)求a的值
(2)已知收集的可回收垃圾以0.8元/kg被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到50元?
(2018年贵州省遵义市)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:
(1)本次调查的总人数为   人,扇形统计图中A部分的圆心角是   度.
(2)请补全条形统计图.
(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?

选择题
(2018年辽宁省葫芦岛市)下列调查中,调查方式选择最合理的是(  )
A.调查“乌金塘水库”的水质情况,采用抽样调查
B.调查一批飞机零件的合格情况,采用抽样调查
C.检验一批进口罐装饮料的防腐剂含量,采用全面调查
D.企业招聘人员,对应聘人员进行面试,采用抽样调查
(2018年浙江省宁波市)若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为(  )
A.7 B.5 C.4 D.3
(2018年浙江省温州市)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是(  )
A.9分 B.8分 C.7分 D.6分
(2018年浙江省湖州市)某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:
生产件数(件)
10
11
12
13
14
15
人数(人)
1
5
4
3
2
1
则这一天16名工人生产件数的众数是(  )
A.5件 B.11件 C.12件 D.15件
(2018年浙江省台州市)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是(  )
A.18分,17分 B.20分,17分 C.20分,19分 D.20分,20分
(2018年浙江省杭州市临安市)某青年排球队12名队员的年龄情况如表:
年龄
18
19
20
21
22
人数
1
4
3
2
2
则这个队队员年龄的众数和中位数是(  )
A.19,20 B.19,19 C.19,20.5 D.20,19
(2018年浙江省杭州市)测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是(  )
A.方差 B.标准差 C.中位数 D.平均数
、填空题
(2018年湖南省邵阳市)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为   人.
(2018年浙江省温州市)一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为   .
(2018年浙江省衢州市 )数据5,5,4,2,3,7,6的中位数是   .
(2018年浙江省丽水义乌金华市)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是   .
解答题
(2018年浙江省温州市)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:
(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.
(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.
(2018年浙江省宁波市)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:
(1)求本次调查的学生人数;
(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;
(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.
(2018年浙江省湖州市)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整).
(1)求扇形统计图中交通监督所在扇形的圆心角度数;
(2)求D班选择环境保护的学生人数,并补全折线统计图;
(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.
(2018年浙江省绍兴市)为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:
根据统计图,回答下列问题:
(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.
(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.
(2018年浙江省舟山市)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格),随机各抽取了20个样品进行检测,过程如下:
收集数据(单位:mm)
甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.
乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.
整理数据:
组别
频数
165.5~170.5
170.5~175.5
175.5~180.5
180.5~185.5
185.5~190.5
190.5~195.5
甲车间
2
4
5
6
2
1
乙车间
1
2
a
b
2
0
分析数据:
车间
平均数
众数
中位数
方差
甲车间
180
185
180
43.1
乙车间
180
180
180
22.6
应用数据:
(1)计算甲车间样品的合格率.
(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?
(3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.

第六章概率与统计第30节统计与分析 ■知识点一:数据收集、整理
数据收集
数据收集常用方法
(1)普查;(2) 抽样调查.
收集数据时常见的统计量
(1)总体:要考察的全体对象;
(2)个体:组成总体的每一个考察对象;
(3)样本:被抽查的那些个体组成一个样本;
(4)样本容量:样本中个体的数目.
■知识点二:反映数据集中程度的量
1.平均数
x1,x2,…,xn的平均数=(x1+x2+…+xn).
2.加权平均数
(1)一般地,若n个数x1,x2,…,xn的权分别是ω1,ω2,…,ωn,则叫做这n个数的加权平均数.
(2)若x1出现f1次,x2出现f2次,…,xk出现fk次,且f1+f2+…+fk=n,则这k个数的加权平均数=(x1f1+x2f2+…+xkfk).
计算平均数时注意分辨是算术平均数还是加权平均数,两者计算方法有差异,不能混淆.
3.中位数
一组数据按从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.
