第三章 变量之间的关系复习题---选择题(含解析)

文档属性

名称 第三章 变量之间的关系复习题---选择题(含解析)
格式 zip
文件大小 1.9MB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2019-02-13 10:39:26

图片预览

文档简介

北师大版数学七下第三章变量之间的关系复习题---选择题
一.选择题
1.(2018春?凤翔县期中)下列说法中正确的是(  )
A.用图象表示变量之间关系时,用水平方向上的点表示自变量
B.用图象表示变量之间关系时,用纵轴上的点表示因变量
C.用图象表示变量之间关系时,用竖直方向上的点表示自变量
D.用图象表示变量之间关系时,用横轴上的点表示因变量
2.(2018春?定兴县期末)如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2)周长为p(m),一边长为a(m),那么S、p、a中,常量是(  )
A.a B.p C.S D.p,a
3.(2018秋?兴化市期中)一本笔记本4.5元,买x本共付y元,则4.5和y分别是(  )
A.常量,常量 B.变量,变量 C.变量,常量 D.常量,变量
4.(2018春?雨城区校级月考)弹簧挂上物体后伸长,已知一弹簧的长度y(cm)与所挂物体的质量m(kg)之间的关系如下表:
所挂物体的质量m/kg
0
1
2
3
4
5
弹簧的长度y/cm
10
12.5
15
17.5
20
22.5
下列说法错误的是(  )
A.在没挂物体时,弹簧的长度为10cm
B.弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量
C.弹簧的长度y(cm)与所挂物体的质量m(kg)之间的关系可用关系式y=2.5m+10来表示
D.在弹簧能承受的范围内,当所挂物体的质量为4kg时,弹簧的长度为20cm
5.(2018春?章丘区期末)赵先生手中有一张记录他从出生到24周岁期间的身高情况表(如下):
年龄x/岁
0
3
6
9
12
15
18
21
24
身高h/cm
48
100
130
140
150
158
165
170
170.4
下列说法中错误的是(  )
A.赵先生的身高增长速度总体上先快后慢
B.赵先生的身高在21岁以后基本不长了
C.赵先生的身高从0岁到12岁平均每年增高12.5cm
D.赵先生的身高从0岁到24岁平均每年增高5.1cm
6.(2018春?郓城县期中)某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:
鸭的质量/千克
0.5
1
1.5
2
2.5
3
3.5
4
烤制时间/分
40
60
80
100
120
140
160
180
设鸭的质量为x千克,烤制时间为t,估计当x=3.2千克时,t的值为(  )
A.140 B.138 C.148 D.160
7.(2017春?埇桥区期中)一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如表数据:
支撑物的高度h(cm)
10
20
30
40
50
60
70
80
小车下滑的时间t(s)
4.23
3.00
2.45
2.13
1.89
1.71
1.59
1.50
下列说法错误的是(  )
A.当h=50cm时,t=1.89s
B.随着h逐渐升高,t逐渐变小
C.h每增加10cm,t减小1.23s
D.随着h逐渐升高,小车下滑的平均速度逐渐加快
8.(2018春?叶县期中)某复印的收费y(元)与复印页数x(页)的关系如下表:则(  )
x(页)
100
200
400
1000

y(元)
40
80
160
400

A. B. C.y=10x D.y=4x
9.(2018秋?新泰市校级月考)某商场自行车存放处每周的存车量为5000辆次,其中变速车存车费是每辆一次1元,普通车存车费为每辆一次0.5元,若普通车存车量为x辆次,存车的总收入为y元,则y与x之间的关系式是(  )
A.y=0.5x+5000 B.y=0.5x+2500
C.y=﹣0.5x+5000 D.y=﹣0.5x+2500
10.(2018春?太原期中)出生1﹣6个月的婴儿生长发育得非常快,他们的体重y(克)与月龄x(月)间的关系可以用y=a+700x来表示,其中a是婴儿出生时的体重,一个要儿出生时的体重是3000克,这个婴儿第4个月的体重为(  )
A.6000克 B.5800克 C.5000克 D.5100克
11.(2018春?安国市期末)王叔叔花x万元买了二年期年利率为4.89%的国库券,则本息和y(元)与x之间的关系正确的是(  )
A.y=1.0978x B.y=10978x C.y=10489x D.y=978x
12.(2018春?岐山县期末)如图所示,长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,余下另一个长方形的面积S(cm2)与x(cm)的关系式可表示为(  )
A.s=6x B.s=8(6﹣x) C.s=6(8﹣x) D.s=8x
13.(2018春?防城港期末)小颖现已存款200元.为赞助“希望工程”,她计划今后每月存款10元,则存款总金额y(元)与时间x(月)之间的函数关系式是(  )
A.y=10x B.y=120x C.y=200﹣10x D.y=200+10x
14.(2018春?胶州市期中)已知长方形的周长为16cm,其中一边长为xcm,面积为ycm2,则这个长方形的面积y与边长x之间的关系可表示为(  )
A.y=x2 B.y=(8﹣x)2 C.y=x(8﹣x) D.y=2(8﹣x)
15.(2018春?太原期中)按图(1)﹣(3)的方式摆放餐桌和椅子,照这样的方式维续摆放,如果摆放的餐桌为x张,摆放的椅子为y把,则y与x之间的关系式为(  )
A.y=6x B.y=4x﹣2 C.y=5x﹣1 D.y=4x+2
16.(2018春?思明区校级期中)设路程为s(km),速度为v(km/h),时间为t(h),当s=60时,v=,在这个函数关系式中(  )
A.s是常量,t是s的函数
B.v是常量,t是v的函数
C.t是常量,v是t的函数
D.s是常量,t是自变量,v是t的函数
17.(2017秋?高密市期末)如果每盒笔有18支,售价12元,用y(元)表示笔的售价,x表示笔的支数,那么y与x之间的关系式应该是(  )
A.y=12x B.y=18x C.y=x D.y=
18.(2018春?曲阳县期末)据测试,拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小明洗手后没有把水龙头拧紧,水龙头以测试速度滴水,当小明离开x分钟后,水龙头滴水y毫升水,则y与x之间的函数关系式是(  )
A.y=0.05x B.y=5x
C.y=100x D.y=0.05x+100
19.(2018春?凤翔县期中)一蓄水池中有水40m3,如果每分钟放出2m3的水,水池里的水量与放水时间有如下关系:
放水时间(分)
1
2
3
4

