2018—2019学年高中物理沪科版选修3-42.4波的干涉与衍射(学案 学业测评 共2份)

文档属性

名称 2018—2019学年高中物理沪科版选修3-42.4波的干涉与衍射(学案 学业测评 共2份)
格式 zip
文件大小 285.5KB
资源类型 教案
版本资源 沪科版
科目 物理
更新时间 2019-02-05 21:25:18

内容文字预览


学业分层测评
第2章 2.5 波的干涉与衍射
(建议用时:45分钟)
[学业达标]
1.关于波的衍射现象,下列说法正确的是(  )
A.当孔的尺寸比波长大时,一定不会发生衍射现象
B.只有孔的尺寸与波长相差不多时,或者比波长还小时才会观察到明显的衍射现象
C.只有波才有衍射现象
D.衍射是波特有的现象
E.以上说法均不正确
【解析】 当孔的尺寸比波长大时,会发生衍射现象,只不过不明显.只有当孔、缝或障碍物的尺寸跟波长相差不多,或者比波长更小时,才会发生明显的衍射现象,切不可把此条件用来判断波是否发生了衍射现象.
【答案】 BCD
2.下列关于两列波相遇时叠加的说法正确的是(  )
A.相遇后,振幅小的一列波将减弱,振幅大的一列波将加强
B.相遇后,两列波的振动情况与相遇前完全相同
C.在相遇区域,任一点的总位移等于两列波分别引起的位移的矢量和
D.几个人在同一房间说话,相互间听得清楚,这说明声波在相遇时互不干扰
E.两列波相遇叠加后,各波的周期和频率都发生变化
【解析】 两列波相遇时,每一列波引起的振动情况都保持不变,而质点的振动则是两列波共同作用的结果,故A选项错误,B、C选项正确.几个人在同一房间说话,声带振动发出的声波在空间中相互叠加后,不改变每列波的振幅、频率,所以声波传到人的耳朵后,仍能分辨出不同的人所说的话,故D正确.两列波叠加后,各波的周期和频率各自保持不变,E错误.
【答案】 BCD
3.关于波的叠加和干涉,下列说法中正确的是(  )
A.两列频率不相同的波相遇时,因为没有稳定的干涉图样,所以波没有叠加
B.任何两列波相遇都会叠加
C.两列频率相同的波相遇时,振动加强的点只是波峰与波峰相遇的点
D.两列频率相同的波相遇时,如果介质中的某点振动是加强的,某时刻该质点的位移可能是零
E.两列频率相同的波相遇时,振动加强的质点的位移可能比振动减弱的质点的位移小
【解析】 根据波的叠加和干涉的概念可知,只要两列波相遇就会叠加,但如果两列波的频率不同,在叠加区域就没有稳定的干涉图样,所以A错误,B正确;发生干涉时振动加强的点还有波谷和波谷相遇的点,所以C错误;因为某质点振动加强仅是振幅加大,但只要仍在振动就一定有位移为零的时刻,所以D、E正确.
【答案】 BDE
4.有一障碍物的尺寸为10 m,下列哪些波在遇到它时能产生明显衍射现象(  )
A.波长为1 m的机械波
B.波长为10 m的机械波
C.波长为20 m的的机械波
D.频率为40 Hz的声波
E.频率为5 000 MHz的电磁波(波速为3×108 m/s)
【解析】 空气中声波波速大约为340 m/s,由λ=可算出频率为40 Hz的声波的波长为8.5 m;同理可算出频率为5 000 MHz的电磁波的波长为0.06 m.选项B、C、D中能产生明显衍射现象.
【答案】 BCD
5.如图2-5-6所示,表示两列同频率相干水波在t=0时刻的叠加情况,图中实线表示波峰,虚线表示波谷.已知两列波的振幅均为2 cm,波速均为2 m/s,波长均为0.4 m,E点为B、D连线和A、C连线的交点,下列说法正确的是(  )
图2-5-6
A.A、C两点是振动减弱点
B.A、C、E点是振动加强点
C.B、D两点在该时刻的竖直高度差为8 cm
D.t=0.05 s时,E点离平衡位置的位移大小为4 cm
E.t=0.05 s时,D点离平衡位置的位移大小为4 cm
【解析】 图中B、D均为振动加强点,E位于B、D的中线上,故E也是振动加强点,而A、C两点为波峰与波谷相遇,故是振动减弱点.图中所示时刻,B点偏离平衡位置-4 cm,而D点偏离平衡位置4 cm,故二者竖直高度差为8 cm,再过0.05 s,两列波的波峰恰在E点相遇,故E点偏离平衡位置的距离将达到4 cm,而D在平衡位置.故正确答案为A、C、D.
【答案】 ACD
6.新型列车动车组速度可达300 km/h,与该车汽笛声的音调相比:
(1)站在车前方路旁的人听起来音调________(选填“偏高”或“偏低”).站在车后方路旁的人听起来音调________(选填“偏高”或“偏低”).
(2)迎面来的另一列车上的乘客听起来音调怎样?此时列车汽笛发出的音调变化了吗?
(3)坐在新型列车动车组上的乘客听起来音调怎样?
【解析】 (1)站在列车前方的人与列车的距离在靠近,因此听起来音调偏高,站在列车后方的人与列车的距离在远离,因此音调偏低.(2)迎面来的列车上的乘客听起来音调偏高,此时列车汽笛发出的音调不变.(3)坐在该列车上的乘客与列车的相对位置不变,故听起来音调不变.