4.众数
一组数据中出现次数最多的数据.一组数据的众数可能有多个,也可能没有.
■知识点三:反映数据离散程度的量
1.方差
方差公式
公式:设x1,x2,…,xn的平均数为,则这n个数据的方差为s2=[(x1-)2+(x2- )2+…+(xn- )2].
方差反映一组数据的波动程度,若该组每个数据变化相同,则方差不变.若数据a1,a2,……an的方差是s,则数据a1+b,a2+b,……an+b的方差仍然是s,数据ka1+b,ka2+b,……kan+b的方差是k2s.
2.方差意义
方差越大,数据的波动越大;方差越小,数据的波动越小,越稳定.
■知识点四:数据的整理和描述
1.频数、频率
(1)频数:每个对象出现的次数.
(2)频率:频数与数据总数的比.
2.统计图
(1)条形统计图能够显示每组中的具体数据.
(2)扇形统计图能够显示部分在总体中的百分比.
(3)折线统计图能够显示数据的变化趋势.
(4)频数分布直方图能够显示数据的分布情况.
3.画频数分布直方图的步骤
(1)计算最大值与最小值的差;
(2)决定组距与组数;
(3)决定分点;
(3)列频数分布表;
(4)画频数分布直方图.
■考点1.数据收集、整理
◇典例:
1.(2018年贵州省贵阳)在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是(  )
A.抽取乙校初二年级学生进行调查
B.在丙校随机抽取600名学生进行调查
C.随机抽取150名老师进行调查
D.在四个学校各随机抽取150名学生进行调査
【考点】全面调查与抽样调查
【分析】根据抽样调查的具体性和代表性解答即可.
解:为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,在四个学校各随机抽取150名学生进行调査最具有具体性和代表性,
故选:D.
【点评】此题考查抽样调查,关键是理解抽样调查的具体性和代表性.
2.(2018年山东省莱芜市)我市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A非常了解、B了解、C了解较少、D不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:
(1)此次共调查了   名学生;
(2)扇形统计图中D所在扇形的圆心角为   ;
(3)将上面的条形统计图补充完整;
(4)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数.
【考点】条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体
【分析】(1)根据B的人数除以占的百分比即可得到总人数;
(2)先根据题意列出算式,再求出即可;
(3)先求出对应的人数,再画出即可;
(4)先列出算式,再求出即可.
解:(1)(25+23)÷40%=120(名),
即此次共调查了120名学生,
故答案为:120;
(2)360°×=54°,
即扇形统计图中D所在扇形的圆心角为54°,
故答案为:54°;
(3)如图所示:;
(4)800×=200(人),
答:估计对食品安全知识“非常了解”的学生的人数是200人.
【点评】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键.
◆变式训练
1.(2018年贵州省安顺市)要调查安顺市中学生了解禁毒知识的情况,下列抽样调查最适合的是(  )
A.在某中学抽取200名女生
B.在安顺市中学生中抽取200名学生
C.在某中学抽取200名学生
D.在安顺市中学生中抽取200名男生
【考点】全面调查与抽样调查
【分析】直接利用抽样调查中抽取的样本是否具有代表性,进而分析得出答案.
解:A、在某中学抽取200名女生,抽样具有局限性,不合题意;
B、在安顺市中学生中抽取200名学生,具有代表性,符合题意;
C、在某中学抽取200名学生,抽样具有局限性,不合题意;
D、在安顺市中学生中抽取200名男生,抽样具有局限性,不合题意;
故选:B.
【点评】此题主要考查了抽样调查的意义,正确理解抽样调查是解题关键.
2.(2018年江苏省常州市)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.
根据统计图提供的信息,解答下列问题:
(1)本次抽样调查的样本容量是   ;
(2)补全条形统计图;
(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.
【考点】条形统计图,扇形统计图,总体、个体、样本、样本容量,用样本估计总体
【分析】(1)根据2册的人数除以占的百分比即可得到总人数;
(2)求出1册的人数是100×30%=30人,4册的人数是100﹣30﹣40﹣20=10人,再画出即可;
(3)先列出算式,再求出即可.