水池中水量(m3)
38
36
34
32

下列数据中满足此表格的是(  )
A.放水时间8分钟,水池中水量25m3
B.放水时问20分钟,水池中水量4m3
C.放水时间26分钟,水池中水量14m3
D.放水时间18分钟,水池中水量4m3
20.(2018?广元)小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是(  )
A.小明吃早餐用时5分钟
B.小华到学校的平均速度是240米/分
C.小明跑步的平均速度是100米/分
D.小华到学校的时间是7:55
21.(2018?青海)均匀地向一个容器注水,最后将容器注满.在注水过程中,水的高度h随时间t的变化规律如图所示,这个容器的形状可能是(  )
A. B. C. D.
22.(2018?赤峰)有一天,兔子和乌龟赛跑.比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行.不一会儿,乌龟就被远远的甩在了后面.兔子想:“这比赛也太轻松了,不如先睡一会儿.”而乌龟一刻不停地继续爬行.当兔子醒来跑到终点时,发现乌龟已经到达了终点.正确反映这则寓言故事的大致图象是(  )
A. B.
C. D.
23.(2018?镇江)甲、乙两地相距80km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h,并继续匀速行驶至乙地,汽车行驶的路程y(km)与时间x(h)之间的函数关系如图所示,该车到达乙地的时间是当天上午(  )
A.10:35 B.10:40 C.10:45 D.10:50
24.(2018?宁夏)如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是(  )
A. B.
C. D.
25.(2018?呼和浩特)二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长,根据如图,在下列选项中指出白昼时长低于11小时的节气(  )
A.惊蛰 B.小满 C.立秋 D.大寒
26.(2018?通辽)小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是(  )
A. B.
C. D.
27.(2018?齐齐哈尔)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是(  )
A.0点时气温达到最低
B.最低气温是零下4℃
C.0点到14点之间气温持续上升
D.最高气温是8℃
28.(2018?随州)“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是(  )
A.
B.
C.
D.
29.(2018?达州)如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没于水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是(  )
A. B.
C. D.
30.(2018?长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是(  )
A.小明吃早餐用了25min
B.小明读报用了30min
C.食堂到图书馆的距离为0.8km
D.小明从图书馆回家的速度为0.8km/min
31.(2018?自贡)回顾初中阶段函数的学习过程,从函数解析式到函数图象,再利用函数图象研究函数的性质,这种研究方法主要体现的数学思想是(  )
A.数形结合 B.类比 C.演绎 D.公理化
32.(2018?金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是(  )
A.每月上网时间不足25h时,选择A方式最省钱
B.每月上网费用为60元时,B方式可上网的时间比A方式多
C.每月上网时间为35h时,选择B方式最省钱
D.每月上网时间超过70h时,选择C方式最省钱
33.(2018?滨州)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为(  )
A.
B.
C.
D.
34.(2018?内江)如图,在物理课上,小明用弹簧秤将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是(  )
A. B.
C. D.
35.(2018?本溪)如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是(  )
A.2 B. C. D.1
36.(2018?锦州)如图,在△ABC中,∠C=90°,AC=BC=3cm,动点P从点A出发,以cm/s的速度沿AB方向运动到点B,动点Q同时从点A出发,以1cm/s的速度沿折线AC→CB方向运动到点B.设△APQ的面积为y(cm2),运动时间为x(s),则下列图象能反映y与x之间关系的是(  )
A. B.
C. D.
37.(2018?南通)如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan∠DCE=.设AB=x,△ABF的面积为y,则y与x的函数图象大致为(  )
A. B.
C. D.
38.(2018?莱芜)如图,边长为2的正△ABC的边BC在直线l上,两条距离为1的平行直线a和b垂直于直线l,a和b同时向右移动(a的起始位置在B点),速度均为每秒1个单位,运动时间为t(秒),直到b到达C点停止,在a和b向右移动的过程中,记△ABC夹在a和b之间的部分的面积为s,则s关于t的函数图象大致为(  )
A. B.
C. D.
39.(2018?葫芦岛)如图,在?ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是(  )
A. B.
C. D.
40.(2018?攀枝花)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作Rt△ABC,使∠BAC=90°,∠ACB=30°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是(  )
A. B.
C. D.
41.(2018?广安)已知点P为某个封闭图形边界上一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是(  )
A. B.
C. D.
42.(2018?烟台)如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以1cm/s的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是(  )
A.
B.
C.
D.
43.(2018?河南)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为(  )
A. B.2 C. D.2
44.(2018?东营)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为(  )
A. B.
C. D.
45.(2018?黄石)如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是(  )
A. B.
C. D.
46.(2018?东莞市)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为(  )
A. B.
C. D.
47.(2018?孝感)如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是(  )
A. B.
C. D.
48.(2017?本溪)如图,等腰直角三角形ABC,∠BAC=90°,AB=AC=4,以点A为中心的正方形EFGH边长为x(x>0),EF∥AB,正方形EFGH与等腰直角三角形ABC重叠部分的面积为y,则大致能反映y与x之间的函数关系的图象为(  )
A. B.
C. D.
49.(2017?青海)如图,在矩形ABCD中,点P从点A出发,沿着矩形的边顺时针方向运动一周回到点A,则点A、P、D围成的图形面积y与点P运动路程x之间形成的函数关系式的大致图象是(  )
A. B.
C. D.