【答案】 (1)偏高 偏低 (2)偏高 音调没有变化 (3)音调不变
7.简谐横波a沿x轴正方向传播,简谐横波b沿x轴负方向传播,波速都是10 m/s,振动方向都平行于y轴,t=0时刻,这两列波的波形如图2-5-7所示.画出平衡位置在x=2 m处的质点从t=0时刻开始在一个周期内的振动图像.
图2-5-7
【解析】 该题考查波的叠加和干涉.两列频率相同的波其振动图像是稳定的,t=0时刻,两列波引起x=2 m处质点的振动方向都向上,经过T,两列波的波峰都传到x=2 m处,故振幅A=A1+A2=3 cm.
【答案】 
8.如图2-5-8所示,S是水面波的波源,x、y是挡板,S1、S2是两个狭缝(SS1=SS2,狭缝的尺寸比波长小得多),试回答以下问题.
图2-5-8
(1)若闭上S1,只打开S2,会看到什么现象?
(2)若S1、S2都打开,会发生什么现象?
(3)若实线和虚线分别表示波峰和波谷,那么在A、B、C、D各点中,哪些点振动最强,哪些点振动最弱?
【解析】 (1)闭上S1,打开S2,由波的衍射条件可知,这时会发生明显衍射现象.
(2)S1、S2都打开,由波的干涉条件可知,这时会发生干涉现象.
(3)在题图中,波源S形成的波,通过S1、S2形成新波源,这两个新波源发出的波相遇时会发生干涉现象,波峰与波峰、波谷与波谷相遇的点振幅最大,波峰与波谷相遇的点,振幅最小,则B、D是振动最强的点,A、C是振动最弱的点.
【答案】 (1)明显衍射 (2)干涉 (3)B、D点振动最强 A、C点振动最弱
[能力提升]
9.如图2-5-9所示,一小型渔港的防波堤两端MN相距约60 m,在防波堤后A、B两处有两个小船进港躲避风浪.某次海啸引起的波浪沿垂直于防波堤的方向向防波堤传播,下列说法中正确的有(  )
图2-5-9
A.假设波浪的波长约为10 m,则A、B两处小船基本上不受波浪影响
B.假设波浪的波长约为10 m,则A、B两处小船明显受到波浪影响
C.假设波浪的波长约为50 m,则A、B两处小船基本上不受波浪影响
D.假设波浪的波长约为50 m,则A、B两处小船明显受到波浪影响
E.波浪的波长越长,则A、B两处的小船受到波浪的影响越明显
【解析】 A、B两处小船明显受到影响是因为水波发生明显的衍射,波浪能传播到A、B处的结果,当障碍物或缝隙的尺寸比波长小或跟波长差不多的时候,会发生明显的衍射现象.
【答案】 ADE
10.两列平面简谐横波在空中叠加,其中简谐横波a(图中虚线)沿x轴正方向传播,简谐横波b(图中实线)沿x轴负方向传播,波速都是20 m/s,t=0时,这两列波的波动图像如图2-5-10所示,那么位于x=45 m处的质点P第一次到达波峰的时间和第一次处于平衡位置的时间分别是多少?
图2-5-10
【解析】 从题图上可知两波波长均为λ=40 m,故T==2 s.a、b两波的波峰第一次传到P点,均需要t=,=0.25 s,而平衡位置传到P点,均需要t′==0.75 s.
【答案】 0.25 s 0.75 s
11.两列波在x轴上沿相反方向传播,如图2-5-11所示.两列波的传播速度都是v=6 m/s,频率都是f=30 Hz,在t=0时,这两列波分别从左和右刚刚传到S1和S2处,使S1和S2都开始向上做简谐运动,S1的振幅为2 cm,S2的振幅为1 cm,已知质点A与S1、S2的距离分别为S1A=2.95 m、S2A=4.25 m,当两列波都到达A点后,A点的振幅为多大?
图2-5-11
【解析】 两列波的波长均为λ== m=0.2 m.S1A=2.95 m=λ=14λ,S2A=4.25 m=λ=21λ.
当振源S2产生的波传到A点时,A点向上振动,这时振源S1早已使A振动,且使A点已振动的时间为t= s= s=T=6T,因此振源S1此时使A回到平衡位置且向下振动;根据波的叠加原理,知A为振动减弱区,振幅为两列波的振幅之差,即A=A1-A2=(2-1) cm=1 cm.
【答案】 1 cm
12.波源S1和S2的振动方向相同,频率均为4 Hz,分别置于均匀介质中x轴上的O、A两点处,OA=2 m,如图2-5-12所示.两波源产生的简谐横波沿x轴相向传播,波速为4 m/s.已知两波源振动的初始相位相同.求:
图2-5-12
(1)简谐横波的波长.
(2)OA间合振动振幅最小的点的位置.
【解析】 (1)设简谐横波波长为λ,频率为f,则v=λf,代入已知数据,得λ=1 m.
(2)以O为坐标原点,设P为OA间的任意一点,其坐标为x,则两波源到P点的波程差Δl=x-(2-x),0≤x≤2.其中x、Δl以m为单位
合振动振幅最小的点的位置满足Δl=(k+)λ,k为整数,所以x=k+,可得-≤k≤,故k=-2、-1、0、1
解得:x=0.25 m,0.75 m,1.25 m,1.75 m.
【答案】 (1)1 m (2)x=0.25 m,0.75 m,1.25 m,1.75 m