解:(1)40÷40%=100(册),
即本次抽样调查的样本容量是100,
故答案为:100;
(2)如图:

(3)12000×(1﹣30%)=8400(人),
答:估计该市初中学生这学期课外阅读超过2册的人数是8400人.
【点评】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键.
■考点2.反映数据集中程度的量
◇典例
1.(2018年湖南省株洲市)睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一,小强同学通过问卷调查的方式了解到本班三位同学某天的睡眠时间分别为7.8小时,8.6小时,8.8小时,则这三位同学该天的平均睡眠时间是   .
【考点】算术平均数
【分析】求出已知三个数据的平均数即可.
解:根据题意得:(7.8+8.6+8.8)÷3=8.4小时,
则这三位同学该天的平均睡眠时间是8.4小时,
故答案为:8.4小时
【点评】此题考查了算术平均数,熟练掌握算术平均数的定义是解本题的关键.
2.(2018年广西玉林市)五名工人每天生产零件数分别是:5,7,8,5,10,则这组数据的中位数是   .
【考点】中位数
【分析】根据将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案.
解:把数据从小到大排列:5,5,7,8,10,
中位数为7,
故答案为:7.
【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 
3.(2018年湖南省衡阳)某公司有10名工作人员,他们的月工资情况如表,根据表中信息,该公司工作人员的月工资的众数是   .
职务
经理
副经理
A类职员
B类职员
C类职员
人数
1
2
2
4
1
月工资(万元/人)
2
1.2
0.8
0.6
0.4
【考点】众数
【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.
解:由表可知0.6万元出现次数最多,有4次,
所以该公司工作人员的月工资的众数是0.6万元,
故答案为:0.6万元.
【点评】本题主要考查众数,解题的关键是掌握众数的定义:众数是指一组数据中出现次数最多的数据.
◆变式训练
1.(2018年四川省宜宾市)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师笔试、面试成绩如下表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为   .
教师
成绩



笔试
80分
82分
78分
面试
76分
74分
78分
【考点】加权平均数
【分析】根据题意先算出甲、乙、丙三人的加权平均数,再进行比较,即可得出答案.
解:∵甲的综合成绩为80×60%+76×40%=78.4(分),
乙的综合成绩为82×60%+74×40%=78.8(分),
丙的综合成绩为78×60%+78×40%=78(分),
∴被录取的教师为乙,其综合成绩为78.8分,
故答案为:78.8分.
【点评】本题考查了加权平均数的计算公式,注意,计算平均数时按60%和40%进行计算.
2. (2018年四川省甘孜州)某校篮球队五名主力队员的身高分别是173,180,181,176,178(单位:cm),则这五名运动员身高的中位数是(  )
A.181cm B.180cm C.178cm D.176cm
【考点】中位数
【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
解:数据从小到大的顺序排列为173,176,178,180,181,
∴这组数据的中位数是178.
故选:C.
【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两个数的平均数.
3. (2018年福建省)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为   .
【考点】众数
【分析】根据众数的定义:一组数据中出现次数最多的数据即为众数.
解:∵这组数据中120出现次数最多,有3次,
∴这组数据的众数为120,
故答案为:120.
【点评】 本题考查了众数的知识,注意掌握一组数据中出现次数最多的数据叫做众数. 
■考点3.反映数据离散程度的量
◇典例:
1.(018年内蒙古包头)一组数据1,3,4,4,4,5,5,6的众数和方差分别是(  )
A.4,1 B.4,2 C.5,1 D.5,2
【考点】方差,众数
【分析】根据题目中的数据可以直接写出众数,求出相应的平均数和方差,从而可以解答本题.
解:数据1,3,4,4,4,5,5,6的众数是4,

则=2,
故选:B.