北师大版数学七下第三章变量之间的关系复习题---选择题
参考答案与试题解析
一.选择题
1.(2018春?凤翔县期中)下列说法中正确的是(  )
A.用图象表示变量之间关系时,用水平方向上的点表示自变量
B.用图象表示变量之间关系时,用纵轴上的点表示因变量
C.用图象表示变量之间关系时,用竖直方向上的点表示自变量
D.用图象表示变量之间关系时,用横轴上的点表示因变量
【分析】根据图象的基础知识,用水平方向的横轴上的点表示自变量,用竖直方向的纵轴上的点表示因变量可知.
【解答】解:∵用水平方向的横轴上的点表示自变量,用竖直方向的纵轴上的点表示因变量.
∴A、C、D错误;B正确.
故选:B.
2.(2018春?定兴县期末)如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2)周长为p(m),一边长为a(m),那么S、p、a中,常量是(  )
A.a B.p C.S D.p,a
【分析】根据篱笆的总长确定,即可得到周长、一边长及面积中的变量.
【解答】解:根据题意长方形的周长p=60m,
所以常量是p,
故选:B.
3.(2018秋?兴化市期中)一本笔记本4.5元,买x本共付y元,则4.5和y分别是(  )
A.常量,常量 B.变量,变量 C.变量,常量 D.常量,变量
【分析】根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.
【解答】解:由题意,得
y=4.5x,
4.5是常量,y是变量,
故选:D.
4.(2018春?雨城区校级月考)弹簧挂上物体后伸长,已知一弹簧的长度y(cm)与所挂物体的质量m(kg)之间的关系如下表:
所挂物体的质量m/kg
0
1
2
3
4
5
弹簧的长度y/cm
10
12.5
15
17.5
20
22.5
下列说法错误的是(  )
A.在没挂物体时,弹簧的长度为10cm
B.弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量
C.弹簧的长度y(cm)与所挂物体的质量m(kg)之间的关系可用关系式y=2.5m+10来表示
D.在弹簧能承受的范围内,当所挂物体的质量为4kg时,弹簧的长度为20cm
【分析】因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m,质量为mkg,y弹簧长度;弹簧的长度有一定范围,不能超过.
【解答】解:A.在没挂物体时,弹簧的长度为10cm,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;
B、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;
C、当物体的质量为mkg时,弹簧的长度是y=12+2.5m,故此选项正确,不符合题意;
D、由C中y=10+2.5m,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意;
故选:B.
5.(2018春?章丘区期末)赵先生手中有一张记录他从出生到24周岁期间的身高情况表(如下):
年龄x/岁
0
3
6
9
12
15
18
21
24
身高h/cm
48
100
130
140
150
158
165
170
170.4
下列说法中错误的是(  )
A.赵先生的身高增长速度总体上先快后慢
B.赵先生的身高在21岁以后基本不长了
C.赵先生的身高从0岁到12岁平均每年增高12.5cm
D.赵先生的身高从0岁到24岁平均每年增高5.1cm
【分析】A、根据身高情况统计表算出每3年身高增加的数值,比较后即可得出A正确;B、由21岁及24岁的身高,做差后即可得出B正确;C、用12岁时的身高﹣0岁时的身高再除以12即可得出C错误;D、用24岁时的身高﹣0岁时的身高再除以24即可得出D正确.此题得解.
【解答】解:A、∵100﹣48=52,130﹣100=30,140﹣130=10,150﹣140=10,158﹣150=8,165﹣158=7,170﹣165=5,170.4﹣170=0.4,52>30>10=10>8>7>5>0.4,
∴赵先生的身高增长速度总体上先快后慢,A正确;
B、∵21岁赵先生的身高为170cm,24岁赵先生的身高为170.4cm,
∴赵先生的身高在21岁以后基本不长了,B正确;
C、∵(150﹣48)÷12=8.5(cm),
∴赵先生的身高从0岁到12岁平均每年增高8.5cm,C错误;
D、∵(170.5﹣48)÷24=5.1(cm),
∴赵先生的身高从0岁到24岁平均每年增高5.1cm,D正确.
故选:C.
6.(2018春?郓城县期中)某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:
鸭的质量/千克
0.5
1
1.5
2
2.5
3
3.5
4
烤制时间/分
40
60
80
100
120
140
160
180
设鸭的质量为x千克,烤制时间为t,估计当x=3.2千克时,t的值为(  )
A.140 B.138 C.148 D.160
【分析】观察表格可知,烤鸭的质量每增加0.5千克,烤制时间增加20分钟,由此可判断烤制时间是烤鸭质量的一次函数,设烤制时间为t分钟,烤鸭的质量为x千克,t与x的一次函数关系式为:t=kx+b,取(1,60),(2,100)代入,运用待定系数法求出函数关系式,再将x=3.2千克代入即可求出烤制时间t.
【解答】解:从表中可以看出,烤鸭的质量每增加0.5千克,烤制的时间增加20分钟,由此可知烤制时间是烤鸭质量的一次函数.
设烤制时间为t分钟,烤鸭的质量为x千克,t与x的一次函数关系式为:t=kx+b,

