北师大版数学九年级下第三章圆复习题---选择题
一.选择题
1.(2018秋?点军区期中)下列说法:①直径是弦;②长度相等的两条弧是等弧;③任何一条直径所在的直线都是圆的对称轴;④任何一条直径都是圆的对称轴,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
2.(2018秋?江阴市校级月考)下列说法错误的是( )
A.长度相等的两条弧是等弧
B.直径是圆中最长的弦
C.面积相等的两个圆是等圆
D.半径相等的两个半圆是等弧
3.(2018秋?道外区期末)如图,AB,CD是⊙O的直径,=,若∠AOE=32°,则∠COE的度数是( )
A.32° B.60° C.68° D.64°
4.(2018秋?惠阳区期中)如图,AB是⊙O的直径,点C、D在⊙O上,∠BOC=100°,AD∥OC,则∠AOD=( )
A.20° B.60° C.50° D.40°
5.(2018秋?江阴市校级月考)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB,OD.若∠BOD=∠BCD,则的度数为( )
A.60° B.90° C.120° D.150°
6.(2018?鄂尔多斯)如图,直线y=﹣x+4与x轴、y轴分别交于D,C两点,P是直线CD上的一个动点,⊙A的圆心A的坐标为(﹣4,﹣4),半径为,直线PO与⊙A相交于M,N两点,Q是MN的中点.当OP=t,OQ=S,则S与t的函数图象大致为( )
A. B.
C. D.
7.(2018?张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=( )
A.8cm B.5cm C.3cm D.2cm
8.(2018?台湾)如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?( )
A.﹣2 B.﹣2 C.﹣8 D.﹣7
9.(2018?衢州)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是( )
A.3cm B.cm C.2.5cm D.cm
10.(2018?枣庄)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为( )
A. B.2 C.2 D.8
11.(2018?安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为( )
A.2cm B.4cm C.2cm或4cm D.2cm或4cm
12.(2018?临安区)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=( )
A. B. C. D.
13.(2018?乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”
如图所示,请根据所学知识计算:圆柱形木材的直径AC是( )
A.13寸 B.20寸 C.26寸 D.28寸
14.(2018秋?江岸区校级月考)如图是一个隧道的截面图,为⊙O的一部分,路面AB=10米,净高CD=7米,则此圆半径长为( )
A.5米 B.7米 C.米 D.米
15.(2018秋?洪泽区期中)如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的直径是( )
A.cm B.5cm C.6cm D.10cm
16.(2018?锦州)如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F,连接BF,CF,若∠EDC=135°,CF=2,则AE2+BE2的值为( )
A.8 B.12 C.16 D.20
17.(2018?日照)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于( )
A. B. C.2 D.
18.(2018?巴中)如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB等于( )
A. B.2 C.2 D.3
19.(2018?赤峰)如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠AOD=130°,则∠C的度数是( )
A.50° B.60° C.25° D.30°
20.(2018?常州)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是( )
A. B. C. D.
21.(2018?盘锦)如图,⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为( )
A.15° B.25° C.30° D.50°
22.(2018?贺州)如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB=,BD=5,则AH的长为( )
A. B. C. D.
23.(2018?襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为( )
A.4 B.2 C. D.2
24.(2018?邵阳)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是( )
A.80° B.120° C.100° D.90°
25.(2018?青岛)如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是( )
A.70° B.55° C.35.5° D.35°
26.(2018?泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为( )
A.3 B.4 C.6 D.8
27.(2018?宜宾)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为( )
A. B. C.34 D.10
28.(2018?镇江模拟)如图,已知点平面直角坐标系内三点A(3,0)、B(5,0)、C(0,4),⊙P经过点A、B、C,则点P的坐标为( )
A.(6,8) B.(4,5) C.(4,) D.(4,)
29.(2018秋?中山市期末)如图,△ABC内接于⊙O,CD是⊙O的直径,∠BCD=54°,则∠A的度数是( )
A.36° B.33° C.30° D.27°