【点评】本题考查方差和众数,解答本题的关键是明确众数的定义,会求一组数据的方差.
◆变式训练
(2018年河北省)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:==13,==15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是(  )
A.甲 B.乙 C.丙 D.丁
【考点】方差
【分析】方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪种小麦即可.
解:∵=>=,
∴乙、丁的麦苗比甲、丙要高,
∵s甲2=s丁2<s乙2=s丙2,
∴甲、丁麦苗的长势比乙、丙的长势整齐,
综上,麦苗又高又整齐的是丁,
故选:D.
【点评】此题主要考查了方差的意义和应用,要熟练掌握,解答此题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.
■考点4.数据的整理和描述
◇典例:
1(2018年四川省成都市)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如图不完整的统计图表.
满意度
人数
所占百分比
非常满意
12
10%
满意
54
m
比较满意
n
40%
不满意
6
5%
根据图表信息,解答下列问题:
(1)本次调查的总人数为   ,表中m的值   ;
(2)请补全条形统计图;
(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.
【考点】用样本估计总体;条形统计图;加权平均数
【分析】(1)利用12÷10%=120,即可得到m的值;用120×40%即可得到n的值.
(2)根据n的值即可补全条形统计图;
(3)根据用样本估计总体,3600××100%,即可答.
解:(1)12÷10%=120,故m=120,
n=120×40%=48,m==45%.
故答案为120,45%.
(2)根据n=48,画出条形图:
(3)3600××100%=1980(人),
答:估计该景区服务工作平均每天得到1980名游客的肯定.
【点评】本题考查了条形统计图、扇形统计图等知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
◆变式训练
1.(2018年湖南省长沙市)为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图(得分为整数,满分为10分,最低分为6分)
请根据图中信息,解答下列问题:
(1)本次调查一共抽取了   名居民;
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品?
【考点】用样本估计总体;条形统计图;加权平均数;中位数;众数
【分析】(1)根据总数=个体数量之和计算即可;
(2)根据平均数、总数、中位数的定义计算即可;
(3)利用样本估计总体的思想解决问题即可;
解:(1)共抽取:4+10+15+11+10=50(人),
故答案为50;
(2)平均数=(4×6+10×7+15×8=11×9+10×10)=8.26;
众数:得到8分的人最多,故众数为8.
中位数:由小到大排列,知第25,26平均分为8分,故中位数为8分;
(3)得到10分占10÷50=20%,
故500人时,需要一等奖奖品500×20%=100(份).
【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
选择题
(2018年重庆市(B卷))下列调查中,最适合采用全面调查(普查)的是(  )
A.对我市中学生每周课外阅读时间情况的调查
B.对我市市民知晓“礼让行人”交通新规情况的调查
C.对我市中学生观看电影《厉害了,我的国》情况的调查
D.对我国首艘国产航母002型各零部件质量情况的调查
【考点】抽样调查和全面调查
【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
解:A.对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;
B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;
C、对我市中学生观看电影《厉害了,我的国》情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;
D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;
故选:D.
【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
(2018年四川省内江市)为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指(  )
A.400
B.被抽取的400名考生
C.被抽取的400名考生的中考数学成绩
D.内江市2018年中考数学成绩
【考点】总体、个体、样本、样本容量
【分析】直接利用样本的定义,从总体中取出的一部分个体叫做这个总体的一个样本,进而分析得出答案.
解:为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,
在这个问题中,样本是指被抽取的400名考生的中考数学成绩.
故选:C.
【点评】此题主要考查了样本的定义,正确把握定义是解题关键.
(2018年浙江省嘉兴市)2018年1~4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是(  )
A.1月份销量为2.2万辆
B.从2月到3月的月销量增长最快
C.4月份销量比3月份增加了1万辆
D.1~4月新能源乘用车销量逐月增加
【考点】折线统计图
【分析】根据题目中的折线统计图,可以判断各个选项中的结论是否正确,从而可以解答本题.