解得
所以t=40x+20.
当x=3.2千克时,t=40×3.2+20=148.
故选:C.
7.(2017春?埇桥区期中)一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如表数据:
支撑物的高度h(cm)
10
20
30
40
50
60
70
80
小车下滑的时间t(s)
4.23
3.00
2.45
2.13
1.89
1.71
1.59
1.50
下列说法错误的是(  )
A.当h=50cm时,t=1.89s
B.随着h逐渐升高,t逐渐变小
C.h每增加10cm,t减小1.23s
D.随着h逐渐升高,小车下滑的平均速度逐渐加快
【分析】根据函数的表示方法,可得答案.
【解答】解;A、当h=50cm时,t=1.89s,故A正确;
B、随着h逐渐升高,t逐渐变小,故B正确;
C、h每增加10cm,t减小的值不一定,故C错误;
D、随着h逐渐升高,小车的时间减少,小车的速度逐渐加快,故D正确;
故选:C.
8.(2018春?叶县期中)某复印的收费y(元)与复印页数x(页)的关系如下表:则(  )
x(页)
100
200
400
1000

y(元)
40
80
160
400

A. B. C.y=10x D.y=4x
【分析】待定系数法设一次函数关系式,把任意两点代入,求得相应的函数解析式,看其余点的坐标是否适合即可.
【解答】解:设解析式为y=kx+b(k≠0),则,
解得,
故y=0.4x;
故选:B.
9.(2018秋?新泰市校级月考)某商场自行车存放处每周的存车量为5000辆次,其中变速车存车费是每辆一次1元,普通车存车费为每辆一次0.5元,若普通车存车量为x辆次,存车的总收入为y元,则y与x之间的关系式是(  )
A.y=0.5x+5000 B.y=0.5x+2500
C.y=﹣0.5x+5000 D.y=﹣0.5x+2500
【分析】根据题意可以写出题目中的函数解关系式,从而可以解答本题.
【解答】解:由题意可得,
y=0.5x+(5000﹣x)×1=﹣0.5x+5000,
故选:C.
10.(2018春?太原期中)出生1﹣6个月的婴儿生长发育得非常快,他们的体重y(克)与月龄x(月)间的关系可以用y=a+700x来表示,其中a是婴儿出生时的体重,一个要儿出生时的体重是3000克,这个婴儿第4个月的体重为(  )
A.6000克 B.5800克 C.5000克 D.5100克
【分析】直接利用函数关系式,把a,x的值代入进而得出答案.
【解答】解:由题意可得:y=3000+700x,
当x=4时,y=3000+2800=5800(克).
故选:B.
11.(2018春?安国市期末)王叔叔花x万元买了二年期年利率为4.89%的国库券,则本息和y(元)与x之间的关系正确的是(  )
A.y=1.0978x B.y=10978x C.y=10489x D.y=978x
【分析】根据本息和=本金+利息=本金+本金×利率得出即可.
【解答】解:依题意有y=10000x+10000x×4.89%×2=10978x.
故选:B.
12.(2018春?岐山县期末)如图所示,长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,余下另一个长方形的面积S(cm2)与x(cm)的关系式可表示为(  )
A.s=6x B.s=8(6﹣x) C.s=6(8﹣x) D.s=8x
【分析】直接利用已知表示出新矩形的长,进而得出其面积.
【解答】解:∵长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,
∴余下另一个长方形的面积S(cm2)与x(cm)的关系式可表示为:s=6(8﹣x).
故选:C.
13.(2018春?防城港期末)小颖现已存款200元.为赞助“希望工程”,她计划今后每月存款10元,则存款总金额y(元)与时间x(月)之间的函数关系式是(  )
A.y=10x B.y=120x C.y=200﹣10x D.y=200+10x
【分析】根据题意可以写出存款总金额y(元)与时间x(月)之间的函数关系式,从而可以解答本题.
【解答】解:由题意可得,
y=200+10x,
故选:D.
14.(2018春?胶州市期中)已知长方形的周长为16cm,其中一边长为xcm,面积为ycm2,则这个长方形的面积y与边长x之间的关系可表示为(  )
A.y=x2 B.y=(8﹣x)2 C.y=x(8﹣x) D.y=2(8﹣x)
【分析】直接利用长方形面积求法得出答案.
【解答】解:∵长方形的周长为16cm,其中一边长为xcm,
∴另一边长为:(8﹣x)cm,
故y=(8﹣x)x.
故选:C.
15.(2018春?太原期中)按图(1)﹣(3)的方式摆放餐桌和椅子,照这样的方式维续摆放,如果摆放的餐桌为x张,摆放的椅子为y把,则y与x之间的关系式为(  )
A.y=6x B.y=4x﹣2 C.y=5x﹣1 D.y=4x+2
【分析】第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.第x张餐桌共有6+4(x﹣1)=4x+2.
【解答】解:有1张桌子时有6把椅子,
有2张桌子时有10把椅子,10=6+4×1,
有3张桌子时有14把椅子,14=6+4×2,
∵多一张餐桌,多放4把椅子,
∴第x张餐桌共有y=6+4(x﹣1)=4x+2.
故选:D.
16.(2018春?思明区校级期中)设路程为s(km),速度为v(km/h),时间为t(h),当s=60时,v=,在这个函数关系式中(  )
A.s是常量,t是s的函数
B.v是常量,t是v的函数
C.t是常量,v是t的函数
D.s是常量,t是自变量,v是t的函数
【分析】利用函数的概念对各选项进行判断.
【解答】解:在函数关系式v=中,t为自变量,v为t的函数,60为常量.
故选:D.
17.(2017秋?高密市期末)如果每盒笔有18支,售价12元,用y(元)表示笔的售价,x表示笔的支数,那么y与x之间的关系式应该是(  )
A.y=12x B.y=18x C.y=x D.y=
【分析】先求得每支笔的价格,然后依据总售价=单价×支数列出关于即可.
【解答】解:∵每支笔的价格=12÷18=元/支,
∴y=x.
故选:C.
18.(2018春?曲阳县期末)据测试,拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小明洗手后没有把水龙头拧紧,水龙头以测试速度滴水,当小明离开x分钟后,水龙头滴水y毫升水,则y与x之间的函数关系式是(  )
A.y=0.05x B.y=5x
C.y=100x D.y=0.05x+100
【分析】每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100×0.05毫升,则x分钟可滴100×0.05x毫升,据此即可求解.
【解答】解:根据题意可得:y=100×0.05x,
即y=5x.
故选:B.
19.(2018春?凤翔县期中)一蓄水池中有水40m3,如果每分钟放出2m3的水,水池里的水量与放水时间有如下关系:
放水时间(分)
1
2
3
4