30.(2018?湘西州)已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为( )
A.相交 B.相切 C.相离 D.无法确定
31.(2019?硚口区模拟)已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为( )
A.0个 B.1个 C.2个 D.3个
32.(2019?武昌区模拟)Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,r为半径作⊙C,则正确的是( )
A.当r=2时,直线AB与⊙C相交
B.当r=3时,直线AB与⊙C相离
C.当r=2.4时,直线AB与⊙C相切
D.当r=4时,直线AB与⊙C相切
33.(2018?鄂尔多斯)以O为中心点的量角器与直角三角板ABC如图摆放,直角顶点B在零刻线所在直线DE上,且量角器与三角板只有一个公共点P,若∠CBD的度数是( )
A.45°10' B.44°50' C.46°10' D.不能确定
34.(2018?常州)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为( )
A.76° B.56° C.54° D.52°
35.(2018?湘西州)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为( )
A.10 B.8 C.4 D.4
36.(2018?福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于( )
A.40° B.50° C.60° D.80°
37.(2018?宜昌)如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为( )
A.30° B.35° C.40° D.45°
38.(2018?无锡)如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是( )
A.0 B.1 C.2 D.3
39.(2018?嘉兴一模)如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B,点M和点N分别是l1和l2上的动点,MN沿l1和l2平移,若⊙O的半径为1,∠1=60°,下列结论错误的是( )
A.MN=
B.若MN与⊙O相切,则AM=
C.l1和l2的距离为2
D.若∠MON=90°,则MN与⊙O相切
40.(2018秋?和平区期末)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD,BE,CE,若∠CBD=32°,则∠BEC的大小为( )
A.64° B.120° C.122° D.128°
41.(2018秋?金坛区期中)如图,AB、AC、BD是⊙O的切线,切点分别是P、C、D.若AB=5,AC=3,则BD的长是( )
A.4 B.3 C.2 D.1
42.(2018秋?泰兴市校级月考)已知⊙O1和⊙O2外切于M,AB是⊙O1和⊙O2的外公切线,A,B为切点,若MA=4cm,MB=3cm,则M到AB的距离是( )
A.cm B.cm C.cm D.cm
43.(2018秋?沭阳县期中)如图,P,Q分别是⊙O的内接正五边形的边AB,BC上的点,BP=CQ,则∠POQ=( )
A.75° B.54° C.72° D.60°
44.(2018秋?北京期末)一个扇形的圆心角为120°,半径为3,则这个扇形的弧长是( )
A.4π B.3π C.2π D.π
45.(2018秋?河北区期末)有一条弧的长为2πcm,半径为2cm,则这条弧所对的圆心角的度数是( )
A.90° B.120° C.180° D.135°
46.(2018秋?香洲区期末)如图,在扇形OAB中,∠AOB=120°,点C是弧AB上的一个动点(不与点A、B重合),OD⊥BC,OE⊥AC,垂足分别为点D、E.若DE=,则弧AB的长为( )
A. B. C. D.2π
47.(2018?德州)如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为( )
A.2 B. C.πm2 D.2πm2
48.(2018秋?杭锦后旗期末)如图,一根6m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动)那么小羊A在草地上的最大活动区域面积是( )
A.9πm2 B.πm2 C.15πm2 D.πm2
49.(2018秋?岳麓区校级月考)如图,已知⊙O的半径为2,∠AOB=90°,则图中阴影部分的面积为( )
A.π﹣2 B. C.π D.2
50.(2018秋?玄武区期中)如图,由六段相等的圆弧组成的三叶花,每段圆弧都是四分之一圆周,OA=OB=OC=2,则这朵三叶花的面积为( )
A.3π﹣3 B.3π﹣6 C.6π﹣3 D.6π﹣6
北师大版九年级下第三章圆复习题---选择题
参考答案与试题解析
一.选择题
1.(2018秋?点军区期中)下列说法:①直径是弦;②长度相等的两条弧是等弧;③任何一条直径所在的直线都是圆的对称轴;④任何一条直径都是圆的对称轴,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
【分析】根据弧的分类、圆的性质对各小题进行逐一分析即可.
【解答】解:①直径是最长的弦,故本小题正确;
②在等圆或同圆中,长度相等的两条弧是等弧,故本小题错误;
③经过圆心的每一条直线都是圆的对称轴,故本小题正确;
④经过圆心的每一条直线都是圆的对称轴,故本小题错误.
故选:B.
2.(2018秋?江阴市校级月考)下列说法错误的是( )
A.长度相等的两条弧是等弧
B.直径是圆中最长的弦
C.面积相等的两个圆是等圆
D.半径相等的两个半圆是等弧
【分析】利用等弧的定义、等圆的定义及弦的定义分别判断后即可确定正确的选项.
【解答】解:A、长度相等的弧的度数不一定相等,故错误;
B、直径是圆中最长的弦,正确;
C、面积相等的两个圆是等圆,正确;
D、半径相等的两个半圆是等弧,正确,
故选:A.
3.(2018秋?道外区期末)如图,AB,CD是⊙O的直径,=,若∠AOE=32°,则∠COE的度数是( )
A.32° B.60° C.68° D.64°
【分析】根据圆心角、弧、弦的关系,由=得到∠BOD=∠AOE=32°,然后利用对顶角相等得∠BOD=∠AOC=32°,易得∠COE=64°.
【解答】解:∵=,
∴∠BOD=∠AOE=32°,
∵∠BOD=∠AOC,
∴∠AOC=32°
∴∠COE=32°+32°=64°.
故选:D.