2.4 波的干涉与衍射
学 习 目 标
知 识 脉 络
1.知道波的叠加原理和波的干涉现象,了解波的干涉条件和加强区、减弱区的形成.(重点、难点)
2.知道波的衍射现象和发生明显衍射的条件.(重点)
3.了解什么是多普勒效应及其产生的原因和应用.(重点、难点)
波 的 叠 加 原 理 和 波 的 干 涉

1.波的独立性
几列波相遇时能保持各自的特性(频率、波长、振动方向等)继续传播,互不影响.
2.波的叠加原理
几列波在相遇区域内,任一质点的位移是各列波单独存在时在该点所引起的位移的矢量和.
3. 研究波的干涉
波的干涉是两列波在特定条件下的叠加.
(1)产生干涉的条件:两列波的频率相同.
(2)现象:两列波相遇时,某些区域总是振动加强,某些区域总是振动减弱,且振动加强和减弱的区域相间分布.
(3)振动加强区和减弱区:加强区是两列波的波峰与波峰相遇或波谷与波谷相遇的区域;减弱区是两列波的波峰与波谷相遇的区域.

1.两列波相叠加就能形成稳定的干涉图样.(×)
2.在操场上不同位置听到学校同一喇叭的声音大小不同,是声波的干涉现象.(×)
3.两个人一起说话,不会发生干涉现象.(√)

1.敲击音叉使其发声,然后转动音叉,为什么听到声音忽强忽弱?
【提示】 这是声波的干涉现象.音叉的两股振动频率相同,这样,两列频率相同的声波在空气中传播,有的区域振动加强,有的区域振动减弱,于是听到声音忽强忽弱.
2.有人说在波的干涉图样中,加强点就是位移始终最大的点,减弱点就是位移始终为零的点,这种说法对吗?
【提示】 这种说法不正确.在干涉图样中的加强点是以两列波的振幅之和为振幅做振动的点,某一瞬时振动位移可能是零.同理,减弱点是以两列波的振幅之差为振幅做振动的点,它的位移不一定始终为零.