水池中水量(m3)
38
36
34
32

下列数据中满足此表格的是(  )
A.放水时间8分钟,水池中水量25m3
B.放水时问20分钟,水池中水量4m3
C.放水时间26分钟,水池中水量14m3
D.放水时间18分钟,水池中水量4m3
【分析】根据题意可得蓄水量y=40﹣2t,从而进行各选项的判断即可.
【解答】解:设蓄水量为y,时间为t,
则可得y=40﹣2t,
A、放水8分钟,水池中水量为24m3,故本选项错误;
B、放水时问20分钟,水池中水量0,故本选项错误;
C、放水时间26分钟,水池中水量0,故本选项错误;
D、放水时间18分钟,水池中水量4m3,故本选项正确;
故选:D.
20.(2018?广元)小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是(  )
A.小明吃早餐用时5分钟
B.小华到学校的平均速度是240米/分
C.小明跑步的平均速度是100米/分
D.小华到学校的时间是7:55
【分析】根据函数图象中各拐点的实际意义求解可得.
【解答】解:A、小明吃早餐用时13﹣8=5分钟,此选项正确;
B、小华到学校的平均速度是1200÷(13﹣8)=240(米/分),此选项正确;
C、小明跑步的平均速度是(1200﹣500)÷(20﹣13)=100(米/分),此选项正确;
D、小华到学校的时间是7:53,此选项错误;
故选:D.
21.(2018?青海)均匀地向一个容器注水,最后将容器注满.在注水过程中,水的高度h随时间t的变化规律如图所示,这个容器的形状可能是(  )
A. B. C. D.
【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.
【解答】解:注水量一定,从图中可以看出,OA上升较快,AB上升较慢,BC上升最快,
由此可知这个容器下面容积较大,中间容积最大,上面容积最小,
故选:D.
22.(2018?赤峰)有一天,兔子和乌龟赛跑.比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行.不一会儿,乌龟就被远远的甩在了后面.兔子想:“这比赛也太轻松了,不如先睡一会儿.”而乌龟一刻不停地继续爬行.当兔子醒来跑到终点时,发现乌龟已经到达了终点.正确反映这则寓言故事的大致图象是(  )
A. B.
C. D.
【分析】根据题意得出兔子和乌龟的图象进行解答即可.
【解答】解:乌龟运动的图象是一条直线,兔子运动的图象路程先增大,而后不变,再增大,并且乌龟所用时间最短,
故选:D.
23.(2018?镇江)甲、乙两地相距80km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h,并继续匀速行驶至乙地,汽车行驶的路程y(km)与时间x(h)之间的函数关系如图所示,该车到达乙地的时间是当天上午(  )
A.10:35 B.10:40 C.10:45 D.10:50
【分析】根据速度之间的关系和函数图象解答即可.
【解答】解:因为匀速行驶了一半的路程后将速度提高了20km/h,
所以1小时后的路程为40km,速度为40km/h,
所以以后的速度为20+40=60km/h,时间为分钟,
故该车到达乙地的时间是当天上午10:40;
故选:B.
24.(2018?宁夏)如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是(  )
A. B.
C. D.
【分析】根据实心长方体在水槽里,长方体底面积减小,水面上升的速度较快,水淹没实心长方体后一直到水注满,底面积是圆柱体的底面积,水面上升的速度较慢进行分析即可.
【解答】解:根据题意可知,刚开始时由于实心长方体在水槽里,长方体底面积减小,水面上升的速度较快,水淹没实心长方体后一直到水注满,底面积是圆柱体的底面积,水面上升的速度较慢,
故选:D.
25.(2018?呼和浩特)二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长,根据如图,在下列选项中指出白昼时长低于11小时的节气(  )
A.惊蛰 B.小满 C.立秋 D.大寒
【分析】根据函数的图象确定每个节气白昼时长,然后即可确定正确的选项.
【解答】解:A、惊蛰白昼时长为11.5小时,高于11小时,不符合题意;
B、小满白昼时长为14.5小时,高于11小时,不符合题意;
C、立秋白昼时长为14小时,高于11小时,不符合题意;
D、大寒白昼时长为9.8小时,低于11小时,符合题意,
故选:D.
26.(2018?通辽)小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是(  )
A. B.
C. D.
【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.
【解答】解:根据题意得:小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是
故选:B.
27.(2018?齐齐哈尔)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是(  )
A.0点时气温达到最低
B.最低气温是零下4℃
C.0点到14点之间气温持续上升
D.最高气温是8℃
【分析】根据齐齐哈尔市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.
【解答】解:A、由函数图象知4时气温达到最低,此选项错误;
B、最低气温是零下3℃,此选项错误;
C、4点到14点之间气温持续上升,此选项错误;
D、最高气温是8℃,此选项正确;
故选:D.
28.(2018?随州)“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是(  )
A.
B.
C.
D.
【分析】根据兔子的路程在一段时间内保持不变、乌龟比兔子所用时间少逐一判断即可得.
【解答】解:由于兔子在途中睡觉,所以兔子的路程在一段时间内保持不变,所以D选项错误;
因为乌龟最终赢得比赛,即乌龟比兔子所用时间少,所以A、C均错误;
故选:B.
29.(2018?达州)如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没于水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是(  )
A. B.
C. D.
【分析】根据题意,利用分类讨论的数学思想可以解答本题.
【解答】解:由题意可知,
铁块露出水面以前,F拉+F浮=G,浮力不变,故此过程中弹簧的度数不变,
当铁块慢慢露出水面开始,浮力减小,则拉力增加,
当铁块完全露出水面后,拉力等于重力,
故选:D.