4.(2018秋?惠阳区期中)如图,AB是⊙O的直径,点C、D在⊙O上,∠BOC=100°,AD∥OC,则∠AOD=( )
A.20° B.60° C.50° D.40°
【分析】根据三角形内角和定理可求得∠AOC的度数,再根据平行线的性质及三角形内角和定理即可求得∠AOD的度数.
【解答】解:∵∠BOC=100°,∠BOC+∠AOC=180°,
∴∠AOC=80°,
∵AD∥OC,OD=OA,
∴∠D=∠A=∠AOC=80°,
∴∠AOD=180°﹣2∠A=20°.
故选:A.
5.(2018秋?江阴市校级月考)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB,OD.若∠BOD=∠BCD,则的度数为( )
A.60° B.90° C.120° D.150°
【分析】由圆内接四边形的性质和圆周角定理求出∠A=60°,得出∠BOD=120°即可得出答案.
【解答】解:∵四边形ABCD内接于⊙O,
∴∠BCD+∠A=180°,
∵∠BOD=2∠A,∠BOD=∠BCD,
∴2∠A+∠A=180°,
解得:∠A=60°,
∴∠BOD=120°,
∴的度数为120°
故选:C.
6.(2018?鄂尔多斯)如图,直线y=﹣x+4与x轴、y轴分别交于D,C两点,P是直线CD上的一个动点,⊙A的圆心A的坐标为(﹣4,﹣4),半径为,直线PO与⊙A相交于M,N两点,Q是MN的中点.当OP=t,OQ=S,则S与t的函数图象大致为( )
A. B.
C. D.
【分析】作辅助线,构建相似三角形,先证明AQ⊥MN,AO⊥CD,证明∠AOQ∽△POG,得,代入可得S=,是反比例函数,可得选项C、D不正确;根据特殊值t=2时,此时,直线OP过圆心A,此时Q与A重合,此种情况成立,可得结论.
【解答】解:连接AO,并延长交直线CD于G,连接AQ,
∵Q是MN的中点.
∴AQ⊥MN,
∵A的坐标为(﹣4,﹣4),
∴直线AO:y=x,AO=4,
∵直线CD:y=﹣x+4,
∴AO⊥CD,
∴∠AQO=∠OGP=90°,
∵∠AOQ=∠POG,
∴∠AOQ∽△POG,
∴,
当x=0时,y=4,当y=0时,x=4,
∴OC=OD=4,
∴OG=CD=2,
∵OP=t,OQ=S,
∴,
S=,
故选项C、D不正确;
当OP=2时,即S=OQ=4,t=2,直线OP过圆心A,此时Q与A重合,此种情况成立,
故选项B不正确;
故选:A.
7.(2018?张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=( )
A.8cm B.5cm C.3cm D.2cm
【分析】根据垂径定理可得出CE的长度,在Rt△OCE中,利用勾股定理可得出OE的长度,再利用AE=AO+OE即可得出AE的长度.
【解答】解:∵弦CD⊥AB于点E,CD=8cm,
∴CE=CD=4cm.
在Rt△OCE中,OC=5cm,CE=4cm,
∴OE==3cm,
∴AE=AO+OE=5+3=8cm.
故选:A.
8.(2018?台湾)如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?( )
A.﹣2 B.﹣2 C.﹣8 D.﹣7
【分析】连接AC,根据线段垂直平分线的性质得到AC=BC,根据勾股定理求出OA,得到答案.
【解答】解:连接AC,
由题意得,BC=OB+OC=9,
∵直线L通过P点且与AB垂直,
∴直线L是线段AB的垂直平分线,
∴AC=BC=9,
在Rt△AOC中,AO==2,
∵a<0,
∴a=﹣2,
故选:A.
9.(2018?衢州)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是( )
A.3cm B.cm C.2.5cm D.cm
【分析】根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.
【解答】解:连接OB,
∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm,
在Rt△OEB中,OE2+BE2=OB2,
即OE2+42=(OE+2)2
解得:OE=3,
∴OB=3+2=5,
∴EC=5+3=8,
在Rt△EBC中,BC=,
∵OF⊥BC,
∴∠OFC=∠CEB=90°,
∵∠C=∠C,
∴△OFC∽△BEC,
∴,
即,
解得:OF=,
故选:D.
10.(2018?枣庄)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为( )
A. B.2 C.2 D.8
【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.
【解答】解:作OH⊥CD于H,连结OC,如图,
∵OH⊥CD,
∴HC=HD,
∵AP=2,BP=6,
∴AB=8,
∴OA=4,
∴OP=OA﹣AP=2,
在Rt△OPH中,∵∠OPH=30°,
∴∠POH=60°,
∴OH=OP=1,
在Rt△OHC中,∵OC=4,OH=1,
∴CH==,
∴CD=2CH=2.
故选:C.
11.(2018?安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为( )
A.2cm B.4cm C.2cm或4cm D.2cm或4cm
【分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.