解:由图可得,
1月份销量为2.2万辆,故选项A正确,
从2月到3月的月销量增长最快,故选项B正确,
4月份销量比3月份增加了4.3﹣3.3=1万辆,故选项C正确,
1~2月新能源乘用车销量减少,2~4月新能源乘用车销量逐月增加,故选项D错误,
故选:D.
【点评】本题考查折线统计图,解答本题的关键是明确题意,利用数形结合的思想解答.
(2018年广西南宁、北海、钦州、防城港市北部经济湾区)某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为(  )
A.7分 B.8分 C.9分 D.10分
【考点】折线统计图,平均数
【分析】根据平均分的定义即可判断;
解:该球员平均每节得分==8,
故选:B.
【点评】本题考查折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的定义;
填空题
(2018年浙江省杭州市临安市)为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼   条.
【考点】用样本估计总体
【分析】捕捞200条,其中有标记的鱼有10条,即在样本中有标记的所占比例为,而在整体中有标记的共有1000条,根据所占比例即可解答.
解:1000=20 000(条).
故答案为:20000.
【点评】本题考查的是通过样本去估计总体.
(2018年贵州省贵阳市)某班50名学生在2018年适应性考试中,数学成绩在100?110分这个分数段的频率为0.2,则该班在这个分数段的学生为   人.
【考点】频数与频率
【分析】频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷数据总数,进而得出即可.
解:∵频数=总数×频率,
∴可得此分数段的人数为:50×0.2=10.
故答案为:10.
【点评】此题主要考查了频数与频率,利用频率求法得出是解题关键.
(2018年湖南省长沙市)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如图扇形统计图,则“世界之窗”对应扇形的圆心角为   度.
【考点】扇形统计图
【分析】根据圆心角=360°×百分比计算即可;
解:“世界之窗”对应扇形的圆心角=360°×(1﹣10%﹣30%﹣20%﹣15%)=90°,
故答案为90.
【点评】本题考查的是扇形统计图的综合运用,读懂统计图是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.
解答题
(2018年浙江省嘉兴市)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格),随机各抽取了20个样品进行检测,过程如下:
收集数据(单位:mm)
甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.
乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.
整理数据:
组别
频率
165.5~170.5
170.5~175.5
175.5~180.5
180.5~185.5
185.5~190.5
190.5~195.5
甲车间
2
4
5
6
2
1
乙车间
1
2
a
b
2
0
分析数据:
车间
平均数
众数
中位数
方差
甲车间
180
185
180
43.1
乙车间
180
180
180
22.6
应用数据:
(1)计算甲车间样品的合格率.
(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?
(3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.
【考点】用样本估计总体;算术平均数;中位数;众数;方差
【分析】(1)利用所列举的数据得出甲车间样品的合格率;
(2)得出乙车间样品的合格产品数进而得出乙车间样品的合格率进而得出答案;
(3)利用平均数、方差的意义分别分析得出答案.
解:(1)甲车间样品的合格率为:×100%=55%;
(2)∵乙车间样品的合格产品数为:20﹣(1+2+2)=15(个),
∴乙车间样品的合格率为:×100%=75%,
∴乙车间的合格产品数为:1000×75%=750(个);
(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好;
②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比较稳定,所以乙车间生产的新产品更好.
【点评】此题主要考查了方差以及利用样本估计总体等知识,正确利用已知数据获取正确信息是解题关键.
(2018年浙江省杭州市)某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾,下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).
某校七年级各班一周收集的可回收垃圾的质量的频数表
组别(kg)
频数
4.0~4.5
2
4.5~5.0
a
5.0~5.5
3
5.5~6.0
1
(1)求a的值
(2)已知收集的可回收垃圾以0.8元/kg被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到50元?
【考点】频数(率)分布表;频数(率)分布直方图
【分析】(1)由频数分布直方图可得4.5~5.0的频数a的值;
(2)先求出该年级这周收集的可回收垃圾的质量的最大值,再乘以单价即可得出答案.