30.(2018?长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是(  )
A.小明吃早餐用了25min
B.小明读报用了30min
C.食堂到图书馆的距离为0.8km
D.小明从图书馆回家的速度为0.8km/min
【分析】根据函数图象判断即可.
【解答】解:小明吃早餐用了(25﹣8)=17min,A错误;
小明读报用了(58﹣28)=30min,B正确;
食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;
小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;
故选:B.
31.(2018?自贡)回顾初中阶段函数的学习过程,从函数解析式到函数图象,再利用函数图象研究函数的性质,这种研究方法主要体现的数学思想是(  )
A.数形结合 B.类比 C.演绎 D.公理化
【分析】从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现.
【解答】解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想.
故选:A.
32.(2018?金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是(  )
A.每月上网时间不足25h时,选择A方式最省钱
B.每月上网费用为60元时,B方式可上网的时间比A方式多
C.每月上网时间为35h时,选择B方式最省钱
D.每月上网时间超过70h时,选择C方式最省钱
【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;
B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;
C、利用待定系数法求出:当x≥25时,yA与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时yA的值,将其与50比较后即可得出结论C正确;
D、利用待定系数法求出:当x≥50时,yB与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时yB的值,将其与120比较后即可得出结论D错误.
综上即可得出结论.
【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;
B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;
C、设当x≥25时,yA=kx+b,
将(25,30)、(55,120)代入yA=kx+b,得:
,解得:,
∴yA=3x﹣45(x≥25),
当x=35时,yA=3x﹣45=60>50,
∴每月上网时间为35h时,选择B方式最省钱,结论C正确;
D、设当x≥50时,yB=mx+n,
将(50,50)、(55,65)代入yB=mx+n,得:
,解得:,
∴yB=3x﹣100(x≥50),
当x=70时,yB=3x﹣100=110<120,
∴结论D错误.
故选:D.
33.(2018?滨州)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为(  )
A.
B.
C.
D.
【分析】根据定义可将函数进行化简.
【解答】解:当﹣1≤x<0,[x]=﹣1,y=x+1
当0≤x<1时,[x]=0,y=x
当1≤x<2时,[x]=1,y=x﹣1
……
故选:A.
34.(2018?内江)如图,在物理课上,小明用弹簧秤将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是(  )
A. B.
C. D.
【分析】根据在铁块开始露出水面到完全露出水面时,排开水的体积逐渐变小,根据阿基米德原理和称重法可知y的变化,注意铁块露出水面前读数y不变,离开水面后y不变,即可得出答案.
【解答】解:露出水面前排开水的体积不变,受到的浮力不变,根据称重法可知y不变;
铁块开始露出水面到完全露出水面时,排开水的体积逐渐变小,根据阿基米德原理可知受到的浮力变小,根据称重法可知y变大;
铁块完全露出水面后一定高度,不再受浮力的作用,弹簧秤的读数为铁块的重力,故y不变.
故选:C.
35.(2018?本溪)如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是(  )
A.2 B. C. D.1
【分析】由图象可知:AE=3,BE=4,∠DAE=∠CEB=α,设:AD=BC=a,在Rt△ADE中,conα==,在Rt△BCE中,sinα==,由(sinα)2+(conα)2=1,解得:a=,当x=6时,即:EN=3,则y=MN=ENsinα=.
【解答】解:由图象可知:
AE=3,BE=4,∠DAE=∠CEB=α,
设:AD=BC=a,
在Rt△ADE中,conα==,
在Rt△BCE中,sinα==,
由(sinα)2+(cosα)2=1,解得:a=,
当x=6时,即:EN=3,则y=MN=ENsinα=.
故选:B.
36.(2018?锦州)如图,在△ABC中,∠C=90°,AC=BC=3cm,动点P从点A出发,以cm/s的速度沿AB方向运动到点B,动点Q同时从点A出发,以1cm/s的速度沿折线AC→CB方向运动到点B.设△APQ的面积为y(cm2),运动时间为x(s),则下列图象能反映y与x之间关系的是(  )
A. B.
C. D.
【分析】作QD⊥AB,分点Q在AC、CB上运动这两种情况,由直角三角形的性质表示出QD的长,利用三角形面积公式得出函数解析式即可判断.
【解答】解:(1)过点Q作QD⊥AB于点D,
①如图1,当点Q在AC上运动时,即0≤x≤3,
由题意知AQ=x、AP=x,
∵∠A=45°,
∴QD=AQ=x,
则y=?x?x=x2;
②如图2,当点Q在CB上运动时,即3<x≤6,此时点P与点B重合,
由题意知BQ=6﹣x、AP=AB=3,
∵∠B=45°,
∴QD=BQ=(6﹣x),
则y=×3×(6﹣x)=﹣x+9;
故选:D.
37.(2018?南通)如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan∠DCE=.设AB=x,△ABF的面积为y,则y与x的函数图象大致为(  )
A. B.
C. D.
【分析】根据折叠,可证明∠AFB=90°,进而可证明△AFB∽△EBC,由tan∠DCE=,分别表示EB、BC、CE,根据相似三角形面积之比等于相似比平方,表示△ABF的面积.
【解答】解:设AB=x,则AE=EB=
由折叠,FE=EB=
则∠AFB=90°
由tan∠DCE=
∴BC=,EC=
∵F、B关于EC对称
∴∠FBA=∠BCE
∴△AFB∽△EBC