【解答】解:连接AC,AO,
∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,
∴AM=AB=×8=4(cm),OD=OC=5cm,
当C点位置如图1所示时,
∵OA=5cm,AM=4cm,CD⊥AB,
∴OM===3(cm),
∴CM=OC+OM=5+3=8(cm),
∴AC===4(cm);
当C点位置如图2所示时,同理可得OM=3cm,
∵OC=5cm,
∴MC=5﹣3=2(cm),
在Rt△AMC中,AC===2(cm).
故选:C.
12.(2018?临安区)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=( )
A. B. C. D.
【分析】根据垂径定理先求BC一半的长,再求BC的长.
【解答】解:设OA与BC相交于D点.
∵AB=OA=OB=6
∴△OAB是等边三角形.
又根据垂径定理可得,OA平分BC,
利用勾股定理可得BD==3
所以BC=6.
故选:A.
13.(2018?乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”
如图所示,请根据所学知识计算:圆柱形木材的直径AC是( )
A.13寸 B.20寸 C.26寸 D.28寸
【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可;
【解答】解:设⊙O的半径为r.
在Rt△ADO中,AD=5,OD=r﹣1,OA=r,
则有r2=52+(r﹣1)2,
解得r=13,
∴⊙O的直径为26寸,
故选:C.
14.(2018秋?江岸区校级月考)如图是一个隧道的截面图,为⊙O的一部分,路面AB=10米,净高CD=7米,则此圆半径长为( )
A.5米 B.7米 C.米 D.米
【分析】根据垂径定理和勾股定理可得.
【解答】解:∵CD⊥AB,AB=10米,
由垂径定理得AD=5米,
设圆的半径为r,
由勾股定理得OD2+AD2=OA2,
即(7﹣r)2+52=r2,
解得r=米.
故选:D.
15.(2018秋?洪泽区期中)如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的直径是( )
A.cm B.5cm C.6cm D.10cm
【分析】根据90°圆周角所对的弦是直径,然后根据勾股定理即可求得MN的长,本题得以解决.
【解答】解:∵把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,
∴线段MN的就是该圆的直径,
∵OM=8cm,ON=6cm,∠MON=90°,
∴MN=10cm,
故选:D.
16.(2018?锦州)如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F,连接BF,CF,若∠EDC=135°,CF=2,则AE2+BE2的值为( )
A.8 B.12 C.16 D.20
【分析】由四边形BCDE内接于⊙O知∠EFC=∠ABC=45°,据此得AC=BC,由EF是⊙O的直径知∠EBF=∠ECF=∠ACB=90°及∠BCF=∠ACE,再根据四边形BECF是⊙O的内接四边形知∠AEC=∠BFC,从而证△ACE≌△BFC得AE=BF,根据Rt△ECF是等腰直角三角形知EF2=16,继而可得答案.
【解答】解:∵四边形BCDE内接于⊙O,且∠EDC=135°,
∴∠EFC=∠ABC=180°﹣∠EDC=45°,
∵∠ACB=90°,
∴△ABC是等腰三角形,
∴AC=BC,
又∵EF是⊙O的直径,
∴∠EBF=∠ECF=∠ACB=90°,
∴∠BCF=∠ACE,
∵四边形BECF是⊙O的内接四边形,
∴∠AEC=∠BFC,
∴△ACE≌△BFC(ASA),
∴AE=BF,
∵Rt△ECF中,CF=2、∠EFC=45°,
∴EF2=16,
则AE2+BE2=BF2+BE2=EF2=16,
故选:C.
17.(2018?日照)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于( )
A. B. C.2 D.
【分析】根据同弧或等弧所对的圆周角相等来求解.
【解答】解:∵∠DAB=∠DEB,
∴tan∠DAB=tan∠DEB=.
故选:D.
18.(2018?巴中)如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB等于( )
A. B.2 C.2 D.3
【分析】直接利用垂径定理进而结合圆周角定理得出△ODB是等腰直角三角形,进而得出答案.
【解答】解:∵半径OC⊥弦AB于点D,
∴=,
∴∠E=∠BOC=22.5°,
∴∠BOD=45°,
∴△ODB是等腰直角三角形,
∵AB=4,
∴DB=OD=2,
则半径OB等于:=2.
故选:C.
19.(2018?赤峰)如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠AOD=130°,则∠C的度数是( )
A.50° B.60° C.25° D.30°
【分析】根据圆周角定理进行解答即可.
【解答】解,∵∠AOD=130°,
∴∠BOD=50°,
∴∠C=25°,
故选:C.
20.(2018?常州)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是( )
A. B. C. D.
【分析】如图,连接AD.只要证明∠AOB=∠ADO,可得sin∠AOB=sin∠ADO==;
【解答】解:如图,连接AD.
∵OD是直径,
∴∠OAD=90°,
∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,
∴∠AOB=∠ADO,
∴sin∠AOB=sin∠ADO==,
故选:D.