1.波的独立传播特性
两列波相遇后,每列波将保持各自原来的波形继续向前传播,互相不会发生干扰.
如图2-5-1甲、乙所示,在同一直线上,向右传播的波1和向左传播的波2,相遇以后,各自还是按照相遇前的波速、振幅、频率,继续沿着各自的方向传播,不会因为相遇而发生任何变化,也就是说相互不会因相遇而发生干扰.
图2-5-1
2.对波的干涉现象的理解
(1)波的叠加是无需条件的,任何频率的两列波在空间相遇都会叠加.
(2)稳定干涉图样的产生是有条件的,必须是两列波的频率相同、相差恒定,如果两列波的频率不相等,在相遇的区域里不同时刻各质点叠加的结果都不相同,看不到稳定的干涉图样.
(3)明显的干涉图样和稳定的干涉图样意义是不同的,明显的干涉图样除了满足相干条件外,还必须满足两列波振幅差别不大.振幅越是接近,干涉图样越明显.
(4)振动加强的点和振动减弱的点始终以振源的频率振动,其振幅不变(若是振动减弱点,振幅可为0),但其位移随时间发生变化.
(5)振动加强的点的振动总是加强,但并不是始终处于波峰或波谷,它们都在平衡位置附近振动,有的时刻位移为零.
(6)振动减弱的点的振动始终减弱,位移的大小始终等于两列波分别引起位移的大小之差,振幅为两列波的振幅之差.如果两列波的振幅相同,则振动减弱点总是处于静止状态,并不振动.
3.干涉图样及其特征
(1)干涉图样:如图2-5-2所示.
图2-5-2
(2)特征:
①加强区和减弱区的位置固定不变.
②加强区始终加强,减弱区始终减弱(加强区与减弱区不随时间变化).
③加强区与减弱区互相间隔.
1.当两列水波发生干涉时,如果两列波的波峰在P点相遇,下列说法正确的是(  )
A.质点P的振动有时是减弱的
B.质点P的振动始终是加强的
C.质点P的振幅最大
D.质点P的位移始终最大
E.某时刻质点P的位移可能为零
【解析】 P点是两列波的波峰的相遇点,故其振动始终是加强的,A错误,B正确;质点P处于振动加强区,振幅最大,C正确;对于某一个振动的质点,位移是会随时间变化的,D错误;质点振动到平衡位置时,位移为零,E正确.
【答案】 BCE
2.图2-5-3所示是水波干涉的示意图,S1、S2是两波源,A、D、B三点在一条直线上,两波源的频率相同,振幅相等,则下列说法正确的是(  )
图2-5-3
A.A点一会儿在波峰,一会儿在波谷
B.B点一会儿在波峰,一会儿在波谷
C.C点一会儿在波峰,一会儿在波谷
D.D点一会儿在波峰,一会儿在波谷
E.质点D的位移始终是零
【解析】 在波的干涉中,振动加强区域里的质点总在自己的平衡位置两侧做简谐振动,只是质点的振幅较大,为A1+A2.本题中由于A1=A2,故振动减弱区的质点并不振动,而此时A点是波峰与波峰相遇,B点是波谷与波谷相遇,都是加强点,又因为A、D、B三点在一条振动加强线上,这条线上任一点的振动都是加强的,故此三点都为加强点,且都是一会儿在波峰,一会儿在波谷.而C点是波峰与波谷相遇点,是减弱点,不振动.
【答案】 ABD
3.如图2-5-4所示,波源S1在绳的左端发出频率为f1,振幅为A1的半个波形a,同时另一个波源S2在绳的右端发出频率为f2,振幅为A2的半个波形b,且f1<f2,P为两个波源连线的中点.已知机械波在介质中传播的速度只由介质本身的性质决定.下列说法正确的是(  )
图2-5-4
A.两列波比较,a波将先到达P点
B.两列波同时到达P点
C.两列波在P点叠加时,P点的位移最大可达A1+A2
D.b的波峰到达P点时,a的波峰还没有到达P点
E.两列波相遇时,绳上位移可达A1+A2的点只有一个,此点在P点的左侧
【解析】 因两波波速相等,故两列波能同时到达P点,A错误,B正确;因f1<f2,由λ=可知,λ1>λ2,故当两列波同时到达P点时,a波的波峰离P点的距离比b波的波峰离P点的距离大,因此两波峰不能同时到达P点,两波峰应相遇在P点左侧,此位置对应的位移为A1+A2,位移最大,综上所述,C错误,D、E正确.
【答案】 BDE
判断振动加强和减弱的常用方法
1.条件判断法
振动频率相同、振动步调完全相同的两波源的波叠加时,设某点到两波源的距离差为Δr.
(1)当Δr=k·λ(k=0,1,2,…)时为加强点.
(2)当Δr=(2k+1)·λ/2(k=0,1,2,…)时为减弱点.
若两波源振动步调相反,则上述结论相反.
2.现象判断法
若某点总是波峰与波峰(或波谷与波谷)相遇,该点为加强点;若某点总是波峰与波谷相遇,则为减弱点.
若某点是平衡位置和平衡位置相遇,则让两列波再传播T,看该点是波峰和波峰(波谷与波谷)相遇,还是波峰和波谷相遇,从而判断该点是加强点还是减弱点.
研 究 波 的 衍 射