解:(1)由频数分布直方图可知4.5~5.0的频数a=4;
(2)∵该年级这周收集的可回收垃圾的质量小于4.5×2+5×4+5.5×3+6=51.5(kg),
∴该年级这周收集的可回收垃圾被回收后所得金额小于51.5×0.8=41.2元,
∴该年级这周收集的可回收垃圾被回收后所得金额不能达到50元.
【点评】本题主要考查频数分布直方图,解题的关键是根据频数分布直方图得出解题所需数据.
(2018年贵州省遵义市)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:
(1)本次调查的总人数为   人,扇形统计图中A部分的圆心角是   度.
(2)请补全条形统计图.
(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?
【考点】用样本估计总体;扇形统计图;条形统计图
【分析】(1)根据:该项所占的百分比=,圆心角=该项的百分比×360°.两图给出了D的数据,代入即可算出调查的总人数,然后再算出A的圆心角;
(2)根据条形图中数据和调查总人数,先计算出喜欢“科学探究”的人数,再补全条形图;
(3)根据:喜欢某项人数=总人数×该项所占的百分比,计算即得.
解:(1)由条形图、扇形图知:喜欢趣味数学的有48人,占调查总人数的30%.
所以调查总人数:48÷30%=160(人)
图中A部分的圆心角为:=54°
故答案为:160,54°
(2)喜欢“科学探究”的人数:160﹣24﹣32﹣48
=56(人)
补全如图所示
(3)840×=294(名)
答:该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为294名.
【点评】本题考查了条形图和扇形图及用样本估计总体等知识,难度不大,综合性较强.注意三个公式:①该项所占的百分比=,②圆心角=该项的百分比×360°,③喜欢某项人数=总人数×该项所占的百分比.

选择题
(2018年辽宁省葫芦岛市)下列调查中,调查方式选择最合理的是(  )
A.调查“乌金塘水库”的水质情况,采用抽样调查
B.调查一批飞机零件的合格情况,采用抽样调查
C.检验一批进口罐装饮料的防腐剂含量,采用全面调查
D.企业招聘人员,对应聘人员进行面试,采用抽样调查
【考点】全面调查与抽样调查
【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
解:A.了解“乌金塘水库”的水质情况,采用抽样调查,故A正确;
B、了解一批飞机零件的合格情况,适合全面调查,故B错误;
C、了解检验一批进口罐装饮料的防腐剂含量,调查范围广,适合抽样调查,故C错误;
D、企业招聘人员,对应聘人员进行面试,适合全面调查,故D错误;
故选:A.
【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大.
(2018年浙江省宁波市)若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为(  )
A.7 B.5 C.4 D.3
【考点】算术平均数;中位数
【分析】先根据平均数为4求出x的值,然后根据中位数的概念求解.
解:∵数据4,1,7,x,5的平均数为4,
∴=4,
解得:x=3,
则将数据重新排列为1、3、4、5、7,
所以这组数据的中位数为4,
故选:C.
【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
(2018年浙江省温州市)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是(  )
A.9分 B.8分 C.7分 D.6分
【考点】中位数
【分析】将数据重新排列后,根据中位数的定义求解可得.
解:将数据重新排列为6、7、7、7、8、9、9,
所以各代表队得分的中位数是7分,
故选:C.
【点评】本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
(2018年浙江省湖州市)某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:
生产件数(件)
10
11
12
13
14
15
人数(人)
1
5
4
3
2
1
则这一天16名工人生产件数的众数是(  )
A.5件 B.11件 C.12件 D.15件
【考点】众数
【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.
解:由表可知,11件的次数最多,所以众数为11件,
故选:B.
【点评】本题主要考查众数,解题的关键是掌握众数的定义:众数是指一组数据中出现次数最多的数据.
(2018年浙江省台州市)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是(  )
A.18分,17分 B.20分,17分 C.20分,19分 D.20分,20分
【考点】中位数;众数
【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
解:将数据重新排列为17、18、18、20、20、20、23,
所以这组数据的众数为20分、中位数为20分,
故选:D.