∴y=
故选:D.
38.(2018?莱芜)如图,边长为2的正△ABC的边BC在直线l上,两条距离为1的平行直线a和b垂直于直线l,a和b同时向右移动(a的起始位置在B点),速度均为每秒1个单位,运动时间为t(秒),直到b到达C点停止,在a和b向右移动的过程中,记△ABC夹在a和b之间的部分的面积为s,则s关于t的函数图象大致为(  )
A. B.
C. D.
【分析】依据a和b同时向右移动,分三种情况讨论,求得函数解析式,进而得到当0≤t<1时,函数图象为开口向上的抛物线的一部分,当1≤t<2时,函数图象为开口向下的抛物线的一部分,当2≤t≤3时,函数图象为开口向上的抛物线的一部分.
【解答】解:如图①,当0≤t<1时,BE=t,DE=t,
∴s=S△BDE=×t×t=;
如图②,当1≤t<2时,CE=2﹣t,BG=t﹣1,
∴DE=(2﹣t),FG=(t﹣1),
∴s=S五边形AFGED=S△ABC﹣S△BGF﹣S△CDE=×2×﹣×(t﹣1)×(t﹣1)﹣×(2﹣t)×(2﹣t)=﹣+3t﹣;
如图③,当2≤t≤3时,CG=3﹣t,GF=(3﹣t),
∴s=S△CFG=×(3﹣t)×(3﹣t)=﹣3t+,
综上所述,当0≤t<1时,函数图象为开口向上的抛物线的一部分;当1≤t<2时,函数图象为开口向下的抛物线的一部分;当2≤t≤3时,函数图象为开口向上的抛物线的一部分,
故选:B.
39.(2018?葫芦岛)如图,在?ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是(  )
A. B.
C. D.
【分析】在Rt△ABC中,利用勾股定理可求出AC的长度,分0≤x≤6、6≤x≤8及8≤x≤14三种情况找出y关于x的函数关系式,对照四个选项即可得出结论.
【解答】解:在Rt△ABC中,∠BAC=90°,AB=6,BC=10,
∴AC==8.
当0≤x≤6时,AP=6﹣x,AQ=x,
∴y=PQ2=AP2+AQ2=2x2﹣12x+36;
当6≤x≤8时,AP=x﹣6,AQ=x,
∴y=PQ2=(AQ﹣AP)2=36;
当8≤x≤14时,CP=14﹣x,CQ=x﹣8,
∴y=PQ2=CP2+CQ2=2x2﹣44x+260.
故选:B.
40.(2018?攀枝花)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作Rt△ABC,使∠BAC=90°,∠ACB=30°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是(  )
A. B.
C. D.
【分析】利用相似三角形的性质与判定得出y与x之间的函数关系式进而得出答案.
【解答】解:如图所示:过点C作CD⊥y轴于点D,
∵∠BAC=90°,
∴∠DAC+∠OAB=90°,
∵∠DCA+∠DAC=90°,
∴∠DCA=∠OAB,
又∵∠CDA=∠AOB=90°,
∴△CDA∽△AOB,
∴===tan30°,
则=,
故y=x+1(x>0),
则选项C符合题意.
故选:C.
41.(2018?广安)已知点P为某个封闭图形边界上一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是(  )
A. B.
C. D.
【分析】先观察图象得到y与x的函数图象分三个部分,则可对有4边的封闭图形进行淘汰,利用圆的定义,P点在圆上运动时,开始y随x的增大而增大,然后y随x的减小而减小,则可对D进行判断,从而得到正确选项.
【解答】解:y与x的函数图象分三个部分,而B选项和C选项中的封闭图形都有4条线段,其图象要分四个部分,所以B、C选项不正确;D选项中的封闭图形为圆,开始y随x的增大而增大,然后y随x的减小而减小,所以D选项不正确;A选项为三角形,M点在三边上运动对应三段图象,且M点在P点的对边上运动时,PM的长有最小值.
故选:A.
42.(2018?烟台)如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以1cm/s的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是(  )
A.
B.
C.
D.
【分析】先根据动点P和Q的运动时间和速度表示:AP=t,AQ=2t,
①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,计算S与t的关系式,发现是开口向上的抛物线,可知:选项C、D不正确;
②当4<t≤6时,Q在边BC上,P在边AD上,如图2,计算S与t的关系式,发现是一次函数,是一条直线,可知:选项B不正确,从而得结论.
【解答】解:由题意得:AP=t,AQ=2t,
①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,
S△APQ=AP?AQ==t2,
故选项C、D不正确;
②当4<t≤6时,Q在边BC上,P在边AD上,如图2,
S△APQ=AP?AB==4t,
故选项B不正确;
故选:A.
43.(2018?河南)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为(  )
A. B.2 C. D.2
【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.
【解答】解:过点D作DE⊥BC于点E
由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.
∴AD=a