1.定义
波可以绕过障碍物继续传播,这种现象叫做波的衍射.
2.发生明显衍射现象的条件:只有缝、孔的宽度或障碍物的尺寸跟波长相差不多或者比波长更小时,才能观察到明显的衍射现象.
3.一切波都能发生衍射,衍射是波特有的现象.

1.孔的尺寸比波长大得多时就不会发生衍射现象.(×)
2.孔的尺寸比波长小能观察到明显的衍射现象.(√)
3.超声波比普通声波的波长小.(√)

1.只有当障碍物或狭缝的尺寸跟波长相差不多时,才能发生波的衍射现象吗?
【提示】 障碍物或狭缝的尺寸大小,并不是决定衍射能否发生的条件,仅是发生明显衍射的条件.衍射是波特有的现象,一切波都会发生衍射现象.
2.是否孔的尺寸越小,衍射现象越容易观察?
【提示】 不是.当孔的尺寸非常小时,衍射波的能量很弱,实际上很难观察到波的衍射.

1.衍射是波特有的现象,一切波都可以发生衍射.凡能发生衍射现象的都是波.
2.波的衍射总是存在的,只有“明显”与“不明显”的差异,波长较长的波容易发生明显的衍射现象.
3.波传到小孔(障碍物)时,小孔(障碍物)仿佛一个新波源,由它发出与原来同频率的波在孔(障碍物)后传播,就偏离了直线方向.因此,波的直线传播只是在衍射不明显时的近似情况.
4.一列波在传播过程中通过一个障碍物,发生了一定程度的衍射,以下哪种情况可以使衍射现象更明显(  )
A.增大障碍物的尺寸
B.减小波的频率
C.缩小障碍物的尺寸
D.增大波的频率
E.缩小障碍物的尺寸,同时减小波的频率
【解析】 波在介质中传播时波速是由介质决定的,与波的频率无关,所以改变波的频率不会改变波速,但由v=λf可知,当波速一定时,减小频率则波长增大.而发生明显衍射的条件是障碍物或孔、缝的尺寸比波长小或相差不多,要使衍射现象变得明显,可以通过缩小障碍物的尺寸,同时增大波长即减小波的频率来实现,B、C、E选项正确.
【答案】 BCE
5.图2-5-5分别表示一列水波在传播过程中遇到了小孔(A、B、C图)或障碍物(D、E图),其中能发生明显衍射现象的有(  )

图2-5-5
【解析】 图B、C中小孔与波长相差不多,能发生明显衍射,图E中障碍物与波长相差不多,能发生明显衍射.
【答案】 BCE
衍射现象的两点提醒
1.障碍物的尺寸的大小不是发生衍射的条件,而是发生明显衍射的条件,波长越大越易发生明显衍射现象.
2.当孔的尺寸远小于波长时,尽管衍射十分突出,但衍射波的能量很弱,也很难观察到波的衍射.
多 普 勒 效 应 及 应 用

1.多普勒效应
由于波源与观察者之间有相对运动,使观察者感受到频率改变的现象.
2.多普勒效应产生的原因
(1)波源与观察者相互靠近时,单位时间内通过观察者的波峰(或密部)的数目增加,观察者观测到的频率大于波源的频率,即观察到的频率变大.
(2)波源与观察者相互远离时,观察到的频率变小.
3.多普勒效应的应用
(1)测量汽车速度
交通警车向行进中的车辆发射频率已知的超声波,同时测量反射波的频率,根据反射波频率变化的多少就能知道车辆的速度.
(2)测星球速度:测量星球上某些元素发出的光波的频率.然后与地球上这些元素静止时发光的频率对照,可得星球的速度.
(3)测血液流速
向人体内发射已知频率的超声波,超声波被血管中的血液反射后又被仪器接收,测出反射波的频率变化,就能知道血流的速度.