【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.
(2018年浙江省杭州市临安市)某青年排球队12名队员的年龄情况如表:
年龄
18
19
20
21
22
人数
1
4
3
2
2
则这个队队员年龄的众数和中位数是(  )
A.19,20 B.19,19 C.19,20.5 D.20,19
【考点】中位数;众数
【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
解:数据19出现了四次最多为众数;20和20处在第6位和第7位,其平均数是20,所以中位数是20.
所以本题这组数据的中位数是20,众数是19.
故选:A.
【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
(2018年浙江省杭州市)测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是(  )
A.方差 B.标准差 C.中位数 D.平均数
【考点】算术平均数;中位数;方差;标准差
【分析】根据中位数的定义解答可得.
解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不易受极端值影响,
所以将最高成绩写得更高了,计算结果不受影响的是中位数,
故选:C.
【点评】本题主要考查方差、标准差、中位数和平均数,解题的关键是掌握中位数的定义.
、填空题
(2018年湖南省邵阳市)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为   人.
【考点】用样本估计总体
【分析】用毕业生总人数乘以“综合素质”等级为A的学生所占百分比即可求得结果.
解:该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为,
故答案为:16000
【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
(2018年浙江省温州市)一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为   .
【考点】算术平均数;众数
【分析】根据平均数的定义可以先求出x的值,再根据众数的定义求出这组数的众数即可.
解:根据题意知=3,
解得:x=3,
则数据为1、2、2、3、3、3、7,
所以众数为3,
故答案为:3.
【点评】本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.
(2018年浙江省衢州市 )数据5,5,4,2,3,7,6的中位数是   .
【考点】中位数.
【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
解:从小到大排列此数据为:2、3、4、5、5、6、7,
一共7个数据,其中5处在第4位为中位数.
故答案为:5.
【点评】考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
(2018年浙江省丽水义乌金华市)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是   .
【考点】众数
【分析】根据众数的概念判断即可.
解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,
则这5年增长速度的众数是6.9%,
故答案为:6.9%.
【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.
解答题
(2018年浙江省温州市)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:
(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.
(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.
【考点】扇形统计图,一元一次方程的应用
【分析】(1)由乙公司蛋糕店数量及其占总数的比例可得总数量,再用总数量乘以甲公司数量占总数量的比例可得;
(2)设甲公司增设x家蛋糕店,根据“该市增设蛋糕店数量达到全市的20%”列方程求解可得.
解:(1)该市蛋糕店的总数为150÷=600家,
甲公司经营的蛋糕店数量为600×=100家;
(2)设甲公司增设x家蛋糕店,
由题意得:20%×(600+x)=100+x,
解得:x=25,
答:甲公司需要增设25家蛋糕店.
【点评】本题主要考查扇形统计图与一元一次方程的应用,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数及根据题意确定相等关系,并据此列出方程.
(2018年浙江省宁波市)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:
(1)求本次调查的学生人数;
(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;
(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.
【考点】用样本估计总体;频数(率)分布直方图;扇形统计图
【分析】(1)由条形图、扇形图中给出的级别A的数字,可计算出调查学生人数;
(2)先计算出C在扇形图中的百分比,用1﹣[(A+D+C)在扇形图中的百分比]可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角.
(3)总人数×课外阅读时间满足3≤t<4的百分比即得所求.
解:(1)由条形图知,A级的人数为20人,
由扇形图知:A级人数占总调查人数的10%
所以:20÷10%=20×=200(人)
即本次调查的学生人数为200人;
(2)由条形图知:C级的人数为60人
所以C级所占的百分比为:×100%=30%,
B级所占的百分比为:1﹣10%﹣30%﹣45%=15%,
B级的人数为200×15%=30(人)
D级的人数为:200×45%=90(人)
B所在扇形的圆心角为:360°×15%=54°.