21.(2018?盘锦)如图,⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为( )
A.15° B.25° C.30° D.50°
【分析】连接OB,由垂径定理及圆心角定理可得∠AOB=∠AOC=50°,再利用圆周角定理即可得出答案.
【解答】解:如图连接OB,
∵OA⊥BC,∠AOC=50°,
∴∠AOB=∠AOC=50°,
则∠ADB=∠AOB=25°,
故选:B.
22.(2018?贺州)如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB=,BD=5,则AH的长为( )
A. B. C. D.
【分析】连接OD,由垂径定理得出AB⊥CD,由三角函数求出BH=3,由勾股定理得出DH==4,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得出方程,解方程即可.
【解答】解:连接OD,如图所示:
∵AB是⊙O的直径,且经过弦CD的中点H,
∴AB⊥CD,
∴∠OHD=∠BHD=90°,
∵sin∠CDB=,BD=5,
∴BH=3,
∴DH==4,
设OH=x,则OD=OB=x+3,
在Rt△ODH中,由勾股定理得:x2+42=(x+3)2,
解得:x=,
∴OH=;
∴AH=OA+OH=,
故选:B.
23.(2018?襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为( )
A.4 B.2 C. D.2
【分析】根据垂径定理得到CH=BH,=,根据圆周角定理求出∠AOB,根据正弦的定义求出BH,计算即可.
【解答】解:∵OA⊥BC,
∴CH=BH,=,
∴∠AOB=2∠CDA=60°,
∴BH=OB?sin∠AOB=,
∴BC=2BH=2,
故选:D.
24.(2018?邵阳)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是( )
A.80° B.120° C.100° D.90°
【分析】根据圆内接四边形的性质求出∠A,再根据圆周角定理解答.
【解答】解:∵四边形ABCD为⊙O的内接四边形,
∴∠A=180°﹣∠BCD=60°,
由圆周角定理得,∠BOD=2∠A=120°,
故选:B.
25.(2018?青岛)如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是( )
A.70° B.55° C.35.5° D.35°
【分析】根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理解答.
【解答】解:连接OB,
∵点B是的中点,
∴∠AOB=∠AOC=70°,
由圆周角定理得,∠D=∠AOB=35°,
故选:D.
26.(2018?泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为( )
A.3 B.4 C.6 D.8
【分析】由Rt△APB中AB=2OP知要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,据此求解可得.
【解答】解:∵PA⊥PB,
∴∠APB=90°,
∵AO=BO,
∴AB=2PO,
若要使AB取得最小值,则PO需取得最小值,
连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,
过点M作MQ⊥x轴于点Q,
则OQ=3、MQ=4,
∴OM=5,
又∵MP′=2,
∴OP′=3,
∴AB=2OP′=6,
故选:C.
27.(2018?宜宾)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为( )
A. B. C.34 D.10
【分析】设点M为DE的中点,点N为FG的中点,连接MN,则MN、PM的长度是定值,利用三角形的三边关系可得出NP的最小值,再利用PF2+PG2=2PN2+2FN2即可求出结论.
【解答】解:设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN取最小值.
∵DE=4,四边形DEFG为矩形,
∴GF=DE,MN=EF,
∴MP=FN=DE=2,
∴NP=MN﹣MP=EF﹣MP=1,
∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.
故选:D.
28.(2018?镇江模拟)如图,已知点平面直角坐标系内三点A(3,0)、B(5,0)、C(0,4),⊙P经过点A、B、C,则点P的坐标为( )
A.(6,8) B.(4,5) C.(4,) D.(4,)
【分析】根据题意可知点P的横坐标为4,设点P的坐标为(4,y),根据PA=PC列出关于y的方程,解方程得到答案.
【解答】解:∵⊙P经过点A、B、C,
∴点P在线段AB的垂直平分线上,
∴点P的横坐标为4,
设点P的坐标为(4,y),
作PE⊥OB于E,PF⊥OC与F,
由题意得,
=,
解得,y=,
故选:C.
29.(2018秋?中山市期末)如图,△ABC内接于⊙O,CD是⊙O的直径,∠BCD=54°,则∠A的度数是( )
A.36° B.33° C.30° D.27°
【分析】首先连接BD,由CD是⊙O的直径,根据直径所对的圆周角是直角,即可求得∠CBD的度数,继而求得∠D的度数,然后由圆周角定理,求得∠A的度数.
【解答】解:连接BD,
∵CD是⊙O的直径,
∴∠CBD=90°,
∵∠BCD=54°,
∴∠D=90°﹣∠BCD=36°,
∴∠A=∠D=36°.
故选:A.
30.(2018?湘西州)已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为( )
A.相交 B.相切 C.相离 D.无法确定
【分析】根据圆心到直线的距离5等于圆的半径5,则直线和圆相切.