1.声源与观察者相互靠近时,声源的频率增大.(×)
2.当波源和观察者向同一个方向运动时,一定会发生多普勒效应.(×)
3.火车的音调越来越高,说明火车正从远处靠近观察者.(√)

1.多普勒效应能否产生与波源和观察者间的距离有关系吗?是不是距离越近,越容易发生多普勒效应?
【提示】 能否发生多普勒效应仅取决于波源和观察者间的距离是否变化,与距离的大小没有关系.
2.火车进站和出站时,坐在火车上的乘客,能感受到汽笛的音调发生变化吗?
【提示】 不能.坐在火车上的乘客感到汽笛声未变,是因为声源相对听者是静止的,路旁的人感到汽笛音调发生变化,是因为声源相对听者是运动的.

1.多普勒效应的产生
声源完成一次全振动,向外发出一个波长的波,称为一个完整波,频率表示单位时间内完成的全振动的次数.因此波源的频率又等于单位时间内波源发出的完整波的个数.观察者听到的声音的音调,是由观察者接收到的频率,即单位时间内接收到的完整波的个数决定的.
(1)波源和观察者相对静止.
观察者接收到的频率等于波源的频率.
(2)波源和观察者有相对运动.
观察者在单位时间内接收到的完整波的个数发生变化,即感觉到波的频率发生变化.
波源与观察者如果相互靠近,观察者接收到的频率增大;二者如果相互远离,观察者接收到的频率减小.
2.发生多普勒效应时,只有观察者接收到的频率发生了变化,波源发出的频率并没有发生变化.
多普勒效应是波动过程共有的特征,不仅是机械波,以后要讲到的电磁波和光波,也会发生多普勒效应.
6.假如一辆汽车在静止时喇叭发出声音的频率是300 Hz,在汽车向你驶来又擦身而过的过程中,当汽车向你驶来时,听到喇叭声音的频率________于300 Hz,当汽车和你擦身而过后,听到喇叭声音的频率_________于300 Hz.(填“大”或“小”)
【解析】 当汽车向你驶来时,两者距离减小,单位时间内你接收的声波个数增多,频率升高,将大于300 Hz;当汽车和你擦身而过后,两者距离变大,单位时间内你接收的声波个数减少,频率降低,将小于300 Hz.
【答案】 大 小
7.下面说法中正确的是(  )
A.发生多普勒效应时,波源的频率变化了
B.发生多普勒效应时,观察者接收到的频率发生了变化
C.多普勒效应是波源与观察者之间有相对运动时产生的
D.多普勒效应是由奥地利物理学家多普勒首先发现的
E.多普勒效应是牛顿首先发现的
【解析】 当波源与观察者之间有相对运动时会发生多普勒效应,选项C正确;发生多普勒效应时,观察者接收到的频率发生了变化,而波源的频率并没有改变,故选项A错误,选项B正确;此现象是奥地利物理学家多普勒首先发现的,选项D正确.故正确答案为BCD.
【答案】 BCD
8.公路巡警开车在高速公路上以100 km/h的恒定速度巡查,在同一车道上巡警车向前方的一辆轿车发出一个已知频率的超声波,结果该超声波被那辆轿车反射回来时,巡警车接收到的超声波频率比发出的低.
(1)此现象属于(  )
A.波的衍射  B.波的干涉
C.多普勒效应 D.波的反射
(2)若该路段限速为100 km/h,则该轿车是否超速?
(3)若该轿车以20 m/s的速度行进,反射回的频率应怎样变化?
【解析】 (1)巡警车接收到的超声波频率比发出的低,此现象为多普勒效应,选项C正确.
(2)因巡警车接收到的频率低,由多普勒效应知巡警车与轿车在相互远离,而巡警车车速恒定且在后面,可判断轿车车速比巡警车车速大,故该轿车超速.
(3)若该轿车以20 m/s的速度行进,此时巡警车与轿车在相互靠近,由多普勒效应知反射回的频率应偏高.
【答案】 (1)C (2)见解析 (3)见解析
多普勒效应的判断方法
1.确定研究对象(波源与观察者) .
2.确定波源与观察者是否有相对运动.若有相对运动,能发生多普勒效应,否则不发生.
3.判断:当两者远离时,观察者接收到的波的频率变小,靠近时观察者接收到的波的频率变大,但波源的频率不变.