(3)因为C级所占的百分比为30%,
所以全校每周课外阅读时间满足3≤t<4的人数为:1200×30%=360(人)
答:全校每周课外阅读时间满足3≤t<4的约有360人.
【点评】本题考查了扇形图和条形图的相关知识.题目难度不大.扇形图中某项的百分比=×100%,扇形图中某项圆心角的度数=360°×该项在扇形图中的百分比.
(2018年浙江省湖州市)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整).
(1)求扇形统计图中交通监督所在扇形的圆心角度数;
(2)求D班选择环境保护的学生人数,并补全折线统计图;
(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.
【考点】用样本估计总体;扇形统计图;折线统计图
【分析】(1)由折线图得出选择交通监督的人数,除以总人数得出选择交通监督的百分比,再乘以360°即可求出扇形统计图中交通监督所在扇形的圆心角度数;
(2)用选择环境保护的学生总人数减去A,B,C三个班选择环境保护的学生人数即可得出D班选择环境保护的学生人数,进而补全折线图;
(3)用2500乘以样本中选择文明宣传的学生所占的百分比即可.
解:(1)选择交通监督的人数是:12+15+13+14=54(人),
选择交通监督的百分比是:×100%=27%,
扇形统计图中交通监督所在扇形的圆心角度数是:360°×27%=97.2°;
(2)D班选择环境保护的学生人数是:200×30%﹣15﹣14﹣16=15(人).
补全折线统计图如图所示;
(3)2500×(1﹣30%﹣27%﹣5%)=950(人),
即估计该校选择文明宣传的学生人数是950人.
【点评】本题考查折线统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.
(2018年浙江省绍兴市)为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:
根据统计图,回答下列问题:
(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.
(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.
【考点】条形统计图;折线统计图;加权平均数
【分析】(1)根据统计图中的数据可以解答本题;
(2)根据统计图中的数据,结合生活实际,进行说明即可,本题答案不唯一,只要合情合理即可.
解:(1)由图可得,
2016年机动车的拥有量为3.40万辆,
==120(次),
==100(次)
即;2010年~2017年在人民路路口和学校门口堵车次数的平均数分别是120次、100次;
(2)随着人民生活水平的提高,居民的汽车拥有量明显增加,同时随着汽车数量的增加,也给交通带来了压力,堵车次数明显增加,学校路口学生通过次数较多,政府和交通部分加强重视,进行治理,堵车次数明显好转,人民路口堵车次数不断增加,引起政府重视,加大治理,交通有所好转.
【点评】本题考查折线统计图、条形统计图、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.
(2018年浙江省舟山市)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格),随机各抽取了20个样品进行检测,过程如下:
收集数据(单位:mm)
甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.
乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.
整理数据:
组别
频数
165.5~170.5
170.5~175.5
175.5~180.5
180.5~185.5
185.5~190.5
190.5~195.5
甲车间
2
4
5
6
2
1
乙车间
1
2
a
b
2
0
分析数据:
车间
平均数
众数
中位数
方差
甲车间
180
185
180
43.1
乙车间
180
180
180
22.6
应用数据:
(1)计算甲车间样品的合格率.
(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?
(3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.
【考点】用样本估计总体;算术平均数;中位数;众数;方差
【分析】(1)利用所列举的数据得出甲车间样品的合格率;
(2)得出乙车间样品的合格产品数进而得出乙车间样品的合格率进而得出答案;
(3)利用平均数、方差的意义分别分析得出答案.
解:(1)甲车间样品的合格率为:×100%=55%;
(2)∵乙车间样品的合格产品数为:20﹣(1+2+2)=15(个),
∴乙车间样品的合格率为:×100%=75%,
∴乙车间的合格产品数为:1000×75%=750(个);
(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好;
②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比较稳定,所以乙车间生产的新产品更好.
【点评】此题主要考查了方差以及利用样本估计总体等知识,正确利用已知数据获取正确信息是解题关键.
同课章节目录