【解答】解:∵圆心到直线的距离5cm=5cm,
∴直线和圆相切.
故选:B.
31.(2019?硚口区模拟)已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为( )
A.0个 B.1个 C.2个 D.3个
【分析】根据直线和圆的位置关系判断方法,可得结论.
【解答】解:∵d=3<半径=4
∴直线与圆相交
∴直线m与⊙O公共点的个数为2个
故选:C.
32.(2019?武昌区模拟)Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,r为半径作⊙C,则正确的是( )
A.当r=2时,直线AB与⊙C相交
B.当r=3时,直线AB与⊙C相离
C.当r=2.4时,直线AB与⊙C相切
D.当r=4时,直线AB与⊙C相切
【分析】过C作CD⊥AB于D,根据勾股定理求出AB,根据三角形面积公式求出CD,和⊙C的半径比较即可.
【解答】
解:过C作CD⊥AB于D,
在Rt△ACB中,由勾股定理得:AB==5,
由三角形面积公式得:×3×4=×5×CD,
CD=2.4,
即C到AB的距离等于⊙C的半径长,
∴⊙C和AB的位置关系是相切,
故选:C.
33.(2018?鄂尔多斯)以O为中心点的量角器与直角三角板ABC如图摆放,直角顶点B在零刻线所在直线DE上,且量角器与三角板只有一个公共点P,若∠CBD的度数是( )
A.45°10' B.44°50' C.46°10' D.不能确定
【分析】根据切线的性质得到∠OPB=90°,根据平行线的性质得到∠POB=∠CBD,于是得到结论.
【解答】解:∵AB是⊙O的切线,
∴∠OPB=90°,
∵∠ABC=90°,
∴OP∥BC,
∴∠POB=∠CBD,
∵点P不确定,
∴∠POB不确定,
∴∠CBD不确定,
故选:D.
34.(2018?常州)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为( )
A.76° B.56° C.54° D.52°
【分析】先利用切线的性质得∠ONM=90°,则可计算出∠ONB=38°,再利用等腰三角形的性质得到∠B=∠ONB=38°,然后根据圆周角定理得∠NOA的度数.
【解答】解:∵MN是⊙O的切线,
∴ON⊥NM,
∴∠ONM=90°,
∴∠ONB=90°﹣∠MNB=90°﹣52°=38°,
∵ON=OB,
∴∠B=∠ONB=38°,
∴∠NOA=2∠B=76°.
故选:A.
35.(2018?湘西州)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为( )
A.10 B.8 C.4 D.4
【分析】由AB是圆的切线知AO⊥AB,结合CD∥AB知AO⊥CD,从而得出CE=4,Rt△COE中求得OE=3及AE=8,在Rt△ACE中利用勾股定理可得答案.
【解答】解:∵直线AB与⊙O相切于点A,
∴OA⊥AB,
又∵CD∥AB,
∴AO⊥CD,记垂足为E,
∵CD=8,
∴CE=DE=CD=4,
连接OC,则OC=OA=5,
在Rt△OCE中,OE===3,
∴AE=AO+OE=8,
则AC===4,
故选:D.
36.(2018?福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于( )
A.40° B.50° C.60° D.80°
【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.
【解答】解:∵BC是⊙O的切线,
∴∠ABC=90°,
∴∠A=90°﹣∠ACB=40°,
由圆周角定理得,∠BOD=2∠A=80°,
故选:D.
37.(2018?宜昌)如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为( )
A.30° B.35° C.40° D.45°
【分析】由切线的性质知∠OCB=90°,再根据平行线的性质得∠COD=90°,最后由圆周角定理可得答案.
【解答】解:∵直线AB是⊙O的切线,C为切点,
∴∠OCB=90°,
∵OD∥AB,
∴∠COD=90°,
∴∠CED=∠COD=45°,
故选:D.
38.(2018?无锡)如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是( )
A.0 B.1 C.2 D.3
【分析】连接DG、AG,作GH⊥AD于H,连接OD,如图,先确定AG=DG,则GH垂直平分AD,则可判断点O在HG上,再根据HG⊥BC可判定BC与圆O相切;接着利用OG=OD可判断圆心O不是AC与BD的交点;然后根据四边形AEFD为⊙O的内接矩形可判断AF与DE的交点是圆O的圆心.
【解答】解:连接DG、AG,作GH⊥AD于H,连接OD,如图,
∵G是BC的中点,
∴AG=DG,
∴GH垂直平分AD,
∴点O在HG上,
∵AD∥BC,
∴HG⊥BC,
∴BC与圆O相切;
∵OG=OD,
∴点O不是HG的中点,
∴圆心O不是AC与BD的交点;
∵∠ADF=∠DAE=90°,
∴∠AEF=90°,
∴四边形AEFD为⊙O的内接矩形,
∴AF与DE的交点是圆O的圆心;
∴(1)错误,(2)(3)正确.