∴DE=2
当点F从D到B时,用s
∴BD=
Rt△DBE中,
BE===1
∵ABCD是菱形
∴EC=a﹣1,DC=a
Rt△DEC中,
a2=22+(a﹣1)2
解得a=
故选:C.
44.(2018?东营)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为(  )
A. B.
C. D.
【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.
【解答】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知:=,
即EF=2(6﹣x)
所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)
该函数图象是抛物线的一部分,
故选:D.
45.(2018?黄石)如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是(  )
A. B.
C. D.
【分析】在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可.
【解答】解:∵∠P=90°,PM=PN,
∴∠PMN=∠PNM=45°,
由题意得:CM=x,
分三种情况:
①当0≤x≤2时,如图1,边CD与PM交于点E,
∵∠PMN=45°,
∴△MEC是等腰直角三角形,
此时矩形ABCD与△PMN重叠部分是△EMC,
∴y=S△EMC=CM?CE=;
故选项B和D不正确;
②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,
∵∠N=45°,CD=2,
∴CN=CD=2,
∴CM=6﹣2=4,
即此时x=4,
当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,
过E作EF⊥MN于F,
∴EF=MF=2,
∴ED=CF=x﹣2,
∴y=S梯形EMCD=CD?(DE+CM)==2x﹣2;
③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,
∴EH=MH=2,DE=CH=x﹣2,
∵MN=6,CM=x,
∴CG=CN=6﹣x,
∴DF=DG=2﹣(6﹣x)=x﹣4,
∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+6x﹣10,
故选项A正确;
故选:A.
46.(2018?东莞市)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为(  )
A. B.
C. D.
【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.
【解答】解:分三种情况:
①当P在AB边上时,如图1,
设菱形的高为h,
y=AP?h,
∵AP随x的增大而增大,h不变,
∴y随x的增大而增大,
故选项C不正确;
②当P在边BC上时,如图2,
y=AD?h,
AD和h都不变,
∴在这个过程中,y不变,
故选项A不正确;
③当P在边CD上时,如图3,
y=PD?h,
∵PD随x的增大而减小,h不变,
∴y随x的增大而减小,
∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,
∴P在三条线段上运动的时间相同,
故选项D不正确;
故选:B.
47.(2018?孝感)如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是(  )
A. B.
C. D.
【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.
【解答】解:由题意可得:PB=3﹣t,BQ=2t,
则△PBQ的面积S=PB?BQ=(3﹣t)×2t=﹣t2+3t,
故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.
故选:C.
48.(2017?本溪)如图,等腰直角三角形ABC,∠BAC=90°,AB=AC=4,以点A为中心的正方形EFGH边长为x(x>0),EF∥AB,正方形EFGH与等腰直角三角形ABC重叠部分的面积为y,则大致能反映y与x之间的函数关系的图象为(  )
A. B.
C. D.
【分析】分三个时间段求出函数解析式即可判断;
【解答】解:①当0<x≤4时,y=x2,
②当4<x≤8时,y=×4×4﹣2××(4﹣x)2=﹣x2+4x﹣8,
③当x>8时,y=8,
故选:B.
49.(2017?青海)如图,在矩形ABCD中,点P从点A出发,沿着矩形的边顺时针方向运动一周回到点A,则点A、P、D围成的图形面积y与点P运动路程x之间形成的函数关系式的大致图象是(  )
A. B.
C. D.
【分析】分三种情形讨论即可.
【解答】解:由题意可知,点A、P、D围成的图形均为三角形.
①点P从点A运动到点B的过程,其面积为y=?AD?x,函数为一次函数,
②点P从点B运动到点C的过程,其面积为y=?AD?AB=常数,函数图象平行x轴;
③点P从点B运动到点C的过程,其面积为y=?AD?(AB+BC+CD﹣x),函数为一次函数,
故选:A.