故选:C.
39.(2018?嘉兴一模)如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B,点M和点N分别是l1和l2上的动点,MN沿l1和l2平移,若⊙O的半径为1,∠1=60°,下列结论错误的是( )
A.MN=
B.若MN与⊙O相切,则AM=
C.l1和l2的距离为2
D.若∠MON=90°,则MN与⊙O相切
【分析】连结OA、OB,根据切线的性质和l1∥l2得到AB为⊙O的直径,则l1和l2的距离为2;当MN与⊙O相切,连结OM,ON,当MN在AB左侧时,根据切线长定理得∠AMO=∠AMN=30°,在Rt△AMO中,利用正切的定义可计算出AM=,在Rt△OBN中,由于∠ONB=∠BNM=60°,可计算出BN=,当MN在AB右侧时,AM=,所以AM的长为或;当∠MON=90°时,作OE⊥MN于E,延长NO交l1于F,易证得Rt△OAF≌Rt△OBN,则OF=ON,于是可判断MO垂直平分NF,所以OM平分∠NMF,根据角平分线的性质得OE=OA,然后根据切线的判定定理得到MN为⊙O的切线.
【解答】解:连结OA、OB,如图1,
∵⊙O与l1和l2分别相切于点A和点B,
∴OA⊥l1,OB⊥l2,
∵l1∥l2,
∴点A、O、B共线,
∴AB为⊙O的直径,
∴l1和l2的距离为2;故C正确,
作NH⊥AM于H,如图1,
则MH=AB=2,
∵∠AMN=60°,
∴sin60°=,
∴MN==;故A正确,
当MN与⊙O相切,如图2,连结OM,ON,
当MN在AB左侧时,∠AMO=∠AMN=×60°=30°,
在Rt△AMO中,tan∠AMO=,即AM==,
在Rt△OBN中,∠ONB=∠BNM=60°,tan∠ONB=,即BN==,
当MN在AB右侧时,AM=,
∴AM的长为 或;故B错误,
当∠MON=90°时,作OE⊥MN于E,延长NO交l1于F,如图2,
∵OA=OB,
∴Rt△OAF≌Rt△OBN,
∴OF=ON,
∴MO垂直平分NF,
∴OM平分∠NMF,
∴OE=OA,
∴MN为⊙O的切线.故D正确.
故选:B.
40.(2018秋?和平区期末)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD,BE,CE,若∠CBD=32°,则∠BEC的大小为( )
A.64° B.120° C.122° D.128°
【分析】根据圆周角定理可求∠CAD=32°,再根据三角形内心的定义可求∠BAC,再根据三角形内角和定理和三角形内心的定义可求∠EBC+∠ECB,再根据三角形内角和定理可求∠BEC的度数.
【解答】解:在⊙O中,∵∠CBD=32°,
∵∠CAD=32°,
∵点E是△ABC的内心,
∴∠BAC=64°,
∴∠EBC+∠ECB=(180°﹣64°)÷2=58°,
∴∠BEC=180°﹣58°=122°.
故选:C.
41.(2018秋?金坛区期中)如图,AB、AC、BD是⊙O的切线,切点分别是P、C、D.若AB=5,AC=3,则BD的长是( )
A.4 B.3 C.2 D.1
【分析】由于AB、AC、BD是⊙O的切线,则AC=AP,BP=BD,求出BP的长即可求出BD的长.
【解答】解:∵AC、AP为⊙O的切线,
∴AC=AP=3,
∵BP、BD为⊙O的切线,
∴BP=BD,
∴BD=PB=AB﹣AP=5﹣3=2.
故选:C.
42.(2018秋?泰兴市校级月考)已知⊙O1和⊙O2外切于M,AB是⊙O1和⊙O2的外公切线,A,B为切点,若MA=4cm,MB=3cm,则M到AB的距离是( )
A.cm B.cm C.cm D.cm
【分析】先画图,由AB是⊙O1和⊙O2的外公切线,则∠O1AB=∠O2BA=90°,再由O1A=O1M,O2B=O2M,得∠O1AM=∠O1MA,∠O2BM=∠O2MB,则∠BAM+∠AMO1=90°,∠ABM+∠BMO2=90°,则∠AMB=∠BMO2+∠AMO1=90°,再由勾股定理求出AB边上的高.
【解答】解:如图,
∵AB是⊙O1和⊙O2的外公切线,∴∠O1AB=∠O2BA=90°,
∵O1A=O1M,O2B=O2M,∴∠O1AM=∠O1MA,∠O2BM=∠O2MB,
∴∠BAM+∠AMO1=90°,∠ABM+∠BMO2=90°,
∴∠AMB=∠BMO2+∠AMO1=90°,
∴AM⊥BM,
∵MA=4cm,MB=3cm,
∴由勾股定理得,AB=5cm,
由三角形的面积公式,M到AB的距离是=cm,
故选:B.
43.(2018秋?沭阳县期中)如图,P,Q分别是⊙O的内接正五边形的边AB,BC上的点,BP=CQ,则∠POQ=( )
A.75° B.54° C.72° D.60°
【分析】连接OA、OB、OC,证明△OBP≌△OCQ,根据全等三角形的性质得到∠BOP=∠COQ,结合图形计算即可.
【解答】解:连接OA、OB、OC,
∵五边形ABCDE是⊙O的内接正五边形,
∴∠AOB=∠BOC=72°,
∵OA=OB,OB=OC,
∴∠OBA=∠OCB=54°,
在△OBP和△OCQ中,,
∴△OBP≌△OCQ,(SAS),
∴∠BOP=∠COQ,
∵∠AOB=∠AOP+∠BOP,∠BOC=∠BOQ+∠QOC,
∴∠BOP=∠QOC,
∵∠POQ=∠BOP+∠BOQ,∠BOC=∠BOQ+∠QOC,
∴∠POQ=∠BOC=72°.
故选:C.
44.(2018秋?北京期末)一个扇形的圆心角为120°,半径为3,则这个扇形的弧长是( )
A.4π B.3π C.2π D.π
【分析】根据弧长的公式l=进行计算即可.
【解答】解:根据弧长的公式l=,
得到:l==2π,
故选:C.
45.(2018秋?河北区期末)有一条弧的长为2πcm,半径为2cm,则这条弧所对的圆心角的度数是( )
A.90° B.120° C.180° D.135°
【分析】根据弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),代入即可求出圆心角的度数.
【解答】解:由题意得,2π=,
解得:n=180.
即这条弧所对的圆心角的度数是180°.
故选:C.
46.(2018秋?香洲区期末)如图,在扇形OAB中,∠AOB=120°,点C是弧AB上的一个动点(不与点A、B重合),OD⊥BC,OE⊥AC,垂足分别为点D、E.若DE=,则弧AB的长为( )
A. B. C. D.2π
【分析】如图作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.
【解答】解:如图作OH⊥AB于H.
∵OD⊥BC,OE⊥AC,
∴CD=DB,CE=AE,
∴AB=2DE=2,
∵OH⊥AB,
∴BH=AH=,
∵OA=OB,
∴∠AOH=∠BOH=60°,
OB==2,
∴的长==,
故选:B.
47.(2018?德州)如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为( )
A.2 B. C.πm2 D.2πm2
【分析】连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式求出即可.
【解答】解:
连接AC,
∵从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°,
∴AC为直径,即AC=2m,AB=BC(扇形的半径相等),
∵AB2+BC2=22,
∴AB=BC=m,
∴阴影部分的面积是=(m2),
故选:A.
48.(2018秋?杭锦后旗期末)如图,一根6m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动)那么小羊A在草地上的最大活动区域面积是( )
A.9πm2 B.πm2 C.15πm2 D.πm2
【分析】小羊的最大活动区域是一个半径为6、圆心角为90°和一个半径为2、圆心角为60°的小扇形的面积和.所以根据扇形的面积公式即可求得小羊的最大活动范围.
【解答】解:大扇形的圆心角是90度,半径是6,
所以面积==9πm2;
小扇形的圆心角是180°﹣120°=60°,半径是2m,
则面积==π(m2),
则小羊A在草地上的最大活动区域面积=9π+π=π(m2).
故选:B.
49.(2018秋?岳麓区校级月考)如图,已知⊙O的半径为2,∠AOB=90°,则图中阴影部分的面积为( )
A.π﹣2 B. C.π D.2
【分析】根据⊙O的半径OA=2,∠AOB=90°,得出△AOB的面积,再求出扇形面积,进而得出阴影部分面积.
【解答】解:∵⊙O的半径为2,∠AOB=90°,
∴△AOB的面积=,
∴扇形面积=,
∴图中阴影部分的面积=扇形面积﹣△AOB的面积=π﹣2,
故选:A.
50.(2018秋?玄武区期中)如图,由六段相等的圆弧组成的三叶花,每段圆弧都是四分之一圆周,OA=OB=OC=2,则这朵三叶花的面积为( )
A.3π﹣3 B.3π﹣6 C.6π﹣3 D.6π﹣6
【分析】先算出三叶花即一个小弓形的面积,再算三叶花的面积.一个小弓形的面积=扇形面积﹣三角形的面积.
【解答】解:如图所示:弧OA是⊙M上满足条件的一段弧,连接AM、MO,
由题意知:∠AMO=90°,AM=OM
∵AO=2,∴AM=.
∵S扇形AMO=×π×MA2=.
S△AMO=AM?MO=1,
∴S弓形AO=﹣1,
∴S三叶花=6×(﹣1)
=3π﹣6.
故选:B.